Interactions between causal structures in
graph rewriting systems

loana Cristescu Walter Fontana Jean Krivine
Department of Systems Biology, Harvard Medical School, Boston, USA IRIF, Universite Paris 7, Paris, France

{ioana_cristescu,walter_fontana}@hms.harvard.edu jean.krivine@irif.fr

Graph rewrite formalisms are a powerful approach to modeling complex molecular systems. They
capture the intrinsic concurrency of molecular interactions, thereby enabling a formal notion of mech-
anism (a partially ordered set of events) that explains how a system achieves a particular outcome
given a set of rewrite rules. It is then useful to verify whether the mechanisms that emerge from a
given model comply with empirical observations about their mutual interference. In this work, our
objective is to determine whether a specibc event in the mechanism for achieving X prevents or pro-
motes the occurrence of a specibc event in the mechanism for achieving Y. Such checks might also be
used to hypothesize rules that would bring model mechanisms in compliance with observations. We
debne a rigorous framework for debning the concept of interference (positive or negative) between
mechanisms induced by a system of graph-rewrite rules and for establishing whether an asserted
inBuence can be realized given two mechanisms as an input.

1 Introduction

A persistent challenge across molecular biology is to understand how a multitude of diverse and asyn-
chronous interactions between molecular entities give rise to coherent system behavior. One difbculty
arises from the combinatorial complexity inherent in chemistry: A reaction (or interaction) between
structured entities, such as molecules, consists in the transformation of specibc parts in a manner that
depends on a few rather than all aspects specifying the reactants. Combinatorial complexity then arises
because a given reactant combination can exhibit several distinct reactive patterns and the same pattern
can occur across many distinct reactant combinations. This idea generalizes beyond chemistry.

A molecular system can thus be described in terms of rewuits. In this way, rule-based modeling
tackles combinatorial complexity without succumbing to it because it only specibes rules of pattern
transformation and not the multitude of possible carriers of these patterns. Many physical systems can
be conveniently described as graphs. A rule-based approach then becomes a graph rewriting formalism
with a domain-specibc execution model that determines the probability with which a rule bres at a
given time. The currently most developed approaches are the Kappa languapar{d BNGL [?] for
molecular biology and M¢ d?] for organic chemistry.

A rule formalizes the interaction between physical entities at some chosen level of abstraction. Pro-
cesses occurring below that level are abstracted away, yet not ignored: They inform what a rule should
say, but they are not explicitly represented by it. For instance, in organic chemistry, a rule of reaction be-
tween molecules expresses a local reconbguration of bonds among atoms without explicitly representing
the underlying mechanism of electron pushing that engenders such reconbguration. In molecular biol-
ogy, an interaction between proteins is typically expressed by asserting the conditions for a change of
protein state without representing the structural mechanisms enabling that change. In essence, a mecha-
nism below the chosen abstraction level becomes an axiomatic rule at the abstractiol.level [

© . Cristescu, W. Fontana & J. Krivine
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
CREST 2018

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Interactions between causal structures

Many observations of system behavior aseertions rather than rules. For example, an assertion
might claim that the activation of protekinhibits the assembly of molecular machinelt is desirable
to determine whether and why an assertion holds in terms of the joint action among rules that represent
a particular system. This is tantamount to providingehanism thatexplains a given assertion at the
level of abstraction at which rules are debned.

The stochastic application of rules (a simulation) typically generates a long trace of state transi-
tions. A mechanism is a set of transitions that were jointly necessary in producing a specibed outcome.
Mechanisms so-debned can be extracted from tr&c@$ ind abstracted into partial orders (posets) of
eventd|

Here we propose a formal logic to express and verify a particular kind of assertion about a model
written in the Kappa language. We focus on assertions in which the occurrence of one event is claimed to
interfere with another event. Our approach takes as input two posets of events (i.e. mechanisms), which
might be hypothesized or abstracted from a simulation, and provides evidence whether the two posets
interfere with one another at the specibed events. The key is that each poset builds up a context that is
required for its terminal event. These contexts can be reconstructed and checked for mutual consistency.
To lay the foundation for this approach requires setting up some formal machinery which occupies the
bulk of this paper.

Interaction between graph rewriting posets. The

graphs in Kappa consist of nodes, called agents, fac N - B0

meant to represent proteins. Agents are equipped)
. . CcOgo A O) = ©OA 050 B
with sites through which they connect to one an- * “ Ga BD “

other. A site represents a resource and hence can o = BD
bear at most one edge. Such graphs are called ray =
graphs.

An event is the application of a rewrite rule to
a usually large graph representing the state of the
system. Events are partially ordered by a relatiopmtedence. Intuitively, an event; precedes an
evente; if e1 contributes to establishing the context necessaryfo€onsider, for example, the simple
model in Figuré 1 with the initial state consisting of nodasB, c}, all unbound. Suppose furthermore
that the binding of agerx to A (rule rax) and of agent to A (rule ray) are two signibcant evenéay
andeay, respectively. We wish to verify the assertion that either event inhibits the other. The assertion is
cast in terms of two mechanisms (posets) that could have been extracted from a simulation trace of this
model, one mechanism resultingegx , the other ireay (Figure[2A).
A static inspection of rulesax andray, underlying the events that are the subject of our query, shows
that both use the same site &f This might suggest that the two events are in conf3ict and therefore
inhibit each other. This, however, is not a valid conclusion. Given the poset AX of Higure 2A, we can
reconstruct the contextNspecibcally the site-graptx of Figure@BNin which rulerax Pres. Note that
Gax specibes that site 2 afmust be unbound. Likewise, the bring of rujg is contingent upon context
Gay, Which is built up by poset AY Gay requires that site 2 of be bound. These two contexts are in
conf3ict and thus cannot be realized at the same time. This means, in turn, that therghibition ar
this point between the two mechanisms: \Whether a particulak gets bound t& or toY is already decided
before the mechanisms reach the events whose relationship of inhibition we queried. As a whole, the
mechanisms AX and AY must interfere with one another negatively,asnot be bound to bothand

Figure 1: A Kappa model.

1in Ref.[?], a partially ordered set of events that account for an outcome was dubbed a OstoryO, which is akin to the biological
notion of a OpathwayO.

I. Cristescu, W. Fontana & J. Krivine 3

Poset AX

rac

Poset AY

raB fac

?
rax | |F———-|| rav

Figure 2: Panel A: Two mechanisms (posets) and a query for confict between the specibed events. Black arrows are precedence; events are
labeled by the underlying rules. Panel B: The gréhlx represent the context in which the ruig is applied in the Poset AX. There is no

scenario in which the posets interact, since the g@@not a site-graph. The site 3 of agdrtias to be bound to an agehand be free at the

same time, which is not representable in site-graphs.

Y at the same time; but the point of conflict is somewhere else. (It is betweenrgyesidray.) To
determine the earliest event combination at which two mechanisms confRict with one another can be done
by scanning all events of one against all events of the other.
If we change the model by replacing rulgs with rule
rag (Figure[3), the context for the application of rutgx
becomes consistent with the context of application of rule
ray. This means both rules can bre. Since the bPring\gf
destroys part of the context neededray (and vice versa),
the mechanisms inhibit each other at the events queried.Fic‘I]rJre 3: Rulo. replaces rtlexs. The grapfG' rep-
sum, the key in determining whether two events in the SCOP&; the contoxt in which the rﬁéx is agpplri)ed in tEe
of distinct mechanisms are mutually exclusive consistsHgsetAX. In this scenario, which coincides with graph

reconstructing from the given mechanisms the context fg e s & infibition between the two posets and

quired for both events and determining whether it can be re-
alized. We call this critical context a OscenarioO.

Related work. The notion ofrule influence, introduced in Refs.?, ?], is used to detect inhibition and
promotion between posets (DePnitjor] 18). Our approach to abstracting traces of state transitions into
partial orders is similar to Refs?[?], but we use more bPne-grained relations on graphs (the enablement
and prevention relations of Sectipn2.4). As a consequence, we do not need Petri nets as an interme-
diate encoding between state transitions and posets. In any case, our main focus is on reconstructing a
trace from a poset, which is obtained from a causal structure extracted from a Kappa simulation. This
extraction is the subject of Ref?][and outside the scope of this paper.

Outline. In Section 2 we introduce site-graphs, the graph rewriting framework of Kappa, and the notion
of rule inBuence. To debne partial orders between events in a manner informed by rule infuence, we need
to take a detour via the transition system induced by the rules (Section 2.4). In order to determine the
scenario that establishes enablement or prevention between posets, we need to reconstruct a trace from
a poset. To this end, in Section 3, we formalize trace reconstruction as the reverse of poset abstraction
from traces. In Section 4 we debne a logic for expressing assertions on the posets provided as inputs.
We conclude in Section 5.

Length limitations preclude a description of our implementation, which can be foulckas: //
github.com/Kappa-Dev/PosetLogic. All constructions on site-graphs presented here can be adapted
to simple graphs.

https://github.com/Kappa-Dev/PosetLogic
https://github.com/Kappa-Dev/PosetLogic

4 Interactions between causal structures

2 Graph rewriting and transition systems

2.1 Site-graphs

Let A be a set ofigents, ranged over by 4 andK = {A,B,..} be a set ofigent types, equipped with a
mapsite: K" Nsgq. The functiontype: A" K assigns a type to each agent.
Definition 1 (Site-graph) A site-graph is a structur@ ,N ,E) where

¥ A # Ais aset of agents;

¥ N # A $ N.o%f{freg is a set of nodes, with a special node free, and where each non-free node
is a pair(a,i) of an agent & A and sitei < site(type(a));

¥ E# N $N isasymmetric set of edges with the constraint thatdbigfict-free: ' (n1,n2),(ny,n5) &
E, (n1=ni(n2=nb)) (n1=ny(n2=ny)) ({n1,n}*{ ny,n}#{ free).
Definition 2 (Morphism on site-graphs)A morphismf : G" H, for G andH two site-graphs, is a pair
of functionsf = (v,e) with
¥v:Ag" Ay afunction on agents that preserves typggie(v(a)) = type(a) and that can be
extended to a function on nodeg(a, i) = (v(a),i) andv(free) = free, for all a& A and for all
i < site(type(d));
¥ ande:Es" Eg afunction on edges such that for any two nodga, & N g, if (n1,12) & E; then
e(n1,n2) = (v(n1),v(n2)).
Site-graphs and their morphisms form a category, der@tddorphisms inG preserve the node type
and the edge structure of nodes in site-graphs. Isomorphisms are denot&d Withono is a morphism
with injective functions on nodes and edges. We denote the empty graph anthwrite f = , f1, fo- for

the sparG; ! G2 2 G3. The same notation is used to denote the co:;b_al’ﬁL G> RG Gs. For simplicity,
we write f for v (ore) in f = (v,e). Finally, we write honiG) and spa(G) for the class of morphisms
and spans 06, respectively.

2.2 Graph rewriting

A rule-based model consists of graph-rewriting rules that are applied in a stochastic fashion to a typically
large graph representing the state of a system. In Kappa the stochastic application of rewrite rules follows
basic principles of stochastic chemical kineti@s ?]. Each graph-rewrite action constitutes a state
transition and a temporal sequence of such transitions is a trace. We also refer to the state of the system
as a OmixtureO.

Definition 3 (Pushout) Thepushout of a spar{g is a cospary such thatfig1 = fzg and such that for

any other cospayi' for which fig1 = fsg2, there is a unique morphisi " M' that makes diagram PO
below commute.

In the category of site-graphs, the pushout does not always exist. For égsphmonos, if the
pushout exists, then it asserts a gluingiafandG,, resulting inM, based on the identibcations (gluing
instructions) expressed by.

Definition 4 (Rule) A rule is a span of monos = L.” K" R such that for some & Ag andi <
site(type(a)) , if (a,i) & Nk then((¢(a),i),n) &Er O ((p(a),i),n') & E,, withn & N g andn' & N .

2We write fg(x) = f(g(x)), with x in the domain of, for morphisms composition.

I. Cristescu, W. Fontana & J. Krivine 5

In site-graphs the site of an agent can be specibed without specifying if the site is free or bound to
another site. Formally, in a site-graphwith an agent & A, we can havéa, i) & N ; for which there
is no edggni,ny) & E; such thati; = (a,i) or np = (a,i). Rules however, need to satisfy a constraint
related to sites: if an edge exists for a site in either sides of a rule, then it exists in both sides.

Definition 5 (Double-pushout rewriting?]). Let Y=L” K" Rbearule. LetM bea site-graph
(typically a system state) and let: L" M be a mono, called matching. Thedouble pushout rewriting
consists in dePning the site-graph called theconzext graph, and the site-graptt such that the two

squares in diagram DPO are pushouts. We refer to the dpo rewrifet@V asM 0" N and denote the
state transition associated with the application of ruke , p,¢- at Olocation@ of the system statéf

(i.e. the mixture) asnix(M ‘0" N)= M. D" N.

M!
fi/z\}\fé M—D—N
PO: IPRE DPO: mT) T . T
G1 G2 L+—K—R
8\1052

Given the debnition above, a context grdpmeed not always exist. We use dpo rewriting for the
sake of simplicity, but our work extends to other graph rewriting techniques.

2.3 Influence

The postcondition resulting from the application of a rulecan satisfy or, more generally, contribute

(in conjunction with other rules) to satisfying the precondition for the application of anotherxule
Alternatively,71 might destroy the precondition o5. In the former case we speak of a positive inSuence

of r1 onry and, in the latter case, of a negative inuence. Of course, a rule may also have no infRuence
on a particular other rule.

InBuenc belongs to the realm of possibility: it is a latent relation between rules that becomes
manifest as a relation between events (i.e. actual rule applications) in the specibc context of a trace, as
we discuss formally in Sectign 3.

We next debne two categorical concepts needed for capturing inBuence. Multisums are meant to
characterize all possible ways of gluing together two graghandGo.

Definition 6 (Multisum in the subcategory of mono?]]. Let G; andG; be two graphs. Thew!ltisum

of G1 and G, denoted withmultisum(G1, G»), is a family of cospans qf monog = , f1,, f2,i-, With
fiiiG;" M, il n, j&{1,2}, such that for any other cospan of mon@swith f;: G;" M', there
exists anMy, k 1 n and a unique mongf; " M' that makes diagram MS below commute. Moreover,
for any monos\, " M' andM;" M',i k1 n, for which diagram MS commutes, we havlg £ M;.

Unlike other constructions, which are debPnedsinmultisums are debned in the subcategorgof
whose morphisms are restricted to monos. Multisums always exists in this subcategory.
Definition 7 (Pullback) The pullback of the cospanf consists of a spa"@ such thatfigs = fogo. In

addition, for any other spagi such thatfig} = fog5, there is a unique morphis®@' " O that makes
diagram PB commute.

3positive and negative inRuence were referred tacsation, inhibition or overlaps in Refs., Section 3.4]}, Section
4.2.3]2].

6 Interactions between causal structures

M f%M{"z
f A\
MS: [M, aa&m,adaM, a /‘
T T gz
G1 G»

The pullback always exists iB. Using these notions we can debne inBuence.
Definition 8 (Positive inBuence?]). Given two rule§1 =L K1 nt Ry and;z = L. K>" R, consider

an overlap betweeR; and L, i.e. a cosparf & multlsurr(Rl,Lz) and Ietg be the pullback off.

Moreover, leth be the pullback ofi,g1-. The ruler1 has apositive influence on rulerz, if h2 is not an
iso. In other words, iD is not contained i and, thus, ik1. The inBuence is induced by the overlgp

corresponding tg° and is denoted b§1 3¢ ;2

The diagram on the right depicts the relationships f%M@
usedin DebnitioBS. The rulg has a positive inSuence L1 Ry Ly Ry
onr; if it creates a subgraph @. By requiringh; not K Lk ok oA x4
to be an iso, we assert thatis not already present in K1 810 52 K>
L, and must, therefore, be produced Ry Negative ;iip 'hjz

inBuence;l 3¢ ;2 is dePned analogously, but wi"g1

now the pullback of a cospasi & multisum(Ly,L,) between the left hand sideé:l has a negative
inBuence o, if it destroys a subgraph af.

Example 1. The ruler; has a positive 0a8;

inRuence onrz, because; produces an ool “1% %\LZ (i
agentB needed for a subsequent applica- Q- 08 08 -8
tion of r, shown in Figurd |, Similarly N U
r» has a negative inRuence epsince it B e }

erases an ageatneeded by.
Figure 4: Positive inRuence between two rules. For simplicity, sites are omitted.

2.4 Transition systems

Following Refs. P, ?] we introduce the notion of transition system (TS) on state graphs and an indepen-
dence relation between transitions. We then propose new relatiengigément andprevention between
transitions, based on the notions of rule inBuence just debned, and connect them to independence.

Definition 9 (TS on graphs?]). A transition systenT'S =(Q,R,T) on graphs consists of:
¥ aset of state® # G, where each state is a graph;
¥ asetofruleRR;
¥ a set of labeled transitior§# 0$ hom(G) $ R $ Q, where each transitionis a dpo rewriting

stepM 8" N with M, N & 0, an underlying ruler : L. K" R&R, and a matching : L "
M & hom(G).

I. Cristescu, W. Fontana & J. Krivine 7

Transitions can be composegdl if the source state af matches the destination staterafA trace
is a (possibly empty) sequence of composable transitibasry; ;44 A,.

Definition 10 (Independence relation on transitior®)[Let 11 : M "0™ My, 1, : M1 "6" M, and1s :

M "8" M3 be transitions with underlying rules = L. K" R &R, i &{1,2,3} and corresponding

matchingsn; as indicated in the diagrams below.

sequential independence 71 and, are sequentially independent, writterdse2, iff there exist mor-
phismsi:R1" Dyandj:Ly" Disuch thatfsi = niandgij= mo.

parallel independence 7, andrz are parallel independent, writtepCpats, iff there exist morphisms
i:L1" Dzandj:L3z" Dqsuchthatfzi= miandfij= mas.

f3

M<—D1LM1<f;2D2*>M2 M1<—D1L>M<;D3*>M3

e T A I N B YA R

L1<7K1—>R1“L2<7K2—>R2 Rl%Kl—)LluLg%Kg,HRg
sequential independence parallel independence

In the following, we use the functiomix (of Debnition[5) to chain transitions by span composition
(see diagrams below). Given two spafis- , f1, fo- and';g = ,g1,82-, we debne their composition as
':gf =, fih1,g2ho- where i is the pullback of, f>,g1-. A partial morphismf : M; [Mdis a total
morphism from the subgraph d¢if) of M1 to M3, thatisf : My 3 dom(f) " Msz. Given a spamify !

ul

D" Ms, its corresponding partial morphism, denodd [A7z] is debPned of(D) as/?r and undebned
otherwise P].

My £ Dy 12 M> £ D> 82 M3 /
r
% /hz' My «— D — M3
D ~_ =

Definition 11 (Causality) Let sy : My "0™ N1 andz : M, "6 N, be two transitions bracketing a trace
" in;t);th 444, 1. The rules inducing,i & {1,2}, arer; = L;. K;" R; with matchingsn; & hom(G)
into M1 andM>, respectively.

enablement Let g be a span such th;ii 3¢ rz If the diagram below on the left commutes thegn
enables,, denoted <+ . In the diagram below on the left, the partial morphidin LMl is
obtained from the composition afix(¢;) 4 44 amix(z,,).

prevention Let g be a span such théﬁ 3¢ r1 If the diagram below on the right commutes then
prevents;, denoted, 5- #;. In the diagram below on the right the partial morphigm [Malis
the composition ofmix(t1) 4 mix(¢}) 4 44 amix(t)).

My +— Dy — N —— My« Dy — N> M, ——— M
L1 +— K1 — Ry Ly +— K> — R» Ly Ly
P Sy ®

enablement prevention

8 Interactions between causal structures

To make the underlying span explicit, we sometimes V\(Eﬁf[ﬁz,':g) &< and(tl,tz,:g) &5 .

m1r1§ 5@ vo m2r2 5@ T m3r3 BG vo m4r4
ga 0ef Dof
m1\

€0 €50 B85

ED
2 3l

I'1U
G0 GO@ B38 GO D

Figure 5: Transition, binds agentd andD, needed by transition. Transitionrs needs to happens between the two, as it (i) binds agents
andB as needed by, and (ii) unbindA from C which was necessary foy.

Example 2. Consider the trace of Figufe 5. The prst transition enables the second and third transitions.
The second transition enables the last transition. However, it is a OdelayedO enabler: it partially fulblls
the precondition of the last transition, but the third transition has to happen before. Note that such type
of causality is not captured by the graph rewriting framework?f?| ?]ﬁ. Lastly note that the third
transition is a preventer for the second one.

3 Posets of graph rewriting events

In this section we abstract a trace into a poset of events, and concretize a poset back into a set of traces.
Each transition becomes an event in a poset with the underlying rule as its label. Similarly, in the
concretization, each event in a poset corresponds to a transition such that transitions compose into a
trace. The abstraction is used to reduce the number of simulation traces to a small set of posets, and the
concretization recomputes a OrepresentativeO trace from each poset. Concretized traces are used in the
next section.

3.1 From traces to posets

A transition? (Debnitior@) is a pair of spansi¥iix(r)= M. D" N and the underlying rule : L.
K" RNand a matchingm : L" M. When abstracting a trace into a partial order, we drop the span
mix(r) andm. The enabling and prevention relations between transitions in a trace (§ection 2.4) translate
into a partial order on events, labeled by the underlying rules.

We proceed in two steps. Enabling and prevention between transitions hinge on positive and negative
inBuence between the underlying rules (see Debprjitipn 11). Recall that when transitiailes transi-

tion ¢! within a trace" there exists a spafi for which (z,1', f) &<-. The brst abstractiom 1, forgets
the matching and the spamix(z) of a transitionz, but preserves enablement and prevention relations
between transitions and the positive and negative inBuence between the underlying rules.

Definition 12 (Abstraction step 1)Let" = 1;1r;aaa, be a trace and = {el,ez,é.é.éten} be a set of

events. Events are labeled using a functiol * R such thati(¢;) = r; if ; : M; 6" N;, fori 1l n. We
then debne two relatiodd 4 ,a%%# ES$ E$ spaiG):

4For immediate transitions, enablement and prevention coincide with the sequential dependence and critical pairs, respec-
tively, of Refs. P, ?, ?]. See the appendix for more details.
5We can debne a function id*" N from transitions to natural numbers such thdt;)d= i. The set of events is then

E={12448.

I. Cristescu, W. Fontana & J. Krivine 9

e,if D Gt) &< ande; 27 ¢; D (t1.1;, f) &5+,
foreje; &E,i,j1 nandf&spar(G) We denote this brst abstraction"ofvith A1(")= (E, I:f v).

The notatiore if ¢', for some sparf, overloads the notatiolfz) if [(¢'). Keep in mind, however,
that the brst idefined on events whereas the second caivfiered from the rules on which it holds (see
Debnitior] 8).
In the second abstraction stef,, we map the relationd and? to corresponding partial orders
on events. This step simply forgets the spans responsible for the enablement and prevention relations on
transitions.
Definition 13 (Abstraction step 2)Let E be a set of events equipped with a labeling functid&’ * R
and two relationg? & ,éfaé# E$ E$ spar{G). We translate the relations on events from DePnition
into two new relations:,IF# E $ E:

e;<e;j e,-if ejande;l-e; O ejif e

The associated poset is debned\asE, I:f ,'f)=(E,C1,6), wherel and6 are the transitive and
relRexive closure of andlF, respectively. We call the two relatiodsand6, (enabling) precedence and
non-enabling precedence, respective@

Lemma 1. Let" be a trace and I@t,e & E be two events witlA,A1(")=(E,L[1,6). If e < ¢ then

there exists a spaﬁ such thatl(¢) 3/ [(@"). Similarly, if e I ¢', then there exists a quﬁ& spar{G)
such thati(2') 3/ [(2).

A morphism on posets is a function on events that preserves labels and the two precedence relations.
An isomorphism between two posgisands. is denoted by, £ s,. For a set of trace® = {"1,484',,},
we writeS = (s1,8aay)/+ with k 1 n for the set of posets obtained AaA 1 and quotiented by iso.

Example 3. Consider the trac® = r1;1;13;14 of Examplg 2. The corresponding poset consists of the
events{ e, e2, e3,e4} With the relations<= {(e1,e2);(e1,e3); (e2,e4); (e3,e4)} andi-= {(e2,e3)}. Note
thate, is a non-enabling precedent &, as in the original trace transitiog prevents transitior.

3.2 From posets to traces

We next specify the concretization from posets to traces. Again, we proceed in two steps. The brst

concretization retrieves the intermediate struc(lEeI:f ,'f) from a pose(E, [1,6). This step re-
covers the inBuence (positive or negative) between the rules underlying two events that are in a particular
precedence or non-enabling precedence relation.

Definition 14 (Concretization step 1)Let (E,[1,6) be a poset. We debne the relatidﬁs'ﬁt
E$SES spar(G) as follows:

¥ e,-if ej 0 E(})if () ande,<ej,forsomef&spar(G)

¥ e,-ff ej 0 E(}i)ﬁf [(¢;) ande; I ¢;, forsomef&spar(G)

6In order to not introduce unnecessary terminology, we abuse thepiemto mean the structuré®, [1 ,6) where the
set of eventst is equipped withwo partial orders. We could instead deH(#® L{< 7 IF) 3'but in this case we forget the
distinction betweerc andit-.

10 Interactions between causal structures

where< andl are the reduced relation &f and6, respectively. The concretization of a poset is then
Ci(E.[1,6)=(E, [T 2).

Example 4. Consider a poset of evenig, e, andes with labelsri, r» andrs, respectively, as shown in
Figure[6. Furthermore, suppose that eventande;, both precedes. For the paite; < e3, one can infer
the positive inBuenc'él if r3 For the pair, < e3, we need to consider two possibilities: either

€3

BN

Figure 6: All possible inBuences between three rules.

;2 3¢ ;3 or ;»2 3" r3 The relation induced by the spénis problematic. Intuitively, the events and
e2 should produce a distinct set of agents for evgntSpecibcally, both cannot produce Ha@:e agent
A that binds toB in e3. Theconsistent span attributes the creation of agento e; and the creation of
B to e (in addition to a furthe not used ines). In this manner, botla; ande, are necessary for the
occurence oés.

As the example indicates, it is not trivial to retrieve the infBuence between events from the inBuence
between rules. The problem is that inBuence between evenigdid@ property of the poset, whereas
inBuence between rules lscal to the two rules. Lack of space prevents us from characterizing the
correct concretizations of a poset. Informally, a concretization of a pasefrrect if (i) every relation
on events ins is due to a shared resource (i.e. an agent or an edge) and if (ii) every resouriz in
consistent throughout

The second concretization maps events into transitions such that: (i) the transitions compose into
a valid trace and (ii) the relations debned on the events hold on the transitions of the trace. We call a
candidate for concretization any function from events to transitions that satispes condition (i).

Definition 15. Let E be a set of events with a labeling functiédE * R and a total order on events

C# E$ E. Afunctionconcrete E" T is called acandidate for concretization if concretde)= M'0" N

such that(¢) = r, for some graphs/, N, and a morphism. Moreoverconcretde;); aadaoncretde,,),
with ¢; C e;+ 1, i 1 n, compose into a trace.

Any such function must also satisfy condition (ii), as in the following debnition.

Definition 16 (Concretization step 2)Let £ be a set of events equipped with a functiahz " R and
two relationsa8 ,a23# E$ E$ spaG). Letr be a total order on events and temcrete E* T
be a function from events to transitions such that the following hold:

¥ (ti,tj, f) &< O e,-if ejand

¥ (l‘i,l‘j,f) &5+ 0 eiﬁf €j

for e;,e; & E, i,j 1 n. Then the concretized trace G(E, I:f ,'f ,concrete") = concretde);aaa
concretde,), fore; C e 1,i 1 n.

I. Cristescu, W. Fontana & J. Krivine 11

For(E,LC1,5) a poset, we writ€C (E, L1 ,5) for the set of all possible concretisations, i.e. the set

of all traces' as specibed b@1(E,[1,5) andCy(E, I:f ,'f ,concrete”). We write(" ,concretg &
C(E, L1 ,5) for the concretization function used in reconstructing a particular

Theorem 1. Let " be a trace. Thef & CA»A1("). Moreover, for any tracé' & CAA ("),
A2A1(") E A2AL("Y).

4 A logic on posets

In Figure[7 we dePne a fragment of a brst * n=xl X (variables on events and posets)
order logic that can be used to express asser+’ :=x" | s (terms on posets)
tions about positive and negative infduence ¢ ::=x°| e (terms on events)
between mechanisms, that is, posets. We ;::=¢|s¢ (terms)
interpret the logic on the set of poseds, # =8 () | B () | (quantibers)
ranged over by, and on the set of events A | #1(#s | (logical connectors)

E = 7,esEs;, WhereE,, is the set of events
in s;. To distinguish between the partial or-
ders of different posets i8 , we writes = | £ & 5] 2 15&15 |15 &E 15 & (predicates)
(Es, 14,65,). In the following, x stands
for variablesy for terms and the superscripts
e ands indicate whether the variables and Figure 7: The grammar of the poset logic.
terms range over events or posets, respec-
tively. Formulas are denoted Byand are built from predicates on variables and terms.
A valuation for # is a functionv : fv(#) " E %S from the set of free variables &f to the set of
events and posets. Thealuation of # is dePned below and requires a valuation functidar the set
of free variables oft; the evaluation is therefore parametricionVe use two functions, one to evaluate
terms{} ,:t" E %S and one to evaluate formul@il, : # "{ T,F}. Aformula# is satisbable if there
existsv such thaf[#]], evaluates to true. The interpretation of formulas and terms is shown in fFigure 8.
[X#], 0 forals&S ,[#(s/X)].
[8x*.#], O forsomes&S ,[#(s/X)].
[A#], = A[#],
[#1 (#20 = [#4D ([#2Dy
[&r']y O { } &{r'},
[@)= sl O W)= r
51651, O e1l;exwhereer = {#5},,e2= {15}, 5= {£°},
[#5 6,5 250, O e1 65 ex Whereey = {5},,e2 = {15} ,,s = {¢'},

+/2 +/2
[&1 «/» 5&6], 0 e1&s1 «/» ez & sy whereeg = {#1},,e2= {15},

s1 = {ti}vvs2 = {ti}v

&)= r|t51st5]|185 60185

{x}y = (%)
{e}v=e
{sty=s

Figure 8: The intepretation of the poset logic.

12 Interactions between causal structures

Example 5. We return to the introductory example. The mechanisms of binding an adersn agent
X or to an agent consist in the application of rulex andray, respectively. The assertion that the prst
mechanism prevents (or conBicts with) the second is writteBeage; & s1([(&1) = rax) (8 e2.(e2 &

2 . .
s2([(&2) = ray) (e1 & 51~ e2 & s2. The logic allows us to formulate more complex mechanisms. For

our example, we can writge.e & s([(¢) = rax) &)= ray for a mechanism that producgdound to
eitherX orY.

The predicates; & s1 N ez & 5o andeg & s1 Z e2 & so check for enablement and prevention between
two posets. Informallye; ande, represent the Omeeting pointO of the two peseisds,. We use these
events to reconstruct a graph that represents a context in whétables or prevents.

The causal past of an event is the set of events that preceded it. We denotdajjtthe causal past
of an event & E; and debnée], = (E',1',6', Jwith E' = {¢':¢' & E,¢' 1 ¢} and1',6', [Hebned like
1,6, [But restricted tc'.

Definition 17 (Occurrence context of an event in a posétt s be a poset and let& E; be an event.
Furthermore, le{" ,concretg & C([¢];) be a concretization dk];. We say that a morphism is an
occurrence context of e in s if concretée) = M mdﬂ) N, for some graphs/, N.

M
The occurrence context ef in s; and ofe; in s5 is specibed by match- PN

ingsmy:L1" Mjyandmy:Ly" Mo, respectively. The diagram on the right M, Mo
illustrates the prevention of by s1. Since the grapiM contains both\/; mi ms
andM», both eventg, ande, can occur in that context. We then say that 81 82

. . . . j L1 Lo
is ascenario for the prevention of, by s1, which is induced by a negative ~ 4

10 f
inBuence between the underlying rul&&;) 3/ [(4>). The scenario graph
M is formally dePned as follows.

Definition 18 (Scenario for prevention)Let m; be an occurrence context of eventin the posets;,

i&{1,2}. Let f be a span such thaf1) 3/ [(¢7). DePne the spa"g = ,g1,82-asg;= m;f;, i &{1,2}.
We say that the graphf obtained by the pushout is ascenario (graph) for the prevention @b & s, by
e1 & s1.

Example 6. Let L, L, be the left hand sides of ruleax andray from Figure[2. We have a negative
inBuence between the rulesx andray induced by the agert. The occurence context efix in the
poset AX is obtained from the concretization of the poset AX and consists of the morphisnGax .
Similarly the occurence context efy in the poset AY id.," Gay. There is no scenario for prevention
as the graplts (in Figure[2) is not a site-graph.

In a similar manner we interpret the enabling relation between two mechanisms. The predicate

(e1 & 51 +«/»2 e2 & so) returns true if there exists a scena#bas debned above. The pushout does not
always exists and, in consequence, mechanisms do not always interact with one another.

The logic is implemented as a systematic inspection of each poset. The set of posets does not have
in itself a structure, and therefore there is no smart strategy for deciding whether a formula holds. The
point of the logic is to give a formal language and an interpretation for inuence between posets.

Example 7. Let us look at a Kappa model slightly more complicated than the one in the Introduction.
We give the rules in the bgure below. The two posets build up the g@ghsndGay. Then there are

two OresourcesO which can produce an inhibition between the two posets. They produce two scenario
graphs for inhibitionG1 andG», shown in Figuré 9.

I. Cristescu, W. Fontana & J. Krivine 13

Poset AX

B a - G0
. B33 - B33
-3 - B~
BB-BBT ~

A
9 C e C
(2] (2]
~ B3 - B T3

Figure 9: A Kappa model for which there are two scenarios for the prevention between the eventsigbaleday .

@u W B °
= - 3 - B8
B@@

©:
e C ec B @ oéeoc
rax Bovo Boerox ‘

Figure 10: A slightly different Kappa model for which only one of the scenarios is still valid.

Let us change rule, into riz and keep everything else the same. With the new rule the graph build
up by Poset AX requires the site 2 of agénio be free. In this case only one scenario for inhibition can
still occur, shown in Figurg 0.

5 Conclusions

Given a categorical notion of graph rewrite system, we debned positive and negative infiuence between
rules. This allowed us to debPne sequential and parallel independence between state transitions and the
relations of enablement and prevention. These were then lifted to the poset abstraction of a trace of
state transitions, where they became enabling and non-enabling precedence neldtio@sposet. The
formulation of a logic on posets then allows us to formulate questions about enablement and prevention
relationsbetween posets. We ended by specifying how the concretization of posets back into a trace pro-
vides a scenario graph that establishes the truth (or falsity) of a statement about poset interaction. These
notions, together with their implementation, are meant to assist a modeler in checking the consistency
between observations and the mechanisms that are implied by a rule-based model.

Acknowledgements. We gratefully acknowledge illuminating discussions with Russ Harmer, Jerome
Feret, and Jonathan Laurent. Special thanks to Pierre Boutillier for his help in developing and integrating
the model checker resulting from this contribution into the Kappa software framework.

14 Interactions between causal structures

A Appendix

In this appendix we present the proofs missing in our presentation as well as providing more examples
and remarks.

A.1 Another Example

Let us look at a Kappa model slightly more complicated than the one in the Introduction. We give
the rules in the bgure below. The two posets build up the gréksand Gay. Then there are two
OresourcesO which can produce an inhibition between the two posets. They produce two scenario graphs
for inhibition G; andG», shown below.

~ B0 -~ BN

- B0 3 - B33
~28 - B3

Fav coeAe Gax

Let us change rule, into riz and keep everything else the same. With the new rule the graph build
up by Poset AX requires the site 2 of ag€ntio be free. In this case only one scenario for inhibition can
still occur, shown below.

~ B30 - G0 “ @ BT

.E-B@-8oca
~-B @ -3

BB~ BB 8 -
gﬂ O A 6, 98 i

o C e C
oy o~ W’
rax JEX-ONG = EED

A.2 Proofs of Section [2.1]

Lemma 2. Site-graphs and their morphisms form a category.

Proof. The category of site-graphs has as objects the site-graphs of 1 and as arrows the morghisms of 2.
Let us show morphisms compose. Given three site-gréah6,, Gz and two morphismg : G1" Go,
g:G2" Gsleth= gf be the (pairwise) composition of the two. It follows

¥ foran agent& Ag,, type(n(a)) = ¢(f(type(a)) and we have thaype(h(a)) = h(type(a));

¥ for anode(a,i) & Ng,, i(a i) = g(f(d)),i)) and thereforéi(a,i) = (g(f(8)),i) = (4(8),i); A triv-
ially preserves the free node;

I. Cristescu, W. Fontana & J. Krivine 15

¥ for an edg€n1,nz) & Eg,, h(n1,n2) = (g(f(n1),8(f(n2)), henceh preserves edges.

If fandg are injective, then so is. The axioms of associativity and identity law easily hold. O

A.3 Examples of Section

Example 8 (Of no pushout in site-graphs)n the bgure below, the pushout of the span below is not a
site-graph: there is a conf3ict on site 2 of agént

Example 9 (Rules) Thegood rule at the right binds agentsandB to one
another. Note that we do not need to specify all sites of the @n@ @ﬂ N

agentsA andB. The sites that are speciPed are preconditions good rule
for the application of the rule, that is the rule only applies on
agentsA with the sites 2 and 3 free and on ageBisith site 2 o 8 -

bad rule

ree.

Note that is site 2 of agent is mentioned on the left hand side, it also needs to appear in the right
hand side. This is expressed in condition of the Debnjtion 4. So, for exampbedhele on the right
does not satisfy this condition.

A4 Proofs and examples of Section

In Ref. [?] there are two conditions that need to hold for the dpo rewriting of Depijition 5. One of the two
condition is the dangling condition dePned below. The second one (callédethéication condition)
always holds in our setting because we only consider monos in the dpo rewriting.

Property 1 (Dangling conditions) Let v =L." K" Rbearuleandlet L™ M be a matching in a
graph M. Define the gluing pointsand dangling pointsus subsets of the nodes in N 1, as follows:

foe
GP = p(Nk) M —
DP={n&N:8l8&Ey\ m(E) s.z. m|
I[=(m(n),) or1=(_,m(n))}. L

Then we say that the dangling condition holds if DP # GP.

~—
N — =

<7
p q
— K —
In this work, we only consider rule applications for which the dangling conditions hold. In the

following lemma we show that there exists a uniqusuch that. " M. D is the pushout of the span
L. K" D. Note that the condition on rules (of Debnitjon 4) is needed for the following result.

ul

Lemma 3. LetL." K" Rbe arule and leM be a site-graph and lei : L" M be a matching. The
DPO rewriting can be applied whenever the dangling conditions hold.

Proof.

We }I;rst debne a pushout in a OconstructiveO manner. Then f g

we construct the grapP and show thad/ is the pushout of M<—D—N
the spank,/-. Lastly, we construch and show that it is the mT / Tk . Tu
pushout of the spajk, r-. L+—K—R

Interactions between causal structures

equivalence relation witlk(n), r(n)) &9, for ¢
graphN to be the following graph:
¥ Ny=(Np7Ng)le
1. LetrR.” K™ Dbeaspan. Wedeb8¢ Nz$ Nptobethesmallest ¥ Ay={a:a&n,n&Ny}

¥ Ev= {(n1,n2) :n1,n2 &Ny
if n1,n> & imager) then[r? (n1),r? (n2)
if 71,15 & imagek) then[k? (n1), k2 (n)

ZY\!
u.éNé\g.
R D
DN

I"Kk

The pushout in the category of site-graphs does not always exists. When the pushout does not
exists, then the grapk is not a site-graph, i.e. there is a conBicEpn We show that itV is a site-

graph then it is the pushout. For that, we have to show that the @¢dyats the universal property:

for any site-graptv' and two morphismg' : D" N'andu':R" N' such that the diagram above
commutes, there exists a unique morphisrv " N' such that the diagram above commutes. Let

the morphisnk: N" N' be as follows:

h(a) = u'(u® (8)) = ¢'(g* () if a & imageu) * imaggg)
u'(u? () if a & imagdu)
g'(g%(a) if a & imageg)

h(n,n2) = u' (u® (n1,n2)) =
g'(8% (n1,n2)) if (n1,n2) & imagdu) * imageg)
u'(u? (n1,n2)) if (n1,n2) & imageu)
g'(g” (n1,n2)) if (n1,n2) & imageg)

The morphism preserves agent types which follows from the composition of morphisms and from
the fact the diagram commutes for the morphisimandg'. For a nodga,i) & N y, suppose that

(ai) &imagdu) * imageg). It follows that(u'(1? (d)),i) = (g'(¢?(d)),i) & N 5. Thereforeh also
preserves nodes.

The morphisn# is also unique. It follows from the fact that any agent or edg¥ is also either in
graphr or in graphD. Therefore for the diagram to commute, there is only one possible mapping
for any agent or edge from (or D) into N*.

2. The graphD is debPned as a subgraphMfas follows:
¥ Np=Ny\m(N.)7m((Ng))
¥ BEp = BEy\ m(E) 7 m(I(Ex))
¥ Ap={a:a&n,n&Np}

It is a site-graph, as it is a subgraphmf The morphismyf : D" M is debned as the inclusion
morphism. The morphisth: K" D is debned ak= Im restricted to the subgraghof M.

I. Cristescu, W. Fontana & J. Krivine 17

Let us now show that the cospaf, m- is the pushout of the spai, k-. For that, we show thay
can be obtained as in the Prst item of the proof from the grépéusdL.

By manipulating the debnition of the d¢t, we obtain
Np\m(l(Ng)) 7m(NL)= Ny

which is equivalent to Prst merging séls, andm(N ;) and then dePne an equivalence class on
nodes such thdtn(l(n)),k(n)) &9, foralln & N k. ThereforeN,;, =(Np7m(N.))|g. We can
make a similar argument to show that the edge® @fin be obtained as in the construction above,
from the edges of graptisandD.

3. Let N be the graph constructed in the prst item of this proof. SufPces then to show that
a site-graph, i.e. we have to show tlt is conf3ict free. Suppose by contradiction that there
exists ((ai), (b, j)) & Ep and ((a,i),(c, j)) & Eg such that(a,i) & Ng. We have then that both
((a,1),(b,) and((a,i),(c,/)) are edges iV, which are conficting.

From the Debnitioﬂ4 of a rule, there exigt& N ; such that((a,i),n) &E. Asm:L" Misa
mono, ((m(a),i),m(n)) & Ey. From the construction db above it follows that there is nd & N
such tha{(a,i),n') & Ep. Contradiction.

O

A.5 Proofs and examples of Section

Example 10 (Multisum). For two site-graph&/; andGo, the site-graphs obtained from the multisum are
the top four site-graphs in the diagram below.

A G AoecooBAeeBAeeB
g : P 0-‘0 :
D C 0 B B@’ D BT3B

In each of the graph of the multisum, the overlappingsefand G- is highlighted by a square, i.e. the
two graphs overlap on agemsB, on eitherA or B or do not overlap.

Example 11 (Negative inBuence between rulef) the bgure below, we have two rulegsg, ragc written
as spans. The rulg g has a negative inBuence on rujgc as it unbinds agertfrom agenB8. Formally,
this is expressed by the span, g»- obtained by pullback fromfi, f>- & multisum(Ly,L,).

Lemma 4. The pullback always exists iG.

Proof.

18 Interactions between causal structures

! M
Let G1, G2, M be two site-graphs anf be a cospan as shown f}, {2
on the right. We debne a site-gra@has a subgraph a# (and
is therefore a site-graph), which projects iit¢ andG». The /‘
spang is given by a restriction on the inverse gf Lastly we K jgz

show the universal property.

Let Ap = fi(A1) * fo(A2) # Ay be a set of agents. We have that the maps fl (Ap) and
g = f22 (A o) are well debned functions on the agefts. LetN o = {(a,i) : (a,i)) & Ny,a & Ap}7
{freg # N be a setof nodes. Finally, 18 = {(n1,n2) : (n1,n2) & Ey,n1,n2 & N o} be a set of edges
which is by construction symmetric and confict free. TBen(Ao, N o, Ep) is a site-graph, included in
M. The mapgs, g2 are debned on nodes and edges as expected and are morph&hysdonstruction.

Let A ' be the set of agents of a site-graphand letg' be a span such that the diagram above
commutes. Then debhe 0'" O amapsuchthat(a)=a D fi(gy(d')) = a,fora' &A ' The map
extends to nodes and edgesdf Moreover, is the unique morphism that commutes, which follows by
contradiction. O

Lemma 5. LetG1. 0" G be the pullback of the cospai " M. G» & multisum(G1,G>2). Then,
G1" M. Gyisthe pushoutofi;. 0" Go.

Proof. First, we have to show that' is a site-graph, where the sp@h. 0" Gs is the pullback of
acosparG," M. GrandGi" M'. Gsisthe pushouto6Gi. O" G, If M'is obtained from
the pushout, then there exists a unique mafid M. Therefore, from the DePnitidn) 2 of morphism, if
there is a conRict inf' then there is a conRict i as well.

Secondly, let us show the hypothesis. Let us suppose by contradic- M"
tion, that the cospat;; * M . G, is not the pushout of the span % K
G1. O" Gz. We denote the pushout as the cosgan' P. Go. ~ ‘>{ ~
From the debnition of the pushout we have that there exists a unique Gl
morphismm : P* M for which the diagram on the right commutes. O 7

Let us distinguish between two cases:

¥ G1" P. Gz &multisum(Gy,G2). If the pushout is not in the multisum, then there exigist
muItisun‘(Gl, G») such that there exists a morphis: M'" P. But then there exists a morphism
mm' :M'" M. However as bottM, M' are in the multisum, thei £ M' and, hencés £ P.

¥ G1" P. Gz&multisum(G1,G2). Then let us denote with/" the pushout-object of the span
M. O" P.ltfollows that bothv andP embed intaif". From the debnition of the multisum, it
follows thatM £ P.

O]

Let us note that the Lemma above is used in the debnition of inBuence between rules?p Ref.|

A.6 Proofs of Section

Lemma 6. Let” beatrace and let ¢' & E be two events withh (") = (E, I:'i v). Ifeif ¢ then

[(2) if [(@"), for somef & sparfG) (and similarly for negative infBuence).

I. Cristescu, W. Fontana & J. Krivine 19

Proof. Let" be a trace such tha& (") =(E, Iﬁ ,"3). For the two eventsy, e, in E and a cospan

fsuchthat 27 ¢!, there exists two transitions, 7, & " such that : My "™ Ny andz, : My "6 N,
for some grapha/;, N;, morphismsn; and the underlying ruleg = L;. K" R;, i &{1,2}. Moreover,

from the Debnit"io 2 it follows thdty, 1, f) &<+ and[(¢;) = r;, i &{1,2}. From the DebnitioHl it
follows thatry if ro. O

Proof of Lemmall} Let" be atrace, Iel\l(") (E, l:f v) be the intermediate structure afd(E, I:f
'f)=(E, L1, 6) be a poset. Leet ¢' & E be two events such that< ' Then from the DebnltlolS

it follows e 37 ¢', for some spalf From Lemm:@ﬁ then we have thdk) if [@).
The proof is similar for the non causal precedence. O

Schematically, the abstractions and concretisations of Debn|[tigns|[12,13,14,16 are represented as
follows:

A1 A,
/_\ /\
(" 1111248, <,5) (E,2 %) (E,C1,6)
'\/
C Ci

Example 12 (The two-steps abstraction: Example 3 revisitelddt us consider the trace= 11;1;13;14

of exampIeD;. The brst abstraction constructs the struﬂﬂrEf ,'f). Let f,l:g, h,i,j&spafG)
be the spans shown in the bPgure below:

i 2
— .
2N -0 co3o /Al coSoiA O cegain N G oo o B oo A N ; a6 A ol
fl(\ DY B2 2 D&
g

Then the relationg ,'f are debned as follows:

elif e elig e3 ezih es egii es e3ij e

The second abstraction removes the spans in the relﬂio;rﬁ . At the end we obtain the structure

(E7 B(,H—) with <= {(81,62); (81,63);(82,64);(83,64)} andl-= {(6‘2;63)}.

Example 13 (The two-steps concretisation: Example 4 revisitedpnsider a poset of evenis, e, and

ez with labelsry, rp andrs, as in Exampl@4. The brst concretisation step, as we have argued, retrieves
the structurd £, 3 2) with the relationd debned as follows:

elif e ezih e3

and? = 0.
The second concretisation step needs a func@mtrete For our example the following works:

20 Interactions between causal structures

concretde;) = concretdey) = concretdes) =

® 0B
o % 1 %
{ Mafy i
@ A0\ eR0 & o
a i G ;
N}

ca/
I'3U

Providing an implementation for the functiofiis outside the scope of this paper and we leave
it as future work. For the case of Kappa, an implementation is availatietats: //github. com/
Kappa-Dev/PosetLogic.

Example 14 (More coarse-grained abstractionBecall that for the trace of examplé¢ 2 our abstraction
constructs the posatof the examplé¢ [3. Note that there are other abstractions possible from a causal
trace. For example, one can also forget the prevention relations between events and retrieve OregularO
posets, i.e. sets of events equipped with only one partial order, the precedence relation.

In Exampld 2 if we forget prevention on tratewe obtain the same set of evefits, ez, e3,e4}) but
equipped with only the precedence relatian {(e1,e2);(e1,€3);(e2,€4);(e3,e4)}. From this poset we
can concretise a trace in which evegibccurs before evemp, which is not possible in our concretisation.

Another possible abstraction consists of remembering the direct precedence instead of the indirect
one. In this case we do not detect that everis a precedent for eveas.

None of these abstractions are OwrongO in any sense, but do not keep as much information about the
original trace as the abstraction we debPned. Our choice is motivated by the application to Kappa, where
the indirect enablement and prevention are deemed important.

Proof of theorem[I| Sufbces to show that for any tratethere exists a concretisation function for the
posetA A 1(") such that the constraints in Debnitiong 16,14 hold. It follows from the Debn 12,13
of abstractions.

Consider now atrace' & CA,A1("). Bothtraced and" ' meet the constraints in DePnitidng|16,14.
It follows thatA,A1(") £ ALA (") using the Debnitiods ;\[2,]13. O

A.7 Independence, enablement and prevention in graph rewriting

In this section we revisit the graph rewriting theory from Ré&f.ddapted to site-graphs.

The next Lemma asserts that whepat2, We can construct rsi andt’2 to sequentialize either way,
t1;1 OF t2;1;, with the same net effect. Likewise, whased2, we can bnd & andz, to swap the order
from #1;12 into t!z;t!l with, again, the same net effect. The Lemma is a variant of a result from Ref. |
adapted to site-graphs.

Lemma 7 (Permutation of independent transition§onsider two transitions, : M "0"™ M, andz, :

M "8" Ma. If 1;Opai2 then there exists abt' & Q and two transitions, : M; "6 M andr} : M, "0 M!
for some matchings:,, mj & hom(G). Moreover 1 Csedy (ANdtzOsed)-
Consider two transitiong : M "0 My andr, : My "6"% My. If 110seq2 then there exists abt' & Q

and two transitions, : M "6"* M' andz} : M' "0"* M, for some matchings:,, m} & hom(G). Moreover,
tl<>part'2

https://github.com/Kappa-Dev/PosetLogic
https://github.com/Kappa-Dev/PosetLogic

I. Cristescu, W. Fontana & J. Krivine 21

Proof. From the Debnitio@O of parallel independence we have thatifar> then there exists two

transitionsry : M1 '6"° M} andr} : M, "0"" M} for some matchingsib, m} & hom(G). We have to show
thatM] £ M). For this we show that the parts &f modibed byr; and the parts modiPed by are
disjoint and therefore the order in which they occur does not matter.

We bx some notations. We writg : R1" My, np:Ry" Mo, ny:R1" Myandn,:R;" M;. Letus
also denoté | # A, the set of agents deleted by the applicatiomadndA ' # Ay, the set of agents
created by. We use similar notations fax; # Ay, A;' # A,

Then we have that
Ay, = Ay\A[TAS
and similarly forMy:
Ay, = Ay\AZ7TAS

The setsA | andA ; are disjoint, as the transitions are independent. It impliesitb@ts (A) & Ay,
and similarly forny(n3 (A ") & A the agents created by. Therefore

At = Ay \ my(m5 (A)) 7 ny(n (A3))
= A\ (AT my(m5 (A))) 7 (A{'7 ny(n5 (AL)).

and similarly,

Ay = A\ my(m? (A1) 7 ni(nf (A7)
= Au\ (Az7 my(md (A1) 7 (A2 T m(nd (AL))).

From the Debnitioh J0 of parallel independence we have that there exists the bijections

friALT m(md (AD); fa1 Az mb(m3(AS)):;
1AL mi(nf (AL)); g2 A nb(n] (AS)).

Therefore the we can debne a bijectionA,: " A, between the agents of; and the agents aif;,
as follows

h=id\ (A7 £2) 7 (817 g2),

whereid is the identity function on the agents M. As it is obtained from operations on morphisms, the
bijection preserves agent types and nodes. Similarly we proceed to construct the bijection between the
egdes of\/; andM,. We obtain a isomorphism between the site-grafgrand;.

In a similar fashion we can prove the second part of this lemma. O

22 Interactions between causal structures

Example 15 (Parallel and sequential indepen-
dence) In the bgure on the right we have two
sequential transitions that we denote with

M; "D M, andt, : My "0 M3. The two
transitions are sequential independent: there
existsm;, a morphism from the left hand side of
rac to My such thatm,mix(t1) = mp. Thanks

to Lemmal 7 we can also rewrite transitign

1
. . ma.r, .
into a transitions) : My 0 Mj as shown in 69 I e PO
= W

the bgure below. Transitiong and #, be-
come then parallel independent. Lastly, note ;
that in the Pgure, we can also rewriteinto m%fac |} 4 marac

UCRINS] A €m0 B
= (X
o C

Let us now revisit the DePnitidn [L1 of enablement and prevention.

£} M, "0 Ms, with 7, and} sequential inde-
pendent.

o >
)
()
(@]

Ml%DlﬂNlh;‘Mz%DzﬂNz M1<—D1*>N14‘M2<—D2*>N2

h
L
[T Tawel 00 T 07 1T 11
L1 +— K1 — Ry Lo +— Ky — Ro L1 +— K1 — Ry Lo +— Ky — R>
Y‘g\l 19) é' Y:g\l 10) 82
direct enablement indirect enablement

Definition 19 (Direct and indirect enablement)et 1 : My "0"* Ny andz, : My "B N, be two transi-
tions bracketing a trace : 11;t];t5; & 2. The rules inducing;,i & {1,2}, arer; = L;. K;" R; with
matchingsn; & hom(G) into M1 andM>, respectively. The spaN;. D" Mo, is the composition of
mix(¢;) 4 &4 amix(z)).

direct enablement Let‘;g be a span such thégti # ;2 and such the‘ﬁ; is the pullback off & multisum(Ry, Ly).

If there exists a spah such that the diagram below on the left commutes thelirectly enables
1p, denoted; : 1.

indirect enablement Let ':g be a span such théi 3¢ rz If the diagram below on the right commutes
thenz, indirectly enables,, denoted; < 5.

The notion of direct enablement is useful in the characterization of non-independent transitions (see
Lemmas 8} I0). However, as we suggested in the exgmple 2, indirect enablement captures more depen-
dencies between transitions.

Example 16 (Example[2 revisited) Transitionz; is a direct enabler of, andsz. Transitions, is an
indirect enabler for,.

Definition 20 (Direct and indirect prevention)Consider two transitiorys : M B Ny andt : Mo "B N>
in a trace” : ;] : ty;ad . The rules inducing;,i & {1,2}, arer; = L;. K" R; with matchings
m; & hom(G) into M1 and M, respectively. The spai;. D" M, is the composition omix(¢;) 4
mix(¢;) 4 &4 amix(z)).

I. Cristescu, W. Fontana & J. Krivine 23

direct prevention Let "g be a span such th;agti # ;1 and such tha:gv is the pullback off & multisum(L1, L5).

If there exists a spah such that the diagram below on the left commutes thelirectly prevents
11, denoted, = 11.

indirect prevention Let g be a span such thas 3¢ r1. If the diagram below on the right commutes
thens, indirectly prevents;, denoted; 5 #;.

L1 L Ly L
A P
direct prevention indirect prevention

Note thatt; : #, =0 11 <tpandi; a1 =0 11 5 o, but not the reverse.

We next relate enablement and prevention to non-independence. First we show that when restricting
our debnitions to the case of consecutive transitions, enablement and preventiec:al&! in the
negation of sequential and parallel independence.

Lemma 8. Consider two sequential transitions: M "0 M, and# : My "6 M, and letg, be the
morphismD1 " Mj, whereD; is the context graph afi. Transitions; direct enables transition iff
there exists no morphisp: L, " Dj such thag1j = mo.

Lemma 9. Consider two parallel transitions: M "0 My andr, : M "8"* M, and letf; be the morphism
D1" M, whereD; is the context graph af. Transitionr; is directly prevents transition iff there is no
morphism;j: L, " D1 such thatf;j = ms.

Lastly, the following two Lemmas assert that two non-independent transitions are either in an en-
abling relation or they can be rewritten as preventing transitions.

Lemma 10. Consider two sequential transitions M "0"™ My andr, : My "B8"* M>. Let f1 andg; be the
morphismsD1 " M andD;" M;, respectively, wher®; is the context graph of. If the sequential
transitions; andr, are not independent, then eithers{ix #, or (ii) there exists a morphism: L, " M

such thakg1 j = m; and there exists a grapit}, and a transitiom : M "8 M} with 1} = 11.

Lemma 11. If two parallel transitiong; andz, are not parallel independent then eithes 1, orr, 911
(or both).

A.7.1 Proofs of Appendix subsection[A.7

Proof of Lemma

Let us brst make an observation. For the two rugsnd rp, where o

we have the morphismB; * Mj; andL," M3, there exists a unique ﬁl
R1" M. L& multisum(Ry,L,) that make the diagram on the right / M \
commutes (from Depnitiop| 6). The pullback Bf * M1 . Ly is the R17‘ KLz

same as the pullback & " M. L, which follows from Lemma 5.

We depict the two transitions in the bgure below. Regt O " L, be the pullback of the cospan
Ri" Mi. Lrandletk;. P" O bethepullback oki" R;. O. We proceed by showing that in
the diagram below

24

Interactions between causal structures

1
M%Dlg*>M1<—D2%M2

T okl "m0

L1+ Ki—Ri Ly—K>»—R>

. | N 7O
2P

P

the monop : P" O is an iso iff there exists a morphisyn L, " D; such thalg; j = my. Let us denote
0:0" Lythe morphism betwee@ andL, ando': 0" R1 be the morphism betweam andR;.

¥ Suppose thap: P" Ois aniso. We denotg' : 0" K; the composition op andP" K;. We

debnej: L," D; as follows

J(@ = ka(p' (0* (8))) for a&imaggo)(Ao)

g2 (ma(a)) fora& Az, \ imaggo)(Ao)

J((a) =(j(a,1) for anode(a i) & Ny,
J([n1,n2]) =[j(n1), j(n2)] for an edgdny,no] & Ey,.

In what follows we show that is (i) well dePned on agents; (ii) preserves nodes and edges; (iii) is
a mono.

Let o(O) = L, # Ly be the image ob: 0" L,. For any agent a ik, we have thatj(a) =
ki(p'(0? (@) . The functiono? : L," 0O is not necessarily a morphism, as it might not preserve
nodes and the edges between nodes. It is however a function well dePned on agents, which follows
from o being a mono. Moreover, for any node or edgcﬁ’,}no2 preserves them into.

Consider now an agent, a node or an edge/insuch thatc & L,. We have thak; . 0" Lyis

the pullback ofR1 " M;. Ly and therefore, ik & Ly, x & imag€o)(0) thenmy(x) & M1, which

we denotec. We also have that there exists £#fo& Ry, x% & imageo')(0), that maps inta.

We have thaD;" M;. Rjisthepushoutob;. Ki;" Ri. Forx™ & M; and notinR; we have

that there exists” & D; such thatg;(x”) = x*. Therefore we can dePnjéx) = g3 (m2(x)), for

all x & L\ imag€go). This proves (i) and (ii).

The function;j satisbes (iii) as any agent, node or edge in giagpis either inL} or in L\ L.

Let us now show that if there exisjs L, " Dj such thag1j = my then the morphisrp: P" O
is an iso.

For anyx (agent, node or edge) i@ we have that there exisi$ & L, such thato(x*) = x and
similarly for x® & Ry, o'(x) = x%. As O is the pullback, bott andx® map into the same” & Mj.

Also, mo(xF) = g1(j(xF)) and therefore there exist8 & D, such thatj(x*) = x” andgy(xP) = xM.

The sparD:" M. Riisthe pushoutobD;. Ki" R;and there exists” & D1, x® & Ry that
map intox™. It implies that there exists* & K7 such that* maps intax” andx®.

Thespark;. P" OisthepullbackoK;. R:" O and there exists' & K1, x° & 01 that map
into xR. Therefore there existd’ & P such thatp(x”) = x for all nodes or edges& O. It implies
that p is surjective.

As p is both surjective and injective (by dePnition) we conclude thigtindeed an iso.

I. Cristescu, W. Fontana & J. Krivine 25

Proof of Lemma(9] This proof is similar to the one of Lemma 8. O

Proof of Lemma[T0, 1f M "8"* My andM, "B"? M are not sequentially independent, from Depnitioh 10,
it follows two possible cases:

¥ there is no morphismi: L, " Ds such thatg;j = mp. From Lemma B, in this case < r,. We
have proved then case (i) from the hypothesis.
¥ there is no morphism: R1" D, such th?l/;i = ny, but there exists the morphisjn L, " D1

such thagyj = my. Itimplies, from Lemma 7 that there existg & Q andz} : M "G M', for some
morphismm;, such that; with is not parallel independent of.

From the DebnitioEl]O of parallel independence 'Efmdt!2 are not parallel independent it follows
that there is no morphisih: Ly " D such thatfi' = ny. Then by Lemm4 9, we conclude that
ty =1

O]

Proof of Lemmall1] It follows from DePnitior] 1P and Lemnja 9. O

A.8 On the implementation

In the implementation we use two simpliying assumptions, that holds for stories generated by KaSim:

¥ Let" be a trace. For alM; mixtures of", for all agents & M;, there exists a transition d¢f
M; 8" M1, with r = L. K" R,suchthatd A, and a& Ag.

¥letr=L. K" Rbearule. For any & Ag, ifa& g(N k) then' i < site(type(a)), (a,i) & Ng
and8n & N g such tha((a,i),n) & Eg.

The Prst condition, informally, asks that any agent used at some point in a trace has an OintroductoryO
rule, i.e. a rule that creates the agent. The second condition requires that the agents created by a rule are
fully specibed, i.e. all sites are involved in an edge.

These two assumptions simplify the implementation of the concretisation function, but do not have
an impact on the theoretical development presented in the main text.

A correct concretisation, as mentioned in the main text, correct concretisations are cumbersome to
debne. Here we give two conditions that have to hold, the rest being similar.

Definition 21 (Valid poset) A posets = (E,'f ,"3 , Ddis valid if it is directed w.r.t. the transitive and
reRexive closure & and if the following constraints are meet:

no influence is empty Leteq,er & s be two events. [g; if ey 0rep ff eo then f is not empty;
constraints on the influence between rules for positive meets Let e1,e2,e3 be three events in such
that there existsf = Ry. 01" Lzandg = R,. 02" L3 two spans withe; fif ez and

e 3¢ e3. LetO1. O" O, be the pullback of the spaf;1 " Lz. 0O». Then one of the
following holds:

26 Interactions between causal structures

¥ either there exists the morphisids’ K; andO" K, that commute in the diagram below

L R L R L,

1\K/ 1\0 . 3\0 / Z\K/
N LS

¥ or there exists the morphism" K; but no morphisn0 " K> that commutes. Then there

existsf' :Ro. O'" Ly, with O# O' forwhiche, 27 ;.

We call aresource any non empty site-graph that appears in one but not both sides of a rule, as
for instance an agent or an edge. A correct concretisation is consistent w.r.t. all resources used in the
concretised trace.

In the debnition above a resource is modeled as a span. The brst condition says that if there is a
relation between two events in a poset, then necessarily they have a non-empty shared resource. The
second condition checks that whenever an evgrsthares the same resource with two other events
andey, then the two events also share the resource.

	Introduction
	Graph rewriting and transition systems
	Site-graphs
	Graph rewriting
	Influence
	Transition systems

	Posets of graph rewriting events
	From traces to posets
	From posets to traces

	A logic on posets
	Conclusions
	Appendix
	Another Example
	Proofs of Section 2.1
	Examples of Section 2.3
	Proofs and examples of Section 2.2
	Proofs and examples of Section 2.3
	Proofs of Section 3
	Independence, enablement and prevention in graph rewriting
	Proofs of Appendix subsection ??

	On the implementation

