
Submitted to:
CREST 2018

c� I. Cristescu, W. Fontana & J. Krivine
This work is licensed under the
Creative Commons Attribution License.

Interactions between causal structures in

graph rewriting systems

Ioana Cristescu Walter Fontana
Department of Systems Biology, Harvard Medical School, Boston, USA

{ioana cristescu,walter fontana}@hms.harvard.edu

Jean Krivine
IRIF, Universite Paris 7, Paris, France

jean.krivine@irif.fr

Graph rewrite formalisms are a powerful approach to modeling complex molecular systems. They
capture the intrinsic concurrency of molecular interactions, thereby enabling a formal notion of mech-
anism (a partially ordered set of events) that explains how a system achieves a particular outcome
given a set of rewrite rules. It is then useful to verify whether the mechanisms that emerge from a
given model comply with empirical observations about their mutual interference. In this work, our
objective is to determine whether a speciÞc event in the mechanism for achieving X prevents or pro-
motes the occurrence of a speciÞc event in the mechanism for achieving Y. Such checks might also be
used to hypothesize rules that would bring model mechanisms in compliance with observations. We
deÞne a rigorous framework for deÞning the concept of interference (positive or negative) between
mechanisms induced by a system of graph-rewrite rules and for establishing whether an asserted
inßuence can be realized given two mechanisms as an input.

1 Introduction

A persistent challenge across molecular biology is to understand how a multitude of diverse and asyn-
chronous interactions between molecular entities give rise to coherent system behavior. One difÞculty
arises from the combinatorial complexity inherent in chemistry: A reaction (or interaction) between
structured entities, such as molecules, consists in the transformation of speciÞc parts in a manner that
depends on a few rather than all aspects specifying the reactants. Combinatorial complexity then arises
because a given reactant combination can exhibit several distinct reactive patterns and the same pattern
can occur across many distinct reactant combinations. This idea generalizes beyond chemistry.

A molecular system can thus be described in terms of rewriterules. In this way, rule-based modeling
tackles combinatorial complexity without succumbing to it because it only speciÞes rules of pattern
transformation and not the multitude of possible carriers of these patterns. Many physical systems can
be conveniently described as graphs. A rule-based approach then becomes a graph rewriting formalism
with a domain-speciÞc execution model that determines the probability with which a rule Þres at a
given time. The currently most developed approaches are the Kappa language [?, ?] and BNGL [?] for
molecular biology and M¿d [?] for organic chemistry.

A rule formalizes the interaction between physical entities at some chosen level of abstraction. Pro-
cesses occurring below that level are abstracted away, yet not ignored: They inform what a rule should
say, but they are not explicitly represented by it. For instance, in organic chemistry, a rule of reaction be-
tween molecules expresses a local reconÞguration of bonds among atoms without explicitly representing
the underlying mechanism of electron pushing that engenders such reconÞguration. In molecular biol-
ogy, an interaction between proteins is typically expressed by asserting the conditions for a change of
protein state without representing the structural mechanisms enabling that change. In essence, a mecha-
nism below the chosen abstraction level becomes an axiomatic rule at the abstraction level [?].

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Interactions between causal structures

Many observations of system behavior areassertions rather than rules. For example, an assertion
might claim that the activation of proteinX inhibits the assembly of molecular machineZ. It is desirable
to determine whether and why an assertion holds in terms of the joint action among rules that represent
a particular system. This is tantamount to providing amechanism thatexplains a given assertion at the
level of abstraction at which rules are deÞned.

The stochastic application of rules (a simulation) typically generates a long trace of state transi-
tions. A mechanism is a set of transitions that were jointly necessary in producing a speciÞed outcome.
Mechanisms so-deÞned can be extracted from traces [?, ?] and abstracted into partial orders (posets) of
events1.

Here we propose a formal logic to express and verify a particular kind of assertion about a model
written in the Kappa language. We focus on assertions in which the occurrence of one event is claimed to
interfere with another event. Our approach takes as input two posets of events (i.e. mechanisms), which
might be hypothesized or abstracted from a simulation, and provides evidence whether the two posets
interfere with one another at the speciÞed events. The key is that each poset builds up a context that is
required for its terminal event. These contexts can be reconstructed and checked for mutual consistency.
To lay the foundation for this approach requires setting up some formal machinery which occupies the
bulk of this paper.

A B1 1 A B1 12rAB 2C 1 C 1

A2rAC C 1 A2C 1

rAX AB 11 3 AB 11 3 X1

A 32rAY C 1 A 32C 1 Y1

Figure 1: A Kappa model.

Interaction between graph rewriting posets. The
graphs in Kappa consist of nodes, called agents,
meant to represent proteins. Agents are equipped
with sites through which they connect to one an-
other. A site represents a resource and hence can
bear at most one edge. Such graphs are calledsite-
graphs.

An event is the application of a rewrite rule to
a usually large graph representing the state of the
system. Events are partially ordered by a relation ofprecedence. Intuitively, an evente1 precedes an
evente2 if e1 contributes to establishing the context necessary fore2. Consider, for example, the simple
model in Figure 1 with the initial state consisting of nodes{ A,B,C} , all unbound. Suppose furthermore
that the binding of agentX to A (rule rAX ) and of agentY to A (rule rAY ) are two signiÞcant eventseAX

andeAY , respectively. We wish to verify the assertion that either event inhibits the other. The assertion is
cast in terms of two mechanisms (posets) that could have been extracted from a simulation trace of this
model, one mechanism resulting ineAX , the other ineAY (Figure 2A).
A static inspection of rulesrAX andrAY , underlying the events that are the subject of our query, shows
that both use the same site ofA. This might suggest that the two events are in conßict and therefore
inhibit each other. This, however, is not a valid conclusion. Given the poset AX of Figure 2A, we can
reconstruct the contextÑspeciÞcally the site-graphGAX of Figure 2BÑin which rulerAX Þres. Note that
GAX speciÞes that site 2 ofA must be unbound. Likewise, the Þring of rulerAY is contingent upon context
GAY , which is built up by poset AY.GAY requires that site 2 ofA be bound. These two contexts are in
conßict and thus cannot be realized at the same time. This means, in turn, that there isno inhibition at
this point between the two mechanisms: Whether a particularA gets bound toX or toY is already decided
before the mechanisms reach the events whose relationship of inhibition we queried. As a whole, the
mechanisms AX and AY must interfere with one another negatively, asA cannot be bound to bothX and

1In Ref.[?], a partially ordered set of events that account for an outcome was dubbed a ÒstoryÓ, which is akin to the biological
notion of a ÒpathwayÓ.



I. Cristescu, W. Fontana & J. Krivine 3

rAY

rAC

rAC

rAX

rAB

Poset AX

Poset AY

?

A 32C 1AB 11 3

2

AB 11 3

2

C 1 free

GAX GAY

G

A B

Figure 2: Panel A: Two mechanisms (posets) and a query for conßict between the speciÞed events. Black arrows are precedence; events are
labeled by the underlying rules. Panel B: The graphGAX represent the context in which the rulerAX is applied in the Poset AX. There is no
scenario in which the posets interact, since the graphG is not a site-graph. The site 3 of agentA has to be bound to an agentC and be free at the
same time, which is not representable in site-graphs.

Y at the same time; but the point of conßict is somewhere else. (It is between eventrAB andrAY .) To
determine the earliest event combination at which two mechanisms conßict with one another can be done
by scanning all events of one against all events of the other.

A B1 1 A B1 12rÕAB 2C 1 C 1

AB 11 3

2

C 1

GÕ

Figure 3: Ruler!
AB replaces rulerAB. The graphG! rep-

resent the context in which the rulerAX is applied in the
PosetAX . In this scenario, which coincides with graph
G!, there is an inhibition between the two posetsAX and
AY .

If we change the model by replacing rulerAB with rule
r!
AB (Figure 3), the context for the application of rulerAX

becomes consistent with the context of application of rule
rAY . This means both rules can Þre. Since the Þring ofrAX

destroys part of the context needed byrAY (and vice versa),
the mechanisms inhibit each other at the events queried. In
sum, the key in determining whether two events in the scope
of distinct mechanisms are mutually exclusive consists in
reconstructing from the given mechanisms the context re-
quired for both events and determining whether it can be re-
alized. We call this critical context a ÒscenarioÓ.

Related work. The notion ofrule influence, introduced in Refs. [?, ?], is used to detect inhibition and
promotion between posets (DeÞnition 18). Our approach to abstracting traces of state transitions into
partial orders is similar to Refs. [?, ?], but we use more Þne-grained relations on graphs (the enablement
and prevention relations of Section 2.4). As a consequence, we do not need Petri nets as an interme-
diate encoding between state transitions and posets. In any case, our main focus is on reconstructing a
trace from a poset, which is obtained from a causal structure extracted from a Kappa simulation. This
extraction is the subject of Ref. [?] and outside the scope of this paper.

Outline. In Section 2 we introduce site-graphs, the graph rewriting framework of Kappa, and the notion
of rule inßuence. To deÞne partial orders between events in a manner informed by rule inßuence, we need
to take a detour via the transition system induced by the rules (Section 2.4). In order to determine the
scenario that establishes enablement or prevention between posets, we need to reconstruct a trace from
a poset. To this end, in Section 3, we formalize trace reconstruction as the reverse of poset abstraction
from traces. In Section 4 we deÞne a logic for expressing assertions on the posets provided as inputs.
We conclude in Section 5.

Length limitations preclude a description of our implementation, which can be found athttps://

github.com/Kappa-Dev/PosetLogic. All constructions on site-graphs presented here can be adapted
to simple graphs.

https://github.com/Kappa-Dev/PosetLogic
https://github.com/Kappa-Dev/PosetLogic


4 Interactions between causal structures

2 Graph rewriting and transition systems

2.1 Site-graphs

Let A be a set ofagents, ranged over by a,b andK = { A,B, ..} be a set ofagent types, equipped with a
mapsite: K " N>0. The functiontype: A " K assigns a type to each agent.

Definition 1 (Site-graph). A site-graph is a structure(A ,N ,E) where

¥ A # A is a set of agents;

¥ N # A $ N>0 % {free} is a set of nodes, with a special node free, and where each non-free node
is a pair(a, i) of an agent a& A and sitei < site(type(a)) ;

¥ E # N $ N is a symmetric set of edges with the constraint that it isconflict-free: ' (n1,n2), (n!
1,n

!
2) &

E, (n1 = n!
1 ( n2 = n!

2) ) (n1 = n!
2 ( n2 = n!

1) ) ({ n1,n2} * { n!
1,n

!
2} # { free} ).

Definition 2 (Morphism on site-graphs). A morphism f : G " H, for G andH two site-graphs, is a pair
of functions f = ( v,e) with

¥ v : A G " A H a function on agents that preserves types:type(v(a)) = type(a) and that can be
extended to a function on nodes:v(a, i) = ( v(a), i) andv(free) = free, for all a& A G and for all
i < site(type(a)) ;

¥ ande : EG " EH a function on edges such that for any two nodesn1,n2 & N G, if (n1,n2) & EG then
e(n1,n2) = ( v(n1),v(n2)) .

Site-graphs and their morphisms form a category, denotedG. Morphisms inG preserve the node type
and the edge structure of nodes in site-graphs. Isomorphisms are denoted with+= . A mono is a morphism

with injective functions on nodes and edges. We denote the empty graph with! and write
"
f = , f1, f2- for

the spanG1
f1. G2

f2" G3. The same notation is used to denote the cospanG1
f1" G2

f2. G3. For simplicity,
we write f for v (or e) in f = ( v,e). Finally, we write hom(G) and span(G) for the class of morphisms
and spans ofG, respectively.

2.2 Graph rewriting

A rule-based model consists of graph-rewriting rules that are applied in a stochastic fashion to a typically
large graph representing the state of a system. In Kappa the stochastic application of rewrite rules follows
basic principles of stochastic chemical kinetics [?, ?]. Each graph-rewrite action constitutes a state
transition and a temporal sequence of such transitions is a trace. We also refer to the state of the system
as a ÒmixtureÓ.

Definition 3 (Pushout). Thepushout of a span
"
g is a cospan

"
f such thatf1g1 = f2g2

2 and such that for

any other cospan
"
f ! for which f !

1g1 = f !
2g2, there is a unique morphismM " M! that makes diagram PO

below commute.

In the category of site-graphs, the pushout does not always exist. For a span
"
g of monos, if the

pushout exists, then it asserts a gluing ofG1 andG2, resulting inM, based on the identiÞcations (gluing
instructions) expressed by

"
g .

Definition 4 (Rule). A rule is a span of monos
"
r = L p

. K
q

" R such that for some a& A K and i <
site(type(a)) , if (a, i) & N K then

�
(q(a), i),n

�
& ER /0

�
(p(a), i),n!

�
& EL, with n & N R andn! & N L.

2We write f g(x) = f (g(x)) , with x in the domain ofg, for morphisms composition.



I. Cristescu, W. Fontana & J. Krivine 5

In site-graphs the site of an agent can be speciÞed without specifying if the site is free or bound to
another site. Formally, in a site-graphG with an agent a& A G, we can have(a, i) & N G for which there
is no edge(n1,n2) & EG such thatn1 = ( a, i) or n2 = ( a, i). Rules however, need to satisfy a constraint
related to sites: if an edge exists for a site in either sides of a rule, then it exists in both sides.

Definition 5 (Double-pushout rewriting [?]). Let
"
r = L p

. K
q

" R be a rule. LetM be a site-graph
(typically a system state) and letm : L " M be a mono, calleda matching. Thedouble pushout rewriting
consists in deÞning the site-graphD, called thecontext graph, and the site-graphN such that the two

squares in diagram DPO are pushouts. We refer to the dpo rewrite ofM to N asM m,
"
r

0 N and denote the
state transition associated with the application of rule

"
r = , p,q- at ÓlocationÓm of the system stateM

(i.e. the mixture) asmix(M m,
"
r

0 N) = M. D" N.

PO:

M!

O

G1 G2

M

g1 g2

f1 f2
f !
1 f !

2
DPO:

L K R

M D N

p q
m

Given the deÞnition above, a context graphD need not always exist. We use dpo rewriting for the
sake of simplicity, but our work extends to other graph rewriting techniques.

2.3 Influence

The postcondition resulting from the application of a rule
"
r1 can satisfy or, more generally, contribute

(in conjunction with other rules) to satisfying the precondition for the application of another rule
"
r2.

Alternatively,
"
r1 might destroy the precondition of

"
r2. In the former case we speak of a positive inßuence

of
"
r1 on

"
r2 and, in the latter case, of a negative inßuence. Of course, a rule may also have no inßuence

on a particular other rule.
Inßuence3 belongs to the realm of possibility: it is a latent relation between rules that becomes

manifest as a relation between events (i.e. actual rule applications) in the speciÞc context of a trace, as
we discuss formally in Section 3.

We next deÞne two categorical concepts needed for capturing inßuence. Multisums are meant to
characterize all possible ways of gluing together two graphsG1 andG2.

Definition 6 (Multisum in the subcategory of monos [?]). Let G1 andG2 be two graphs. Themultisum
of G1 andG2, denoted withmultisum(G1,G2), is a family of cospans of monos

"
fi = , f1,i, f2,i-, with

f j,i : G j " Mi, i 1 n, j & { 1,2} , such that for any other cospan of monos
"
f !, with f !

j : G j " M!, there
exists anMk, k 1 n and a unique monoMk " M! that makes diagram MS below commute. Moreover,
for any monosMk " M! andMi " M!, i,k 1 n, for which diagram MS commutes, we haveMk += Mi.

Unlike other constructions, which are deÞned inG, multisums are deÞned in the subcategory ofG
whose morphisms are restricted to monos. Multisums always exists in this subcategory.

Definition 7 (Pullback). The pullback of the cospan
"
f consists of a span

"
g such thatf1g1 = f2g2. In

addition, for any other span
"
g! such thatf1g!

1 = f2g!
2, there is a unique morphismO! " O that makes

diagram PB commute.

3Positive and negative inßuence were referred to asactivation, inhibition or overlaps in Refs.[?, Section 3.4],[?, Section
4.2.3][?].



6 Interactions between causal structures

MS:

G1 G2

M1 áááMk áááMn

M!

f !
1 f !

2
PB:

O

G1 G2

M

O!

g1 g2

f1 f2

g!
1 g!

2

The pullback always exists inG. Using these notions we can deÞne inßuence.

Definition 8 (Positive inßuence [?]). Given two rules
"
r1 = L1. K1

i" R1 and
"
r2 = L2. K2" R2, consider

an overlap betweenR1 and L2, i.e. a cospan
"
f & multisum(R1,L2), and let

"
g be the pullback of

"
f .

Moreover, let
"
h be the pullback of, i,g1-. The rule

"
r1 has apositive influence on rule

"
r2, if h2 is not an

iso. In other words, ifO is not contained inP and, thus, inK1. The inßuence is induced by the overlap
"
g

corresponding to
"
f and is denoted by

"
r1

+
"
g

22"
"
r2.

P

K1 O

M

R1L1 L2

K2

R2

h1 h2

i
g1 g2

f1 f2The diagram on the right depicts the relationships
used in DeÞnition 8. The rule

"
r1 has a positive inßuence

on
"
r2 if it creates a subgraph ofL2. By requiringh2 not

to be an iso, we assert thatO is not already present in
L1 and must, therefore, be produced by

"
r1. Negative

inßuence
"
r1

2
"
g

22"
"
r2 is deÞned analogously, but with

"
g

now the pullback of a cospan
"
f & multisum(L1,L2) between the left hand sides:

"
r1 has a negative

inßuence on
"
r2, if it destroys a subgraph ofL2.

Example 1. The rule
"
r1 has a positive

inßuence on
"
r2, because

"
r1 produces an

agentB needed for a subsequent applica-
tion of

"
r2 shown in Figure 4. Similarly

"
r2 has a negative inßuence on

"
r1 since it

erases an agentA needed by
"
r1.

A A B A B B

A BA

BA B

L1 R1 L2 R2

M

O

f1 f2

g1 g2

r1 r2

Figure 4: Positive inßuence between two rules. For simplicity, sites are omitted.

2.4 Transition systems

Following Refs. [?, ?] we introduce the notion of transition system (TS) on state graphs and an indepen-
dence relation between transitions. We then propose new relations ofenablement andprevention between
transitions, based on the notions of rule inßuence just deÞned, and connect them to independence.

Definition 9 (TS on graphs [?]). A transition systemT S = ( Q,R ,T ) on graphs consists of:

¥ a set of statesQ # G, where each state is a graph;

¥ a set of rulesR ;

¥ a set of labeled transitionsT # Q $ hom(G) $ R $ Q, where each transitiont is a dpo rewriting

stepM m,
"
r

0 N with M, N & Q, an underlying rule
"
r : L . K " R & R , and a matchingm : L "

M & hom(G).



I. Cristescu, W. Fontana & J. Krivine 7

Transitions can be composedt1; t2 if the source state oft2 matches the destination state oft1. A trace
" is a (possibly empty) sequence of composable transitions:" = t1; t2;ááá; tn.

Definition 10 (Independence relation on transitions [?]). Let t1 : M m1,
"
r10 M1, t2 : M1

m2,
"
r20 M2 and t3 :

M m3,
"
r30 M3 be transitions with underlying rules

"
ri = Li. Ki" Ri & R , i & { 1,2,3} and corresponding

matchingsmi as indicated in the diagrams below.

sequential independence t1 and t2 are sequentially independent, writtent13seqt2, iff there exist mor-
phismsi : R1 " D2 and j : L2 " D1 such thatf2i = n1 andg1 j = m2.

parallel independence t1 and t3 are parallel independent, writtent13part3, iff there exist morphisms
i : L1 " D3 and j : L3 " D1 such thatf3i = m1 and f1 j = m3.

R1

M1

L2

D1

K1

D2

K2L1

M

R2

M2

sequential independence

g1 f2

m2n1m1

L1

M

L3

D1

K1

D3

K3R1

M1

R3

M3

parallel independence

f1 f3

m3m1

In the following, we use the functionmix (of DeÞnition 5) to chain transitions by span composition

(see diagrams below). Given two spans
"
f = , f1, f2- and

"
g = ,g1,g2-, we deÞne their composition as

"
g

"
f = , f1h1,g2h2- where

"
h is the pullback of, f2,g1-. A partial morphismf : M1 * M3 is a total

morphism from the subgraph dom( f ) of M1 to M3, that is f : M1 3 dom( f ) " M3. Given a spanM1
l.

D r" M3, its corresponding partial morphism, denotedM1 * M3, is deÞned onl(D) asl2 1r and undeÞned
otherwise [?].

M1 D1 M2 D2 M3

D

f1 f2 g1 g2

h1 h2 M1 M3D
l r

Definition 11 (Causality). Let t1 : M1
m1,

"
r10 N1 andt2 : M2

m2,
"
r20 N2 be two transitions bracketing a trace

" : t1; t !
1; t !

2;ááá; t !
n; t2. The rules inducingti, i & { 1,2} , are

"
ri = Li. Ki" Ri with matchingsmi & hom(G)

into M1 andM2, respectively.

enablement Let
"
g be a span such that

"
r1

+
"
g

22"
"
r2. If the diagram below on the left commutes thent1

enablest2, denotedt1 <" t2. In the diagram below on the left, the partial morphismN1 * M2 is
obtained from the composition ofmix(t !

1) 4ááá 4mix(t !
n).

prevention Let
"
g be a span such that

"
r2

2
"
g

22"
"
r1. If the diagram below on the right commutes thent2

preventst1, denotedt2 5" t1. In the diagram below on the right the partial morphismM1 * M2 is
the composition ofmix(t1) 4mix(t !

1) 4ááá 4mix(t !
n).

O

M1 D1 N1 N2D2M2

R1K1L1 L2 K2 R2

enablement

g1 g2 O

M1 M2

L1 L2

prevention

g1
g2



8 Interactions between causal structures

To make the underlying span explicit, we sometimes write(t1, t2,
"
g ) &<" and(t1, t2,

"
g ) &5" .

A2C 1

A2C 1 A B1 12C 1

m1,r1 m2,r2

r1 r2

m1 m2

m3,r3

r3

m3

m4,r4

r4

A 42C 1 D1

A 42C 1 D1

A B1 12C 1 B 1 A 42 D1

B 1 A 42 D1

m4

A
2

C 1

B 1

D 1

41 A
2

C 1

B 1

D 1

41 A
2

C 1

B 1

D 1

41 A
2

C 1

B 1

D 1

41 A
2

C 1

B 1

D 1

41

Figure 5: Transitiont2 binds agentsA andD, needed by transitiont4. Transitiont3 needs to happens between the two, as it (i) binds agentsA
andB as needed byt4 and (ii) unbindA from C which was necessary fort2.

Example 2. Consider the trace of Figure 5. The Þrst transition enables the second and third transitions.
The second transition enables the last transition. However, it is a ÒdelayedÓ enabler: it partially fulÞlls
the precondition of the last transition, but the third transition has to happen before. Note that such type
of causality is not captured by the graph rewriting framework of [?, ?, ?]4. Lastly note that the third
transition is a preventer for the second one.

3 Posets of graph rewriting events

In this section we abstract a trace into a poset of events, and concretize a poset back into a set of traces.
Each transition becomes an event in a poset with the underlying rule as its label. Similarly, in the
concretization, each event in a poset corresponds to a transition such that transitions compose into a
trace. The abstraction is used to reduce the number of simulation traces to a small set of posets, and the
concretization recomputes a ÒrepresentativeÓ trace from each poset. Concretized traces are used in the
next section.

3.1 From traces to posets

A transitiont (DeÞnition 5) is a pair of spansÑmix(t) = M . D " N and the underlying rule
"
r : L .

K " RÑand a matchingm : L " M. When abstracting a trace into a partial order, we drop the span
mix(t) andm. The enabling and prevention relations between transitions in a trace (Section 2.4) translate
into a partial order on events, labeled by the underlying rules.

We proceed in two steps. Enabling and prevention between transitions hinge on positive and negative
inßuence between the underlying rules (see DeÞnition 11). Recall that when transitiont enables transi-

tion t ! within a trace" there exists a span
"
f for which (t, t !,

"
f ) &<" . The Þrst abstraction,A 1, forgets

the matching and the spanmix(t) of a transitiont, but preserves enablement and prevention relations
between transitions and the positive and negative inßuence between the underlying rules.

Definition 12 (Abstraction step 1). Let " = t1; t2;ááá; tn be a trace andE = { e1,e2,ááá,en} 5 be a set of

events. Events are labeled using a function` : E " R such that̀ (ei) = ri if ti : Mi
mi,

"
ri0 Ni, for i 1 n. We

then deÞne two relationsá + á2" á ,á 2á2" á# E $ E $ span(G):

4For immediate transitions, enablement and prevention coincide with the sequential dependence and critical pairs, respec-
tively, of Refs. [?, ?, ?]. See the appendix for more details.

5We can deÞne a function id :T " N from transitions to natural numbers such that id(ti) = i. The set of events is then
E = { 1,2,ááán} .



I. Cristescu, W. Fontana & J. Krivine 9

ei
+

"
f

22" e j /0 (ti, t j,
"
f ) &<" andei

2
"
f

22" e j /0 (ti, t j,
"
f ) &5" ,

for ei,e j & E, i, j 1 n and
"
f & span(G). We denote this Þrst abstraction of" with A 1(" ) = ( E,`, +2" ,

22" ).

The notatione
+

"
f

22" e!, for some span
"
f , overloads the notatioǹ(e)

+
"
f

22" `(e!). Keep in mind, however,
that the Þrst isdefined on events whereas the second can beinferred from the rules on which it holds (see
DeÞnition 8).

In the second abstraction step,A 2, we map the relations+2" and 22" to corresponding partial orders
on events. This step simply forgets the spans responsible for the enablement and prevention relations on
transitions.

Definition 13 (Abstraction step 2). Let E be a set of events equipped with a labeling function` : E " R
and two relationsá + á2" á ,á 2á2" á# E $ E $ span(G). We translate the relations on events from DeÞnition
12 into two new relations<,�# E $ E:

ei < e j /0 ei
+

"
f

22" e j andei � e j /0 e j
2

"
f

22" ei.

The associated poset is deÞned asA 2(E,`, +2" ,
22" ) = ( E,`,1 ,6), where1 and6 are the transitive and

reßexive closure of< and�, respectively. We call the two relations1 and6, (enabling) precedence and
non-enabling precedence, respectively6.

Lemma 1. Let " be a trace and lete,e! & E be two events withA 2A 1(" ) = ( E,`,1 ,6). If e < e! then

there exists a span
"
f such that̀ (e)

+
"
f

22" `(e!). Similarly, if e � e!, then there exists a span
"
f & span(G)

such that̀ (e!)
2

"
f

22" `(e).

A morphism on posets is a function on events that preserves labels and the two precedence relations.
An isomorphism between two posetss1 ands2 is denoted bys1

+= s2. For a set of tracesQ = { " 1,ááá, " n} ,
we writeS = ( s1,ááá,sk)/+= with k 1 n for the set of posets obtained viaA 2A 1 and quotiented by iso.

Example 3. Consider the trace" = t1; t2; t3; t4 of Example 2. The corresponding poset consists of the
events{ e1,e2,e3,e4} with the relations<= { (e1,e2); (e1,e3); (e2,e4); (e3,e4)} and�= { (e2,e3)} . Note
thate2 is a non-enabling precedent ofe3, as in the original trace transitiont3 prevents transitiont2.

3.2 From posets to traces

We next specify the concretization from posets to traces. Again, we proceed in two steps. The Þrst
concretization retrieves the intermediate structure(E,`, +2" ,

22" ) from a poset(E,`,1 ,6). This step re-
covers the inßuence (positive or negative) between the rules underlying two events that are in a particular
precedence or non-enabling precedence relation.

Definition 14 (Concretization step 1). Let (E,`,1 ,6) be a poset. We deÞne the relations+2" ,
22"#

E $ E $ span(G) as follows:

¥ ei
+

"
f

22" e j /0 `(ei)
+

"
f

22" `(e j) andei < e j, for some
"
f & span(G);

¥ ei
2

"
f

22" e j /0 `(ei)
2

"
f

22" `(e j) ande j � ei, for some
"
f & span(G)

6In order to not introduce unnecessary terminology, we abuse the termposet to mean the structure(E,`,1 ,6) where the
set of eventsE is equipped withtwo partial orders. We could instead deÞne(E,`, (< 7 �)?) but in this case we forget the
distinction between< and�.



10 Interactions between causal structures

where< and� are the reduced relation of1 and6, respectively. The concretization of a poset is then
C1(E,`,1 ,6) = ( E,`, +2" ,

22" ).

Example 4. Consider a poset of eventse1,e2 ande3 with labels
"
r1,

"
r2 and

"
r3, respectively, as shown in

Figure 6. Furthermore, suppose that eventse1 ande2 both precedee3. For the paire1 < e3, one can infer

the positive inßuence
"
r1

+
"
f

22"
"
r3. For the paire2 < e3, we need to consider two possibilities: either

r1
A

A B
r3

r2

A B

A B

A

A

B

3 23 2

31

2

31

2

12

3

3

2

�
f

�
g

�
h

e3

e1
e2

Figure 6: All possible inßuences between three rules.

"
r2

+
"
g

22"
"
r3 or

"
r2

+
"
h22"

"
r3. The relation induced by the span

"
g is problematic. Intuitively, the eventse1 and

e2 should produce a distinct set of agents for evente3. SpeciÞcally, both cannot produce thesame agent
A that binds toB in e3. Theconsistent span attributes the creation of agentA to e1 and the creation of
B to e2 (in addition to a furtherA not used ine3). In this manner, bothe1 ande2 are necessary for the
occurence ofe3.

As the example indicates, it is not trivial to retrieve the inßuence between events from the inßuence
between rules. The problem is that inßuence between events is aglobal property of the poset, whereas
inßuence between rules islocal to the two rules. Lack of space prevents us from characterizing the
correct concretizations of a poset. Informally, a concretization of a posets is correct if (i) every relation
on events ins is due to a shared resource (i.e. an agent or an edge) and if (ii) every resource ins is
consistent throughouts.

The second concretization maps events into transitions such that: (i) the transitions compose into
a valid trace and (ii) the relations deÞned on the events hold on the transitions of the trace. We call a
candidate for concretization any function from events to transitions that satisÞes condition (i).

Definition 15. Let E be a set of events with a labeling function` : E " R and a total order on events

<# E $ E. A functionconcrete: E " T is called acandidate for concretization if concrete(e) = M m,
"
r

0 N
such that̀ (e) =

"
r , for some graphsM,N, and a morphismm. Moreoverconcrete(e1);ááá;concrete(en),

with ei < ei+ 1, i 1 n, compose into a trace.

Any such function must also satisfy condition (ii), as in the following deÞnition.

Definition 16 (Concretization step 2). Let E be a set of events equipped with a function` : E " R and
two relationsá + á2" á ,á 2á2" á# E $ E $ span(G). Let< be a total order on events and letconcrete: E " T
be a function from events to transitions such that the following hold:

¥ (ti, t j,
"
f ) &<" /0 ei

+
"
f

22" e j and

¥ (ti, t j,
"
f ) &5" /0 ei

2
"
f

22" e j

for ei,e j & E, i, j 1 n. Then the concretized trace isC2(E,`, +2" ,
22" ,concrete,<) = concrete(e1);ááá;

concrete(en), for ei < ei+ 1, i 1 n.



I. Cristescu, W. Fontana & J. Krivine 11

For (E,`,1 ,5) a poset, we writeC(E,`,1 ,5) for the set of all possible concretisations, i.e. the set
of all traces" as speciÞed byC1(E,`,1 ,5) andC2(E,`, +2" ,

22" ,concrete,<). We write(" ,concrete) &
C(E,`,1 ,5) for the concretization function used in reconstructing a particular" .

Theorem 1. Let " be a trace. Then" & C A2A 1(" ). Moreover, for any trace" ! & C A2A 1(" ),
A 2A 1(" ) += A 2A 1(" !).

4 A logic on posets

x ::= xe | xs (variables on events and posets)

ts ::= xs | s (terms on posets)

te ::= xe | e (terms on events)

t ::= ts | te (terms)

# ::= 8x.#(x) | ' x.#(x) | (quantiÞers)

Â# | #1 ( #2 | (logical connectors)

te & ts | `(te) =
"
r | te

1 1 ts te
2 | te

1 6ts te
2

| te
1 & ts

1
2
; te

2 & ts
2 | te

1 & ts
1

+
; te

2 & ts
2 (predicates)

Figure 7: The grammar of the poset logic.

In Figure 7 we deÞne a fragment of a Þrst
order logic that can be used to express asser-
tions about positive and negative inßuence
between mechanisms, that is, posets. We
interpret the logic on the set of posetsS ,
ranged over bys, and on the set of events
E = 7 si&SEsi , whereEsi is the set of events
in si. To distinguish between the partial or-
ders of different posets inS , we write s =
(Es,1 s,6s,`s). In the following, x stands
for variables,t for terms and the superscripts
e and s indicate whether the variables and
terms range over events or posets, respec-
tively. Formulas are denoted by# and are built from predicates on variables and terms.

A valuation for # is a functionv : fv(# ) " E %S from the set of free variables of# to the set of
events and posets. Theevaluation of # is deÞned below and requires a valuation functionv for the set
of free variables of# ; the evaluation is therefore parametric onv. We use two functions, one to evaluate
terms{} v : t " E %S and one to evaluate formulas[[]]v : # " { T,F} . A formula# is satisÞable if there
existsv such that[[# ]]v evaluates to true. The interpretation of formulas and terms is shown in Figure 8.

[[' xs.# ]]v /0 for all s & S , [[# (s/x)]]v

[[8xs.# ]]v /0 for somes & S , [[# (s/x)]]v

[[Â# ]]v = Â[[# ]]v
[[#1 ( #2]]v = [[ #1]]v ( [[#2]]v
[[te & ts]]v /0 { te} v & { ts} v

[[`(te) =
"
r ]]v /0 `({ te} v) =

"
r

[[te
1 1 ts te

2]]v /0 e1 1 s e2 wheree1 = { te
1} v,e2 = { te

2} v,s = { ts} v

[[te
1 6ts te

2]]v /0 e1 6s e2 wheree1 = { te
1} v,e2 = { te

2} v,s = { ts} v

[[te
1 & ts

1
+ /2
; te

2 & ts
2]]v /0 e1 & s1

+ /2
; e2 & s2 wheree1 = { te

1} v,e2 = { te
2} v,

s1 = { ts
1} v,s2 = { ts

2} v

{ x} v = v(x)

{ e} v = e
{ s} v = s

Figure 8: The intepretation of the poset logic.



12 Interactions between causal structures

Example 5. We return to the introductory example. The mechanisms of binding an agentA to an agent
X or to an agentY consist in the application of rule

"
rAX and

"
rAY , respectively. The assertion that the Þrst

mechanism prevents (or conßicts with) the second is written as8e1.(e1 & s1 ( `(e1) =
"

rAX ) ( 8 e2.(e2 &
s2 ( `(e2) =

"
rAY ) ( e1 & s1

2
; e2 & s2. The logic allows us to formulate more complex mechanisms. For

our example, we can write8e.e & s ( `(e) =
"

rAX ) `(e) =
"

rAY for a mechanism that producesA bound to
eitherX or Y.

The predicatese1 & s1
+
; e2 & s2 ande1 & s1

2
; e2 & s2 check for enablement and prevention between

two posets. Informally,e1 ande2 represent the Ómeeting pointÓ of the two posetss1 ands2. We use these
events to reconstruct a graph that represents a context in whichs1 enables or preventss2.

Thecausal past of an event is the set of events that preceded it. We denote with[e]s the causal past
of an evente & Es and deÞne[e]s = ( E !,1 !,6!,`!) with E ! = { e! : e! & E,e! 1 e} and1 !,6!,`! deÞned like
1 ,6,` but restricted toE !.

Definition 17 (Occurrence context of an event in a poset). Let s be a poset and lete & Es be an event.
Furthermore, let(" ,concrete) & C([e]s) be a concretization of[e]s. We say that a morphismm is an

occurrence context of e in s if concrete(e) = M
m,`(e)
0 N, for some graphsM,N.

O

M

L1 L2

M1 M2

m1 m2

f1 f2

g1 g2

The occurrence context ofe1 in s1 and ofe2 in s2 is speciÞed by match-
ingsm1 : L1 " M1 andm2 : L2 " M2, respectively. The diagram on the right
illustrates the prevention ofs2 by s1. Since the graphM contains bothM1

andM2, both eventse1 ande2 can occur in that context. We then say thatM
is a scenario for the prevention ofs2 by s1, which is induced by a negative

inßuence between the underlying rules,`(e1)
2

"
f

22" `(e2). The scenario graph
M is formally deÞned as follows.

Definition 18 (Scenario for prevention). Let mi be an occurrence context of eventei in the posetsi,

i & { 1,2} . Let
"
f be a span such that`(e1)

2
"
f

22" `(e2). DeÞne the span
"
g = ,g1,g2- asgi = mi fi, i & { 1,2} .

We say that the graphM obtained by the pushout
"
g is ascenario (graph) for the prevention ofe2 & s2 by

e1 & s1.

Example 6. Let L1, L2 be the left hand sides of rulesrAX andrAY from Figure 2. We have a negative
inßuence between the rulesrAX andrAY induced by the agentA. The occurence context ofeAX in the
poset AX is obtained from the concretization of the poset AX and consists of the morphismL1 " GAX .
Similarly the occurence context ofeAY in the poset AY isL2 " GAY . There is no scenario for prevention
as the graphG (in Figure 2) is not a site-graph.

In a similar manner we interpret the enabling relation between two mechanisms. The predicate

(e1 & s1
+ /2
; e2 & s2) returns true if there exists a scenarioM as deÞned above. The pushout does not

always exists and, in consequence, mechanisms do not always interact with one another.
The logic is implemented as a systematic inspection of each poset. The set of posets does not have

in itself a structure, and therefore there is no smart strategy for deciding whether a formula holds. The
point of the logic is to give a formal language and an interpretation for inßuence between posets.

Example 7. Let us look at a Kappa model slightly more complicated than the one in the Introduction.
We give the rules in the Þgure below. The two posets build up the graphsGAX andGAY . Then there are
two ÒresourcesÓ which can produce an inhibition between the two posets. They produce two scenario
graphs for inhibitionG1 andG2, shown in Figure 9.



I. Cristescu, W. Fontana & J. Krivine 13

A B1 1 A B1 12r’AB 2C 1 C 1

A2rAC C 1 A2C 1

rAX AB 11 3 AB 11 3 X1

A 32rAY C 1 A 32C 1 Y1

rBC C2B 2 C2B 2

C2

2
C2

2

rAC

rAY

rAC

rAX

rBCr’AB

Poset AX

Poset AY

AB 11 2

C2

2

C1

3

GAX GAYA 32C 1

AB 11 2

C2

2

C1

3

A 321

AB 11 2

C2

2

C1

3

G 1 G 2

Figure 9: A Kappa model for which there are two scenarios for the prevention between the events labeledrAX andrAY .

A B1 1 A B1 12r’’AB 2C 1 C 1

A2rAC C 1 A2C 1

rAX AB 11 3 AB 11 3 X1

A 32rAY C 1 A 32C 1 Y1

rBC C2B 2 C2B 2

C2

2
C2

2

AB 11 2

C2

2

C1

3

GAX GAYA 32C 1

AB 11 2

C2

2

C1

3

G 2

2 2 2

2

Figure 10: A slightly different Kappa model for which only one of the scenarios is still valid.

Let us change ruler!
AB into r!!

AB and keep everything else the same. With the new rule the graph build
up by Poset AX requires the site 2 of agentC to be free. In this case only one scenario for inhibition can
still occur, shown in Figure 10.

5 Conclusions

Given a categorical notion of graph rewrite system, we deÞned positive and negative inßuence between
rules. This allowed us to deÞne sequential and parallel independence between state transitions and the
relations of enablement and prevention. These were then lifted to the poset abstraction of a trace of
state transitions, where they became enabling and non-enabling precedence relationswithin a poset. The
formulation of a logic on posets then allows us to formulate questions about enablement and prevention
relationsbetween posets. We ended by specifying how the concretization of posets back into a trace pro-
vides a scenario graph that establishes the truth (or falsity) of a statement about poset interaction. These
notions, together with their implementation, are meant to assist a modeler in checking the consistency
between observations and the mechanisms that are implied by a rule-based model.

Acknowledgements. We gratefully acknowledge illuminating discussions with Russ Harmer, Jerome
Feret, and Jonathan Laurent. Special thanks to Pierre Boutillier for his help in developing and integrating
the model checker resulting from this contribution into the Kappa software framework.



14 Interactions between causal structures

A Appendix

In this appendix we present the proofs missing in our presentation as well as providing more examples
and remarks.

A.1 Another Example

Let us look at a Kappa model slightly more complicated than the one in the Introduction. We give
the rules in the Þgure below. The two posets build up the graphsGAX andGAY . Then there are two
ÒresourcesÓ which can produce an inhibition between the two posets. They produce two scenario graphs
for inhibition G1 andG2, shown below.

A B1 1 A B1 12r’AB 2C 1 C 1

A2rAC C 1 A2C 1

rAX AB 11 3 AB 11 3 X1

A 32rAY C 1 A 32C 1 Y1

rBC C2B 2 C2B 2

C2

2
C2

2

rAC

rAY

rAC

rAX

rBCr’AB

Poset AX

Poset AY

AB 11 2

C2

2

C1

3

GAX GAYA 32C 1

AB 11 2

C2

2

C1

3

A 321

AB 11 2

C2

2

C1

3

G 1 G 2

Let us change ruler!
AB into r!!

AB and keep everything else the same. With the new rule the graph build
up by Poset AX requires the site 2 of agentC to be free. In this case only one scenario for inhibition can
still occur, shown below.

A B1 1 A B1 12r’’AB 2C 1 C 1

A2rAC C 1 A2C 1

rAX AB 11 3 AB 11 3 X1

A 32rAY C 1 A 32C 1 Y1

rBC C2B 2 C2B 2

C2

2
C2

2

AB 11 2

C2

2

C1

3

GAX GAYA 32C 1

AB 11 2

C2

2

C1

3

G 2

2 2 2

2

A.2 Proofs of Section 2.1

Lemma 2. Site-graphs and their morphisms form a category.

Proof. The category of site-graphs has as objects the site-graphs of 1 and as arrows the morphisms of 2.
Let us show morphisms compose. Given three site-graphsG1,G2,G3 and two morphismsf : G1 " G2,
g : G2 " G3 let h = g f be the (pairwise) composition of the two. It follows

¥ for an agent a& A G1, type(h(a)) = g( f (type(a)) and we have thattype(h(a)) = h(type(a)) ;

¥ for a node(a, i) & N G1, h(a, i) = g( f (a)) , i)) and thereforeh(a, i) = ( g( f (a)) , i) = ( h(a), i); h triv-
ially preserves the free node;



I. Cristescu, W. Fontana & J. Krivine 15

¥ for an edge(n1,n2) & EG1, h(n1,n2) = ( g( f (n1),g( f (n2)) , henceh preserves edges.

If f andg are injective, then so ish. The axioms of associativity and identity law easily hold.

A.3 Examples of Section 2.3

Example 8 (Of no pushout in site-graphs). In the Þgure below, the pushout of the span below is not a
site-graph: there is a conßict on site 2 of agentB.

B C1 3A 3 2 B C1 32

B 1 C3

C 3

Example 9 (Rules). Thegood rule at the right binds agentsA andB to one
another. Note that we do not need to specify all sites of the
agentsA andB. The sites that are speciÞed are preconditions
for the application of the rule, that is the rule only applies on
agentsA with the sites 2 and 3 free and on agentsB with site 2
free.

BA 3 2BA 3 2 C3 1

2

2 2

BA 3 2BA 3 22 C3 1

good rule

bad rule
Note that is site 2 of agentA is mentioned on the left hand side, it also needs to appear in the right

hand side. This is expressed in condition of the DeÞnition 4. So, for example thebad rule on the right
does not satisfy this condition.

A.4 Proofs and examples of Section 2.2

In Ref. [?] there are two conditions that need to hold for the dpo rewriting of DeÞnition 5. One of the two
condition is the dangling condition deÞned below. The second one (called theidentification condition)
always holds in our setting because we only consider monos in the dpo rewriting.

Property 1 (Dangling conditions). Let
"
r = L p

. K
q

" R be a rule and let L m" M be a matching in a
graph M. Define the gluing pointsand dangling pointsas subsets of the nodes in N L, as follows:

GP = p(N K)

DP = { n & N L : 8l & EM \ m(EL) s.t.
l = ( m(n), ) or l = ( ,m(n)) } . L K R

M D N

p q

f g

m

Then we say that the dangling condition holds if DP # GP.

In this work, we only consider rule applications for which the dangling conditions hold. In the
following lemma we show that there exists a uniqueD such thatL " M. D is the pushout of the span
L . K" D. Note that the condition on rules (of DeÞnition 4) is needed for the following result.

Lemma 3. Let L l. K r" R be a rule and letM be a site-graph and letm : L " M be a matching. The
DPO rewriting can be applied whenever the dangling conditions hold.

Proof.
We Þrst deÞne a pushout in a ÒconstructiveÓ manner. Then
we construct the graphD and show thatM is the pushout of
the span,k, l-. Lastly, we constructN and show that it is the
pushout of the span,k,r-. L K R

M D N

l r

f g

m k u



16 Interactions between causal structures

1. Let R r. K k" D be a span. We deÞne9# N R $ N D to be the smallest

equivalence relation with(k(n),r(n)) &9 , for all n & N K . We deÞne the
graphN to be the following graph:

¥ N N = ( N D 7 N R)|9

¥ A N = { a : a& n,n & N N}

¥ EN = { (n1,n2) : n1,n2 & N N

if n1,n2 & image(r) then[r2 (n1),r2 (n2)] & ER or

if n1,n2 & image(k) then[k2 (n1),k2 (n2)] & EK}
N!

K

R D

N

r k

u gu! g!h

The pushout in the category of site-graphs does not always exists. When the pushout does not
exists, then the graphN is not a site-graph, i.e. there is a conßict inEN . We show that ifN is a site-
graph then it is the pushout. For that, we have to show that the graphN has the universal property:
for any site-graphN! and two morphismsg! : D " N! andu! : R " N! such that the diagram above
commutes, there exists a unique morphismh : N " N! such that the diagram above commutes. Let
the morphismh : N " N! be as follows:

h(a) = u!(u2 (a)) = g!(g2 (a)) if a & image(u) * image(g)

u!(u2 (a)) if a & image(u)

g!(g2 (a)) if a & image(g)

h(n1,n2) = u!(u2 (n1,n2)) =

g!(g2 (n1,n2)) if (n1,n2) & image(u) * image(g)

u!(u2 (n1,n2)) if (n1,n2) & image(u)

g!(g2 (n1,n2)) if (n1,n2) & image(g)

The morphism preserves agent types which follows from the composition of morphisms and from
the fact the diagram commutes for the morphismsu! andg!. For a node(a, i) & N N , suppose that
(a, i) & image(u) * image(g). It follows that(u!(u2 (a)) , i) = ( g!(g2 (a)) , i) & N !

N . Thereforeh also
preserves nodes.

The morphismh is also unique. It follows from the fact that any agent or edge inN is also either in
graphR or in graphD. Therefore for the diagram to commute, there is only one possible mapping
for any agent or edge fromR (or D) into N!.

2. The graphD is deÞned as a subgraph ofM as follows:

¥ N D = N M \ m(N L) 7 m(l(N K))

¥ ED = EM \ m(EL) 7 m(l(EK))

¥ A D = { a : a& n,n & N D}

It is a site-graph, as it is a subgraph ofM. The morphismf : D " M is deÞned as the inclusion
morphism. The morphismk : K " D is deÞned ask = lm restricted to the subgraphD of M.



I. Cristescu, W. Fontana & J. Krivine 17

Let us now show that the cospan, f ,m- is the pushout of the span, l,k-. For that, we show thatM
can be obtained as in the Þrst item of the proof from the graphsD andL.

By manipulating the deÞnition of the setN D we obtain

N D \ m(l(N K)) 7 m(N L) = N M

which is equivalent to Þrst merging setsN D andm(N L) and then deÞne an equivalence class on
nodes such that(m(l(n)) ,k(n)) &9 , for all n & N K . ThereforeN M = ( N D 7 m(N L)) |9 . We can
make a similar argument to show that the edges ofM can be obtained as in the construction above,
from the edges of graphsL andD.

3. Let N be the graph constructed in the Þrst item of this proof. SufÞces then to show thatN is
a site-graph, i.e. we have to show thatEN is conßict free. Suppose by contradiction that there
exists

�
(a, i), (b, j)

�
& ED and

�
(a, i), (c, j)

�
& ER such that(a, i) & N K . We have then that both�

(a, i), (b, j)
�

and
�
(a, i), (c, j)

�
are edges inN, which are conßicting.

From the DeÞnition 4 of a rule, there existsn & N L such that
�
(a, i),n

�
& EL. As m : L " M is a

mono,
�
(m(a), i),m(n)

�
& EM. From the construction ofD above it follows that there is non! & N D

such that((a, i),n!) & ED. Contradiction.

A.5 Proofs and examples of Section 2.3

Example 10 (Multisum). For two site-graphsG1 andG2, the site-graphs obtained from the multisum are
the top four site-graphs in the diagram below.

BA 3 2 BA C 31 1 1

BA 3 2

BC 3

1

1 1

BA C 31 1 1

A 3

2
BA 3 2

C 31

1 1

G 1 G 2

BA 3 2

BA C 31 1 1

In each of the graph of the multisum, the overlapping ofG1 andG2 is highlighted by a square, i.e. the
two graphs overlap on agentsA,B, on eitherA or B or do not overlap.

Example 11 (Negative inßuence between rules). In the Þgure below, we have two rulesrA.B,rABC written
as spans. The rulerA.B has a negative inßuence on rulerABC as it unbinds agentA from agentB. Formally,
this is expressed by the span,g1,g2- obtained by pullback from, f1, f2- & multisum(L1,L2).

BA 3 2 BA 3 2

BA

BA 3 2 C13 BA 3 2 C13

BA 3 2 CBA 3 2

BA 3 2 C13

rA.B rABC

g1
g2

f1 f2

Lemma 4. The pullback always exists inG.

Proof.



18 Interactions between causal structures

Let G1, G2, M be two site-graphs and
"
f be a cospan as shown

on the right. We deÞne a site-graphO as a subgraph ofM (and
is therefore a site-graph), which projects intoG1 andG2. The

span
"
g is given by a restriction on the inverse of

"
f . Lastly we

show the universal property.

O

G1 G2

M

O!

g1 g2

f1 f2

g!
1 g!

2

Let A O = f1(A 1) * f2(A 2) # A M be a set of agents. We have that the mapsg1 = f 2
1 (A O) and

g2 = f 2
2 (A O) are well deÞned functions on the agentsA O. Let N O = { (a, i) : (a, i) & N M,a & A O} 7

{ free} # N M be a set of nodes. Finally, letEO = { (n1,n2) : (n1,n2) & EM,n1,n2 & N O} be a set of edges
which is by construction symmetric and conßict free. ThenO = ( A O,N O,EO) is a site-graph, included in
M. The mapsg1, g2 are deÞned on nodes and edges as expected and are morphisms inG by construction.

Let A ! be the set of agents of a site-graphO! and let
"
g! be a span such that the diagram above

commutes. Then deÞneh : O! " O a map such thath(a!) = a /0 f1(g!
1(a!)) = a, for a! & A !. The map

extends to nodes and edges ofO!. Moreover,h is the unique morphism that commutes, which follows by
contradiction.

Lemma 5. Let G1 . O " G2 be the pullback of the cospanG1 " M . G2 & multisum(G1,G2). Then,
G1 " M . G2 is the pushout ofG1 . O " G2.

Proof. First, we have to show thatM! is a site-graph, where the spanG1 . O " G2 is the pullback of
a cospanG1 " M . G2 andG1 " M! . G2 is the pushout ofG1 . O " G2. If M! is obtained from
the pushout, then there exists a unique monoM! " M. Therefore, from the DeÞnition 2 of morphism, if
there is a conßict inM! then there is a conßict inM as well.
Secondly, let us show the hypothesis. Let us suppose by contradic-
tion, that the cospanG1 " M . G2 is not the pushout of the span
G1 . O " G2. We denote the pushout as the cospanG1 " P . G2.
From the deÞnition of the pushout we have that there exists a unique
morphismm : P " M for which the diagram on the right commutes.

M!!

O

G1 G2

M P
m

Let us distinguish between two cases:

¥ G1 " P . G2 /& multisum(G1,G2). If the pushout is not in the multisum, then there existsM! &
multisum(G1,G2) such that there exists a morphismm! : M! " P. But then there exists a morphism
mm! : M! " M. However as bothM,M! are in the multisum, thenM += M! and, henceM += P.

¥ G1 " P . G2 & multisum(G1,G2). Then let us denote withM!! the pushout-object of the span
M . O " P. It follows that bothM andP embed intoM!!. From the deÞnition of the multisum, it
follows thatM += P.

Let us note that the Lemma above is used in the deÞnition of inßuence between rules in Ref.[?].

A.6 Proofs of Section 3

Lemma 6. Let " be a trace and lete,e! & E be two events withA 1(" ) = ( E,`, +2" ,
22" ). If e

+
"
f

22" e! then

`(e)
+

"
f

22" `(e!), for some
"
f & span(G) (and similarly for negative inßuence).



I. Cristescu, W. Fontana & J. Krivine 19

Proof. Let " be a trace such thatA 1(" ) = ( E,`, +2" ,
22" ). For the two eventse1,e2 in E and a cospan

f such thate
+

"
f

22" e!, there exists two transitionst1, t2 & " such thatt1 : M1
m1,r10 N1 andt2 : M2

m2,r20 N2,
for some graphsMi,Ni, morphismsmi and the underlying rules

"
ri = Li. Ki" Ri, i & { 1,2} . Moreover,

from the DeÞnition 12 it follows that(t1, t2,
"
f ) &<" and`(ei) = ri, i & { 1,2} . From the DeÞnition 11 it

follows thatr1
+

"
f

22" r2.

Proof of Lemma 1. Let " be a trace, letA 1(" ) = ( E,`, +2" ,
22" ) be the intermediate structure andA 2(E,`, +2"

,
22" ) = ( E,`,1 ,6) be a poset. Lete,e! & E be two events such thate < e!. Then from the DeÞnition 13,

it follows e
+

"
f

22" e!, for some span
"
f . From Lemma 6, then we have that`(e)

+
"
f

22" `(e!).
The proof is similar for the non causal precedence.

Schematically, the abstractions and concretisations of DeÞnitions 12,13,14,16 are represented as
follows:

(E,`,1 ,6)(E,`, +2" ,
22" )(" : t1; t2;ááátn,<,5)

A 1 A 2

C1C2

Example 12 (The two-steps abstraction: Example 3 revisited). Let us consider the trace" = t1; t2; t3; t4
of example 2. The Þrst abstraction constructs the structure(E,`, +2" ,

22" ). Let
"
f ,

"
g ,

"
h ,

"
i ,

"
j & span(G)

be the spans shown in the Þgure below:

A2C 1 A2C 1 A 42C 1 A 42C 1 A

B

1

1

2C 1 A

B

1

1

2C 1 B 1 A 42 B 1 A 42

D 1 D 1 D 1 D 1

A2C 1

A2C 1 A 4 D1

A2C 1

A B1 1

f1

f2 g1 g2
h1 h2

i1
i2

j1 j2

Then the relations+2" ,
22" are deÞned as follows:

e1
+

"
f

22" e2 e1
+

"
g

22" e3 e2
+

"
h22" e4 e3

+
"
i22" e4 e3

2
"
j

22" e2.

The second abstraction removes the spans in the relations+2" ,
22" . At the end we obtain the structure

(E,`,<,�) with <= { (e1,e2); (e1,e3); (e2,e4); (e3,e4)} and�= { (e2;e3)} .

Example 13 (The two-steps concretisation: Example 4 revisited). Consider a poset of eventse1,e2 and
e3 with labels

"
r1,

"
r2 and

"
r3, as in Example 4. The Þrst concretisation step, as we have argued, retrieves

the structure(E,`, +2" ,
22" ) with the relation+2" deÞned as follows:

e1
+

"
f

22" e2 e2
+

"
h22" e3

and 22" = /0.
The second concretisation step needs a functionconcrete. For our example the following works:



20 Interactions between causal structures

concrete(e1) = concrete(e2) = concrete(e3) =

A 31

2

m1,r1

r1

m1

�

� A 31

2

m2,r2

m2

A 31

2

A B31

2

12

A B31

2

12

r2

�

A 31

2

A B

A B3 2

3 2

r3

A B31

2

12

m3,r3

A 31

2

A B31

2

12

A 31

2

m3

Providing an implementation for the functionf is outside the scope of this paper and we leave
it as future work. For the case of Kappa, an implementation is available athttps://github.com/

Kappa-Dev/PosetLogic.

Example 14 (More coarse-grained abstractions). Recall that for the trace" of example 2 our abstraction
constructs the posets of the example 3. Note that there are other abstractions possible from a causal
trace. For example, one can also forget the prevention relations between events and retrieve ÒregularÓ
posets, i.e. sets of events equipped with only one partial order, the precedence relation.

In Example 2 if we forget prevention on trace" , we obtain the same set of events{ e1,e2,e3,e4} ) but
equipped with only the precedence relation<= { (e1,e2); (e1,e3); (e2,e4); (e3,e4)} . From this poset we
can concretise a trace in which evente3 occurs before evente2, which is not possible in our concretisation.

Another possible abstraction consists of remembering the direct precedence instead of the indirect
one. In this case we do not detect that evente2 is a precedent for evente4.

None of these abstractions are ÒwrongÓ in any sense, but do not keep as much information about the
original trace as the abstraction we deÞned. Our choice is motivated by the application to Kappa, where
the indirect enablement and prevention are deemed important.

Proof of theorem 1. SufÞces to show that for any trace" there exists a concretisation function for the
posetA 2A 1(" ) such that the constraints in DeÞnitions 16,14 hold. It follows from the DeÞnitions 12,13
of abstractions.

Consider now a trace" ! & C A2A 1(" ). Both traces" and" ! meet the constraints in DeÞnitions 16,14.
It follows thatA 2A 1(" ) += A 2A 1(" !) using the DeÞnitions 12,13.

A.7 Independence, enablement and prevention in graph rewriting

In this section we revisit the graph rewriting theory from Ref. [?] adapted to site-graphs.
The next Lemma asserts that whent13part2, we can construct at !

1 andt !
2 to sequentialize either way,

t1; t !
2 or t2; t !

1, with the same net effect. Likewise, whent13seqt2, we can Þnd at !
1 andt !

2 to swap the order
from t1; t2 into t !

2; t !
1 with, again, the same net effect. The Lemma is a variant of a result from Ref. [?]

adapted to site-graphs.

Lemma 7 (Permutation of independent transitions). Consider two transitionst1 : M m1,r10 M1 and t2 :

M m2,r20 M2. If t13part2 then there exists anM! & Q and two transitionst !
2 : M1

m!
2,r2
0 M! andt !

1 : M2
m!

1,r1
0 M!

for some matchingsm!
2,m

!
1 & hom(G). Moreover,t13seqt !

2 (andt23seqt !
1).

Consider two transitionst1 : M m1,r10 M1 andt2 : M1
m2,r20 M2. If t13seqt2 then there exists anM! & Q

and two transitionst !
2 : M

m!
2,r2
0 M! andt !

1 : M! m!
1,r1
0 M2 for some matchingsm!

2,m
!
1 & hom(G). Moreover,

t13part !
2.

https://github.com/Kappa-Dev/PosetLogic
https://github.com/Kappa-Dev/PosetLogic


I. Cristescu, W. Fontana & J. Krivine 21

Proof. From the DeÞnition 10 of parallel independence we have that ift13part2 then there exists two

transitionst !
2 : M1

m!
2,r2
0 M!

1 andt !
1 : M2

m!
1,r1
0 M!

2 for some matchingsm!
2,m

!
1 & hom(G). We have to show

that M!
1

+= M!
2. For this we show that the parts ofM modiÞed byr1 and the parts modiÞed byr2 are

disjoint and therefore the order in which they occur does not matter.

We Þx some notations. We writen1 : R1 " M1, n2 : R2 " M2, n!
1 : R1 " M!

2 andn!
2 : R1 " M!

1. Let us
also denoteA !

1 # A M the set of agents deleted by the application ofr1 andA !!
1 # A M1 the set of agents

created byr1. We use similar notations forA !
2 # A M, A !!

2 # A M2.

Then we have that

A M1 = A M \ A !
1 7 A !!

1

and similarly forM2:

A M2 = A M \ A !
2 7 A !!

2

The setsA !
1 andA !

2 are disjoint, as the transitions are independent. It implies thatm!
2(m2

2 (A !
2)) & A M1

and similarly forn!
2(n2

2 (A !!
2 )) & A M!

1
the agents created byr2. Therefore

A M!
1

= A M1 \ m!
2(m2

2 (A !
2)) 7 n!

2(n2
2 (A !!

2 ))

= A M \
�
A !

1 7 m!
2(m2

2 (A !
2))

�
7
�
A !!

1 7 n!
2(n2

2 (A !!
2 ))

�
.

and similarly,

A M!
2

= A M2 \ m!
1(m2

1 (A !
1)) 7 n!

1(n2
1 (A !!

2 ))

= A M \
�
A !

2 7 m!
1(m2

1 (A !
1))

�
7
�
A !!

2 7 n!
1(n2

1 (A !!
1 ))

�
.

From the DeÞnition 10 of parallel independence we have that there exists the bijections

f1 : A !
1 " m!

1(m2
1 (A !

1)) ; f2 : A !
2 " m!

2(m2
2 (A !

2)) ;

g1 : A !!
1 " n!

1(n2
1 (A !!

1 )) ; g2 : A !!
2 " n!

2(n2
2 (A !!

2 )) .

Therefore the we can deÞne a bijectionh : A M!
1

" A M!
2

between the agents ofM!
1 and the agents ofM!

2
as follows

h = id \
�

f1 7 f2
�

7
�
g1 7 g2

�
,

whereid is the identity function on the agents ofM. As it is obtained from operations on morphisms, the
bijectionh preserves agent types and nodes. Similarly we proceed to construct the bijection between the
egdes ofM!

1 andM!
2. We obtain a isomorphism between the site-graphM!

1 andM!
2.

In a similar fashion we can prove the second part of this lemma.



22 Interactions between causal structures

Example 15 (Parallel and sequential indepen-
dence). In the Þgure on the right we have two
sequential transitions that we denote witht1 :
M1

m1,rAB0 M2 and t2 : M2
m2,rAC0 M3. The two

transitions are sequential independent: there
existsm!

2 a morphism from the left hand side of
rAC to M1 such thatm!

2mix(t1) = m2. Thanks
to Lemma 7 we can also rewrite transitiont2
into a transitiont !

2 : M1
m!

2,rAC0 M!
2 as shown in

the Þgure below. Transitionst1 and t !
2 be-

come then parallel independent. Lastly, note
that in the Þgure, we can also rewritet1 into

t !
1 : M!

2
m!

1,rAB
0 M3, with t !

2 andt !
1 sequential inde-

pendent.

BA 3 2

C

1

1

BA 3 2

C

1

1

BA 3 2

C

1

1

m1,rAB m2,rAC

BA 3 2

BA 3 2

A C1 1

A C1 1

rAB rAC

m1
m2

mÕ2

BA 3 2

C

1

1

BA 3 2

C

1

1

m1,rAB

m2,rAC

BA 3 2

C

1

1

mÕ2,rAC

BA 3 2

C1

mÕ1,rAB
1

Let us now revisit the DeÞnition 11 of enablement and prevention.

O

M

M1 D1 N1 N2D2M2

R1K1L1 L2 K2 R2

direct enablement

g1 g2

f1 f2

h1 h2

O

M1 D1 N1 N2D2M2

R1K1L1 L2 K2 R2

indirect enablement

g1 g2

Definition 19 (Direct and indirect enablement). Let t1 : M1
m1,r10 N1 and t2 : M2

m2,r20 N2 be two transi-
tions bracketing a trace" : t1; t !

1; t !
2;ááát !

n; t2. The rules inducingti, i & { 1,2} , are
"
ri = Li. Ki" Ri with

matchingsmi & hom(G) into M1 andM2, respectively. The spanN1 . D " M2 is the composition of
mix(t !

1) 4ááá 4mix(t !
n).

direct enablement Let
"
g be a span such that

"
r1

+
"
g

22"
"
r2 and such that

"
g is the pullback of

"
f & multisum(R1,L2).

If there exists a span
"
h such that the diagram below on the left commutes thent1 directly enables

t2, denotedt1 : t2.

indirect enablement Let
"
g be a span such that

"
r1

+
"
g

22"
"
r2. If the diagram below on the right commutes

thent1 indirectly enablest2, denotedt1 < t2.

The notion of direct enablement is useful in the characterization of non-independent transitions (see
Lemmas 8, 10). However, as we suggested in the example 2, indirect enablement captures more depen-
dencies between transitions.

Example 16 (Example 2 revisited). Transitiont1 is a direct enabler oft2 and t3. Transitiont2 is an
indirect enabler fort4.

Definition 20 (Direct and indirect prevention). Consider two transitionst1 : M1
m1,r10 N1 andt2 : M2

m2,r20 N2

in a trace" : t1; t !
1 : t !

2;ááát !
n; t2. The rules inducingti, i & { 1,2} , are

"
ri = Li. Ki" Ri with matchings

mi & hom(G) into M1 andM2, respectively. The spanM1 . D " M2 is the composition ofmix(t1) 4
mix(t !

1) 4ááá4mix(t !
n).



I. Cristescu, W. Fontana & J. Krivine 23

direct prevention Let
"
g be a span such that

"
r2

2
"
g

22"
"
r1 and such that

"
g is the pullback of

"
f & multisum(L1,L2).

If there exists a span
"
h such that the diagram below on the left commutes thent2 directly prevents

t1, denotedt2 ✏t1.

indirect prevention Let
"
g be a span such that

"
r2

2
"
g

22"
"
r1. If the diagram below on the right commutes

thent2 indirectly preventst1, denotedt2 5 t1.

O

M

M1 M2

L1 L2

D

direct prevention

g1
g2

f1 f2

h1 h2

O

M1 M2

L1 L2

D

indirect prevention

g1
g2

Note thatt1 : t2 =0 t1 < t2 andt1 ✏t2 =0 t1 5 t2, but not the reverse.
We next relate enablement and prevention to non-independence. First we show that when restricting

our deÞnitions to the case of consecutive transitions, enablement and prevention areincluded in the
negation of sequential and parallel independence.

Lemma 8. Consider two sequential transitionst1 : M m1,r10 M1 and t2 : M1
m2,r20 M2 and letg1 be the

morphismD1 " M1, whereD1 is the context graph oft1. Transitiont1 direct enables transitiont2 iff
there exists no morphismj : L2 " D1 such thatg1 j = m2.

Lemma 9. Consider two parallel transitionst1 : M m1,r10 M1 andt2 : M m2,r20 M2 and let f1 be the morphism
D1 " M, whereD1 is the context graph oft1. Transitiont1 is directly prevents transitiont2 iff there is no
morphismj : L2 " D1 such thatf1 j = m2.

Lastly, the following two Lemmas assert that two non-independent transitions are either in an en-
abling relation or they can be rewritten as preventing transitions.

Lemma 10. Consider two sequential transitionst1 : M m1,r10 M1 andt2 : M1
m2,r20 M2. Let f1 andg1 be the

morphismsD1 " M andD1 " M1, respectively, whereD1 is the context graph oft1. If the sequential
transitionst1 andt2 are not independent, then either (i)t1 < t2 or (ii) there exists a morphismj : L2 " M
such thatg1 j = m2; and there exists a graphM!

2 and a transitiont !
2 : M

f1 j,r20 M!
2 with t !

2 ✏t1.

Lemma 11. If two parallel transitionst1 andt2 are not parallel independent then eithert1 ✏t2 or t2 ✏t1
(or both).

A.7.1 Proofs of Appendix subsection A.7

Proof of Lemma 8.
Let us Þrst make an observation. For the two rulesr1 and r2, where
we have the morphismsR1 " M1 and L2 " M1, there exists a unique
R1 " M . L2 & multisum(R1,L2) that make the diagram on the right
commutes (from DeÞnition 6). The pullback ofR1 " M1 . L2 is the
same as the pullback ofR1 " M . L2, which follows from Lemma 5.

R1

M1

M

L2

We depict the two transitions in the Þgure below. LetR1 . O " L2 be the pullback of the cospan
R1 " M1 . L2 and letK1 . P " O be the pullback ofK1 " R1 . O. We proceed by showing that in
the diagram below



24 Interactions between causal structures

R1

M1

L2

D1

K1

D2

K2L1

M

R2

M2

O

P

k1

g1

m2
j

p

o
p!

the monop : P " O is an iso iff there exists a morphismj : L2 " D1 such thatg1 j = m2. Let us denote
o : O " L2 the morphism betweenO andL2 ando! : O " R1 be the morphism betweenO andR1.

¥ Suppose thatp : P " O is an iso. We denotep! : O " K1 the composition ofp andP " K1. We
deÞnej : L2 " D1 as follows

j(a) = k1(p!(o2 (a))) for a& image(o)(A O)

g2
1 (m2(a)) for a& A L2 \ image(o)(A O)

j((a, i)) =( j(a), i) for a node(a, i) & N L2

j([n1,n2]) =[ j(n1), j(n2)] for an edge[n1,n2] & EL2.

In what follows we show thatj is (i) well deÞned on agents; (ii) preserves nodes and edges; (iii) is
a mono.

Let o(O) = L!
2 # L2 be the image ofo : O " L2. For any agent a inL!

2, we have thatj(a) =
k1(p!(o2 (a))) . The functiono2 : L!

2 " O is not necessarily a morphism, as it might not preserve
nodes and the edges between nodes. It is however a function well deÞned on agents, which follows
from o being a mono. Moreover, for any node or edge inL!

2, o2 preserves them intoO.

Consider nowx an agent, a node or an edge inL2 such thatx /& L!
2. We have thatR1 . O " L2 is

the pullback ofR1 " M1 . L2 and therefore, ifx & L2, x /& image(o)(O) thenm2(x) & M1, which
we denotexM. We also have that there exists noxR & R1, xR & image(o!)(O), that maps intoxM.

We have thatD1 " M1 . R1 is the pushout ofD1 . K1 " R1. ForxM & M1 and not inR1 we have
that there existsxD & D1 such thatg1(xD) = xM. Therefore we can deÞnej(x) = g2

1 (m2(x)) , for
all x & L2 \ image(o). This proves (i) and (ii).

The functionj satisÞes (iii) as any agent, node or edge in graphL2 is either inL!
2 or in L2 \ L!

2.

¥ Let us now show that if there existsj : L2 " D1 such thatg1 j = m2 then the morphismp : P " O
is an iso.

For anyx (agent, node or edge) inO we have that there existsxL & L2 such thato(xL) = x and
similarly for xR & R1, o!(x) = xR. As O is the pullback, bothxL andxR map into the samexM & M1.

Also, m2(xL) = g1( j(xL)) and therefore there existsxD & D1 such thatj(xL) = xD andg1(xD) = xM.

The spanD1 " M1 . R1 is the pushout ofD1 . K1 " R1 and there existsxD & D1, xR & R1 that
map intoxM. It implies that there existsxk & K1 such thatxk maps intoxD andxR.

The spanK1 . P " O is the pullback ofK1 . R1 " O and there existsxk & K1, xO & O1 that map
into xR. Therefore there existsxP & P such thatp(xP) = x for all nodes or edgesx & O. It implies
that p is surjective.

As p is both surjective and injective (by deÞnition) we conclude thatp is indeed an iso.



I. Cristescu, W. Fontana & J. Krivine 25

Proof of Lemma 9. This proof is similar to the one of Lemma 8.

Proof of Lemma 10. If M m1,r10 M1 andM1
m2,r20 M2 are not sequentially independent, from DeÞnition 10,

it follows two possible cases:

¥ there is no morphismj : L2 " D1 such thatg1 j = m2. From Lemma 8, in this caset1 < t2. We
have proved then case (i) from the hypothesis.

¥ there is no morphismi : R1 " D2 such thatf2i = n1, but there exists the morphismj : L2 " D1

such thatg1 j = m2. It implies, from Lemma 7 that there existsM! & Q andt !
2 : M

m!
2,r2
0 M!, for some

morphismm!
2 such thatt1 with is not parallel independent oft !

2.

From the DeÞnition 10 of parallel independence ift1 andt !
2 are not parallel independent it follows

that there is no morphismi! : L1 " D2 such thatf2i! = n1. Then by Lemma 9, we conclude that
t !
2 ✏t1.

Proof of Lemma 11. It follows from DeÞnition 10 and Lemma 9.

A.8 On the implementation

In the implementation we use two simpliying assumptions, that holds for stories generated by KaSim:

¥ Let " be a trace. For allMi mixtures of" , for all agents a& Mi, there exists a transition of"
Mj

m,r
0 Mj+ 1, with

"
r = L . K " R, such that a/& A L and a& A R.

¥ Let
"
r = L . K " R be a rule. For any a& A R, if a /& q(N K) then' i < site(type(a)) , (a, i) & N R

and8n & N R such that((a, i),n) & ER.

The Þrst condition, informally, asks that any agent used at some point in a trace has an ÒintroductoryÓ
rule, i.e. a rule that creates the agent. The second condition requires that the agents created by a rule are
fully speciÞed, i.e. all sites are involved in an edge.

These two assumptions simplify the implementation of the concretisation function, but do not have
an impact on the theoretical development presented in the main text.

A correct concretisation, as mentioned in the main text, correct concretisations are cumbersome to
deÞne. Here we give two conditions that have to hold, the rest being similar.

Definition 21 (Valid poset). A posets = ( E,
+2" ,

22" ,`) is valid if it is directed w.r.t. the transitive and
reßexive closure of+2" and if the following constraints are meet:

no influence is empty Let e1,e2 & s be two events. Ife1
+

"
f

22" e2 or e1
2

"
f

22" e2 then
"
f is not empty;

constraints on the influence between rules for positive meets Let e1,e2,e3 be three events ins such

that there exists
"
f = R1 . O1 " L3 and

"
g = R2 . O2 " L3 two spans withe1

+
"
f

22" e3 and

e2
+

"
g

22" e3. Let O1 . O " O2 be the pullback of the spanO1 " L3 . O2. Then one of the
following holds:



26 Interactions between causal structures

¥ either there exists the morphismsO " K1 andO " K2 that commute in the diagram below

O

L3

O1 O2

R1 R2L1 L2

K1 K2

¥ or there exists the morphismO " K1 but no morphismO " K2 that commutes. Then there

exists
"
f ! : R2 . O! " L1, with O # O! for which e2

+
"
f !

22" e1.

. . .

We call aresource any non empty site-graph that appears in one but not both sides of a rule, as
for instance an agent or an edge. A correct concretisation is consistent w.r.t. all resources used in the
concretised trace.

In the deÞnition above a resource is modeled as a span. The Þrst condition says that if there is a
relation between two events in a poset, then necessarily they have a non-empty shared resource. The
second condition checks that whenever an evente3 shares the same resource with two other eventse1

ande2, then the two events also share the resource.


	Introduction
	Graph rewriting and transition systems
	Site-graphs
	Graph rewriting
	Influence
	Transition systems

	Posets of graph rewriting events
	From traces to posets
	From posets to traces

	A logic on posets
	Conclusions
	Appendix
	Another Example
	Proofs of Section 2.1
	Examples of Section 2.3
	Proofs and examples of Section 2.2
	Proofs and examples of Section 2.3
	Proofs of Section 3
	Independence, enablement and prevention in graph rewriting
	Proofs of Appendix subsection ??

	On the implementation


