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Abstract
We are concernedwith how the implementation of growth determines the expected number of
state-changes in a growing self-organizing process. With this problem in mind, we examine
two versions of the voter model on a one-dimensional growing lattice. Our main result
asserts that the expected number of state-changes before an absorbing state is found can be
controlled by balancing the conservative and disruptive forces of growth. This is because
conservative growth preserves the self-organization of the voter model as it searches for an
absorbing state, whereas disruptive growth undermines this self-organization. In particular,
we focus on controlling the expected number of state-changes as the rate of growth tends
to zero or infinity in the limit. These results illustrate how growth can affect the costs of
self-organization and so are pertinent to the physics of growing active matter.

Keywords Growth · Self-organization · Voter model · Thermodynamic limit

1 Introduction

Many properties of growing self-organizing processes arise from an interaction between
growth and activity. These include antibiotic resistance in bacterial biofilms [2], chro-
matophore patterning in cephalopods [12], mammalian pigmentation patterning [8], polymer
assembly [9], and a plethora of phenomena associatedwith social and technological networks
[1]. To better understand how the interaction of growth and activity influences the develop-
ment of such processes, we examine how the expected number of state-changes in two
versions of the voter model on a one-dimensional lattice are influenced by how growth is
implemented. Previous work on fully-connected growing spin models has demonstrated how
different implementations of growth can interact with the functional form of the growth to
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determine the dynamics of the voter model. In [7] it is demonstrated that depending on the
combination of the implementation and functional form of growth chosen the voter model
can be confined to different aspects of its phase space in the long-time limit. Similarly, other
studies have been concerned with the dynamics of spin systems in which the sign of a new
spin added to the system is a function of the system’s current magnetisation [4,5]. Our work
offers a different approach whereby we vary the implementation of growth via a continuous
parameter, and in doing so manipulate correlations established by spin systems to control
their dynamics in the large-size (long-time) limit.

As a specific motivation for our study we imagine a collection of cells that are self-
organizing via local communication to achieve a desired ‘consensus’ state. We imagine
further that this collection of cells is growing to some finite size, so that its self-organization
is being repeatedly disrupted by the arrival of cells whose state must also be taken into
account. It is clear that one problem, among many, this growing self-organizing system
is faced by is the following: is it more ‘efficient’ to organize while growing, or to finish
growing before self-organizing? In many instances the constraints of time and increasing
combinatorial complexity suggest most complex systems would be wise to self-organize
to some extent as they proceed. Indeed, in multicellular biological systems we typically see
extensive self-organization during growth. However, if how a system grows is disruptive, that
is, it undoes the previous efforts of self-organization (i.e. such as forming a pattern), may it be
more efficient for the system to self-organize after it has finished growing? Continuing this
theme, it is interesting to imagine to what extent growthmay, in manipulating the correlations
established by active matter, play a role in funneling developing systems towards desired
developmental outcomes. In this work we concentrate on how growth can be used to control
the expected number of state-changes in a self-organizing process. However, growth could
be used to control a variety of properties. For instance, constraining variability and adding
robustness to developing systems, or allowing the same developmental processes to arrive
at different developmental outcomes simply by growth being implemented in an alternative
manner.

To study the effects of growth on self-organizing processes we think of these effects as
belonging to two broad categories, which we refer to as ‘disruptive’ and ‘conservative’.
The first category contains network growth that spatially rearranges processes situated on a
network. This implementation of growth is often associated with regular networks (lattices),
whereby the nodes constituting the network are constrained to a certain degree. For example,
k = 4 in the case of a two-dimensional lattice with periodic boundaries. This means when
nodes are added to the network edges are ‘rewired’ so the network remains regular. This form
of growth can have a striking effect on processes, for instance, the manipulation of spatial
correlations by growth can control the outcome of population models on growing lattices
[13,16]. The second category consists of network growth algorithms that do not rearrange
processes situated on the network. This implementation of growth is often associated with
complex networks, in which nodes are typically not constrained to any particular degree,
and so the new node is simply ‘wired’ to the pre-existing network. In this instance, no pre-
existing edges in the network are rewired for a growth event, and so the pre-configuration of
the process remains unaltered. This type of network growth is also associated with complex
behaviors, often caused bymore or less conspicuous ‘boundary effects’, and has been studied
in the context of the spread of disease [10], game theory [11], and the generation of traveling
waves on growing networks [14]. A similar categorisation can be employed for the growth
of continuous domains, however, we do not address those here.
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2 Model and Results

2.1 Model

Our initial lattice contains Ns sites. The integer N f denotes the predetermined size the lattice
grows to before growth is terminated. We denote the functional form of the growth by N (t).
Each site in the lattice is labelled by its position, and so the left-hand-side (LHS) boundary
site is labelled i = 1, the site immediately next to it is labelled i = 2, and so on. Each site
when added to the lattice is initially either in state ‘0’ or ‘1’, with probability ρ0 and (1−ρ0),
respectively.

We study two variants of the voter model [6], which we refer to as C (consensus) or A
(anti-consensus). In the voter model, decision events occur at rate Pd per site, and so the total
decision rate is N Pd . Throughout this work we set Pd = 11. Upon a decision event a site
in the lattice is chosen uniformly at random, and this site evaluates the states of its nearest
neighbours before updating its own state. For a site in C the update probabilities are

pC0→1 = n1
n

, pC1→0 = n0
n

, (1)

where n1 and n0 are the number of nearest neighbors that are in state ‘1’ or ‘0’, respectively,
and n is the number of nearest neighbors (2 or 1 depending on whether the site in question
is an internal site or boundary site). For a site in A the update probabilities are

pA0→1 = n0
n

, pA1→0 = n1
n

. (2)

C andAwill always (eventually) reach an absorbing state2 for any N f on the one-dimensional
lattice we study. In the case of C the absorbing states are when all sites are in state ‘0’, or
when all sites are in state ‘1’. ForA the absorbing states are when every site in state ‘1’ only
has nearest neighbours in state ‘0’, and vice versa.

Throughout this work we implement exponential domain growth and generalize to other
functional forms of growth in Sect. 2.2.2. For exponential domain growth the total domain
growth rate is N Pg . We implement growth in the followingmanner: a vector, gN (i), specifies
the probability that given a growth event in a lattice of size N the new site is at location i in
the lattice of size N + 1. For instance, a new lattice site is placed with probability gN (1) at
the LHS ‘end’ of the lattice, and so becomes site i = 1 on the lattice of size N + 1, or with
probability gN (2) the new site is placed in between sites 1 and 2, and so becomes site i = 2
on the lattice of size N + 1, and so on. The probability of a new lattice site being placed at
the right-hand-side (RHS) boundary is zero, and so gN is of length N . In Fig. 1 we present
an example of two different growth events. The general form of gN can be written as

g̃N = (α1,N , α2,N , α3,N , . . . , αN ,N ), (3)

where
∑N

i=1 αi,N = 1. The first gN we study is:

gN (β) = (1 − β, β/(N − 1), β/(N − 1), . . . , β/(N − 1)). (4)

In gN the scalar β indicates how ‘disruptive’ growth is, with β = 0 being the most conser-
vative form of the growth vector gN , and β = 1 being the most disruptive form of growth3.

1 As will become apparent we could have fixed our growth rate, Pg , and manipulated Pd instead. The
meaningful parameter is in fact the ratio of the total decision rate and the total growth rate.
2 Also referred to as a nonequilibrium steady-state or fixation.
3 The ‘most’ disruptive form of growth is not well-defined here.
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(a) (b)

Fig. 1 Growth can be either conservative or disruptive. a This growth event, whereby a new lattice site (red)
was placed on the end of the lattice, occurred with probability g4(1). As no preexisting edges changed, this
growth is conservative. b In this growth event a new lattice site was placed between sites 3 and 4, and occurred
with probability g4(4). This growth is disruptive as two sites that previously shared an edge do not anymore

Values of β between 0 and 1 are a mixture of disruptive and conservative growth. As an
example, to grow from a lattice of size 2 to a lattice of size 3, gN is:

g2 = (1 − β, β), (5)

and similarly, to grow from a lattice of size 4 to a lattice of size 5, gN is

g4 = (1 − β, β/3, β/3, β/3). (6)

Throughout this work we focus on the number of state-changes in models C and A:

〈F g(β),ρ0〉Pg = lim
R→∞

1

R

R∑

r=1

F g(β),ρ0
Pg,r

, (7)

where F g(β),ρ0
Pg ,r

is the number of times any site changed (flipped) from 0 → 1 or 1 → 0 on
a lattice that grew from size Ns to size N f in simulation replicate r , with growth described
by g for the specified values of β, ρ0 and Pg . The expected number of state-changes in the
model is 〈F g(β),ρ0〉Pg + N f − Ns , as a growth event also results in a state-change. However,
as we only compare networks grown from the same initial size, Ns , to the same size final
size, N f , we simply count ‘flips’ instead. Our interest in counting state-changes was in part
motivated by its natural association with the energetic costs of self-organization, a topic we
will return to in the discussion.

Henceforth, we shall abbreviate 〈F g(β),ρ0〉Pg to 〈F g(β)〉Pg , and will emphasize ρ0 when

necessary. At times we will write 〈F g(β)
C 〉Pg or 〈F g(β)

A 〉Pg if a result is specific to either C or
A.

2.2 Results and Analysis

Although we have presented C and A as discrete models to help build intuition, quantity (7)
can be calculated exactly by imagining C and A as absorbing random walks on a directed
network. The details of how to do this are standard Markov chain theory and so we describe
them only briefly [17].

The transition matrix P that describes our growing voter model has x transient states and
2 absorbing states for both C and A:

P =
(
Q R
0 I2

)

(8)

where Q is a x-by-x matrix, R is a nonzero x-by-2 matrix, 0 is an 2-by-x zero matrix,
and I2 is the 2-by-2 identity matrix. By ‘state’ we mean a string configuration in the voter
model for a given lattice size. Q describes the probability of transitioning from one transient
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state to another, which includes all transitions when the lattice size is below N f , and all
transitions when the lattice size is N f that are not into absorbing states. As such, transitions
are due to either a site completing a flip or the lattice growing. R describes the probabilities
of transitioning from some transient state into an absorbing state at N f , of which there are
two.

From Q we can obtain

K =
∞∑

k=0

Qk = (I − Q)−1, (9)

where K is referred to as the fundamental matrix. K (p, q) describes the expected number
of times state q is visited, given the voter model started in state p. To obtain the expected
number of flips we multiply the matrix K by the column vector w and sum over the initial
states with the appropriate frequencies

〈F g(β)〉Pg =
2Ns∑

i=1

γ (i)Kw, (10)

where γ describes the initial frequencies of each state, which depend on ρ0, and w describes
the probability that given the voter model is in state p the next transition is due to a site in
that state successfully completing a flip, as opposed to a growth event or a decision event
that does not result in a flip. For example, for state p = (1, 0, 1) in C

wp = Pd
Pd + Pg

,

as all sites if selected would flip. Alternatively, for state p = (1, 1, 0) in C

wp = Pd
2(Pd + Pg)

.

For completeness, the second moment for the number of flips is calculated via

〈(F g(β))2〉Pg =
2Ns∑

i=1

γ (i)(2Kw − I )Kw, (11)

where Kw is

Kw = K Iw, (12)

and Iw is the diagonal matrix with w on its diagonal, however, we will not make further use
of Eq. (11) here.

2.2.1 Examining Different Implementations of Growth

In Fig. 2a and bwedisplay 〈F g(β)〉Pg for different values ofβ and Pg forC andA, respectively.
When β = 0 the minimum value of 〈F g(β)〉Pg appears to be as Pg → 0 in the limit for both
C andA. Conversely, when β = 1 the maximum value of 〈F g(β)〉Pg appears to be as Pg → 0
in the limit for both C andA. As Pg increases the data points associated with different values
of β ‘coalesce’. The limit Pg → ∞ is to be thought of as approaching Ns = N f , and in this
instance the value of β becomes irrelevant. In the limit Pg → ∞ it is the case that

lim
Pg→∞〈F g(β),ρ0=0.5

C 〉Pg = lim
Pg→∞〈F g(β),ρ0=0.5

A 〉Pg , ∀ N f .
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Fig. 2 The expected number of flips in a one-dimensional lattice voter model with exponential growth from
Ns = 2 to N f = 8, with Pd = 1 and ρ0 = 0.5. a C: β = 1 (blue diamonds), β = 0.75 (red circles), β = 0.67
(yellow stars), β = 0.5 (purple squares), β = 0 (green triangles). b A: β = 1 (blue diamonds), β = 0.5 (red
circles), β = 0.25 (yellow stars), β = 0.1 (purple squares), β = 0 (green triangles). c The value of βc in
a one-dimensional lattice voter model grown from Ns = 2 to N f with Pd = 1, C (blue diamonds), A (red
circles). All data points were generated using Eq. (10)

From Fig. 2a and b it can be seen that for both C and A there exists a value of β, which
we refer to as βc, whereby

lim
Pg→0

〈F g(βc)〉Pg = lim
Pg→∞〈F g(β)〉Pg , (13)

which from now on we write as

〈F g(βc)〉Pg→0 = 〈F g(β)〉Pg→∞. (14)

Equation (14) describes that when β = βc, the expected number of flips in C orA before the
absorbing state is found at N f is the same whether the growth rate tends to zero or infinity
in the limit. This is because when β = βc the disruptive and conservative forces of growth
are balanced in the necessary way as Pg → 0 in the limit.

We now concern ourselves with the following two questions:

(i) What is the relation between βc and g(β) in C and A as N f → ∞ in the limit?
(ii) What is the behaviour of quantity (10) at βc in C and A for intermediate (non-limiting)

values of Pg as N f → ∞ in the limit?

To calculate the value of βc for g we proceed as follows. For both C and A when Pg → 0 in
the limit, following any growth event an absorbing state will always be reached before the
next growth event occurs. This means 〈F g(β)〉Pg→0 can considered as a series of individual
absorption events:

〈F g(β)〉Pg→0 =
N f −1∑

N=Ns−1

gN f N , (15)

where f N is a column vector and f N (k) is the expected number of flips before an absorbing
state is reached given the new site is site k. We have included the term gNs−1 f Ns−1 to
represent the expected number of flips before the absorption state is reached from the initial
distribution of states, and define gNs−1 ≡ 1. Expanding the RHS of Eq. (15) in the following
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manner

〈F g(β)〉Pg→0 = β

⎛

⎝ f NS−1 +
N f −1∑

N=Ns

(
N∑

k=2

(
f N (k)

N − 1

))⎞

⎠

+ (1 − β)

⎛

⎝ f NS−1 +
N f −1∑

N=Ns

f N (1)

⎞

⎠ , (16)

and rewriting Eq. (16) as

〈F g(β)〉Pg→0 = β〈F g(β=1)〉Pg→0 + (1 − β)〈F g(β=0)〉Pg→0, (17)

we then impose Eq. (14) to obtain

βc = 〈F g(β)〉Pg→∞ − 〈F g(β=0)〉Pg→0

〈F g(β=1)〉Pg→0 − 〈F g(β=0)〉Pg→0
. (18)

In deriving Eq. (18) we have assumed that

〈F g(β=1)〉Pg→0 ≥ 〈F g(β)〉Pg→∞ ≥ 〈F g(β=0)〉Pg→0, ∀ N f , (19)

for both C and A.
Using Eq. (18) we plot βc as a function of N f for both C and A in Fig. 2c4. At N f = 3,

βc = 0 for both C and A. In the (thermodynamic) limit, N f → ∞, it appears βc → 1 for
C and βc → 0 for A. In the case of C, βc grows monotonically from 0 to 1. Whereas for
A, βc first rises from 0 till N f = 7 before beginning to decrease again. It is also important
to stress that the value βc takes is independent of the functional form of the growth, N (t).
For instance, linear or logistic growth would also result in the same value of βc in the limit
Pg → 0.

To better characterise the dependence of βc on N f in C we study how the expected number
of flips evolves in the limit Pg → 0. We begin with a lattice of size Ns = 2 and ρ0 = 0.5,
and so the four initial states are

(0, 0), (1, 0), (0, 1), (1, 1),

which all occur with equal frequency. States (0, 0) and (1, 1) are already in an absorbing
state for C and hence no flips occur. States (1, 0) and (0, 1) each only require 1 flip to reach
an absorbing state. Therefore, from these four states the expected number of flips before an
absorbing state is reached is 0.5. Following a growth event, using g2, the possible states are

(0̄, 0, 0), (1̄, 0, 0), (0, 0̄, 0), (0, 1̄, 0), (0̄, 1, 1), (1̄, 1, 1), (1, 0̄, 1), (1, 1̄, 1),

where the bar indicates the location of the new site. With some probability dependent on ρ0,
the new state will already be in an absorbing state. If not, it will be in a state of the form

(1̄, 0, . . .), (0, 1̄, 0, . . .), (0, 0, 1̄, 0, . . .), (0, 0, 0, 1̄, 0, . . .), . . . ,

or

(0̄, 1, . . .), (1, 0̄, 1, . . .), (1, 1, 0̄, 1, . . .), (1, 1, 1, 0̄, 1, . . .), . . . .

4 βc can be computed efficiently by using Eq. (25) in tandem with the observation that in the limit Pg → 0,
following any growth event C can only be in one of 2N states. From these 2N states C can only reach
N (N + 1) states, including the absorbing states. Therefore, K can be calculated using a matrix of O(N2)
instead of O(2N ). Similar reasoning applies to computing βc forA.
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Tocalculate the expectednumber offlips till an absorbing state in reachedwe sum the expected
number of flips associated with these states multiplied by their probability of occurrence,
which depends on the values of β and ρ0. For example, when β = 0, Ns = 2 and ρ0 = 0.5
we begin with (0, 0), (0, 1), (1, 0), (1, 1), from which we can grow to

(0̄, 0, 0), (1̄, 0, 0), (0̄, 1, 1), (1̄, 1, 1),

and from the following growth event we can grow into

(0̄, 0, 0, 0), (1̄, 0, 0, 0), (0̄, 1, 1, 1), (1̄, 1, 1, 1),

and so on. In this instance the expected number of flips from Ns = 2 to N f has the simple
form

〈F g(β=0),ρ0
C 〉Pg→0 = ρ0(1 − ρ0)

(
(N f (N f + 1))

2
− 1

)

. (20)

In Eq. (20) the value of ρ0 only affects the prefactor of the leading order term, O(N 2
f ), and

not the order of the leading order term. Equation (20) is also the case for A when ρ0 = 0.5.
The expected number of flips from Ns = 2 to N f when β = 1 in C in the limit Pg → 0 is

〈F g(β=1),ρ0
C 〉Pg→0 = 4ρ0(1 − ρ0)〈F g(β=1),ρ0=0.5

C 〉Pg→0, (21)

and so again changing ρ0 only affects the prefactor of the leading order term.
More generally for C as Pg → 0 in the limit the leading terms evolve as

cN =
(
N

2
, N , N , N , . . .

)

, (22)

where cN (1) is the leading order term of the expected number of flips till an absorbing state
is reached from state (1̄, 0, 0, 0, 0, . . .) or (0̄, 1, 1, 1, 1, . . .) on a lattice of size N , cN (2) is
the leading order term of the expected number of flips till an absorbing state is reached from
state (0, 1̄, 0, 0, 0, . . .) or (1, 0̄, 1, 1, 1, . . .) on a lattice of size N , and so on. We now sum
the terms in Eq. (22) to N f

c̃N f =
(
N 2

f

4
,
N 2

f

2
,
N 2

f

2
,
N 2

f

2
, . . .

)

, (23)

where c̃N f (1) is the leading order term in the limit Pg → 0 when the new site is always site
1, c̃N f (2) is the leading order term in the limit Pg → 0 when the new site is always site 2,
and so on. From Eq. (23) it is evident that any combination of internal growth events in the
limit Pg → 0 evolves equivalently in its leading order term. Setting ρ0 = 0.5 gives us

c̃N f =
(
N 2

f

8
,
N 2

f

4
,
N 2

f

4
,
N 2

f

4
, . . .

)

. (24)

To obtain 〈F g(β),ρ0=0.5
C 〉Pg→∞ we use the following numerically observed identity:

〈F g(β),ρ0=0.5
C 〉Pg→∞ =

⎛

⎝ 1

4
(N f −2

j−1

)

⎞

⎠

(
N f
j )

∑

q=1

k(q), j < N f /2, N f > 2, (25)

where j indicates how many sites are in state ‘1’, q indexes the states containing j ‘1s’
on a lattice of size N f , and k(q) is the expected number of flips till an absorbing state is
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reached from state q . For instance, if N f = 5 and j = 1, k(1) is the exact number of flips
to an absorbing state starting from state (1, 0, 0, 0, 0), k(2) is the exact number of flips to
an absorbing state starting from state (0, 1, 0, 0, 0), and so on. In the case of j = 1 this is
simply:

〈F g(β),ρ0=0.5〉Pg→∞ =
(
1

4

) N f∑

i=1

k(i) ∼
(
1

4

) N f∑

i=1

cN f (i) ∼
(
1

4

)

N 2
f , (26)

where we have used Eq. (22). The effect of ρ0 on 〈F g(β),ρ0
C 〉Pg→∞ is

〈F g(β),ρ0
C 〉Pg→∞ = 4ρ0(1 − ρ0)〈F g(β),ρ0=0.5

C 〉Pg→∞.

Whereas the effect of ρ0 on 〈F g(β),ρ0
A 〉Pg→∞ is

〈F g(β),ρ0
A 〉Pg→∞ = 〈F g(β),ρ0=0.5

A 〉Pg→∞ +
(
1 − 4ρ(1 − ρ)

4

)

N f .

We now analyze A as Pg → 0 in the limit. As before we begin with a lattice of size Ns = 2
and with ρ0 = 0.5, and so this means the four possible initial states

(0, 0), (1, 0), (0, 1), (1, 1),

occur in equal frequency. States (1, 0) and (0, 1) are already in an absorbing state hence
no flips occur. States (0, 0) and (1, 1) each only require 1 flip to reach an absorbing state.
Therefore, starting from these four states in equal frequency the expected number of flips
before an absorbing state is reached is 0.5. Following a growth event, using g2, the possible
states for A are

(0̄, 1, 0), (1̄, 1, 0), (1, 0̄, 0), (1, 1̄, 0), (0̄, 0, 1), (1̄, 0, 1), (0, 0̄, 1), (0, 1̄, 1).

In A only a growth event in which the new site is site i = 1 can result in an absorbing state,
and no internal growth event can result in an absorbing state. Furthermore, for an internal
growth event the amount of sites that have to flip before an absorbing state is reached is
at least the shortest distance of the new site from one of the two boundaries of the lattice.
This demonstrates a key difference between C and A, which can be considered as a type of
boundary effect, and is a recurrent theme in the physics of growing active matter that we
return to in the discussion.

Following an internal growth event, in the limit Pg → 0, A will either be in the state

(1, 1̄, 0, 1, 0, . . .), (0, 1̄, 1, 0, 1, . . .), (1, 0, 1̄, 1, 0, . . .), (0, 1, 1̄, 0, 1, . . .), . . . ,

or

(1, 0̄, 0, 1, 0, . . .), (0, 0̄, 1, 0, 1, . . .), (1, 0, 0̄, 1, 0, . . .), (0, 1, 0̄, 0, 1, . . .), . . .

and so in A growth events at the same position can result in two different non-absorbing
states. This means the expected number of flips for growth events at a single position has to
be averaged over both possibilities at the correct frequencies.

In A as Pg → 0 in the limit the leading terms evolve as

aN =
(
N

2
, N , 2N , 3N , 4N , 5N , 6N , . . .

)

. (27)
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If we set ρ0 = 0.5 and sum Eq. (27) to N f we obtain

ãN f =
(
N 2

f

8
,
N 2

f

2
, N 2,

3N 2
f

2
, 2N 2

f ,
5N 2

f

2
, 3N 2

f , . . .

)

. (28)

Equation (28) demonstrates that forAwith gN and β = 1 the leading order terms are O(N 3
f ).

The exact value for A when ρ0 = 0.5 and β = 1 for ĝ is

〈F g(β=1),ρ0=0.5
C 〉Pg→0 = 1

18

(
N 3

f + 8N f − 15
)

, (29)

and more generally

〈F g(β=1),ρ0
C 〉Pg→0 = O(N 3

f ), ∀ ρ0.

We now return to Eq. (18). Using Eqs. (20), (24) and (26) in the case of C for g we have

lim
N f →∞ βc ∼ lim

N f →∞

( 1
4N

2
f − 1

8N
2
f

1
4N

2
f − 1

8N
2
f

)

→ 1, (30)

and using Eqs. (20), (26) and (29) in the case of A for g we have

lim
N f →∞ βc ∼ lim

N f →∞

( 1
4N

2
f − 1

8N
2
f

1
18N

3
f − 1

8N
2
f

)

→ 0. (31)

To corroborate expressions (30) and (31), which have not been formally proven, we exam-
ine the following two growth vectors5:

g2N = (1 − β, β, 0, . . . , 0), (32)

and

g3N = (1 − β, β/2, β/2, 0, . . . , 0). (33)

In g2 and g3 the interpretation of β is as before, whereby β = 0 represents the most
conservative implementation of growth, and β = 1 is the most disruptive implementation of
growth. When N = 2, g3 is not well-defined, and so we use g2. We also examine

g4N = (1 − β, β2, β3, . . . , βN )/
∑

i

g4N (i), (34)

and g4 is equivalent to g1 when β = 0 or β = 1.
In Fig. 3a we plot the evolution of βc in C for g2, g3 and g4. For C βc → 1 for all g. This

is because all internal growth events evolve (1/4)N 2
f , which is the same as 〈F g(β)〉Pg→∞.

For A this is not the case. In A with g2 for βc we have

lim
N f →∞ βc ∼ lim

N f →∞

( 1
4N

2
f − 1

8N
2
f

1
2N

2
f − 1

8N
2
f

)

→ 1

3
, (35)

and βc for g3 is

lim
N f →∞ βc ∼ lim

N f →∞

( 1
4N

2
f − 1

8N
2
f

3
4N

2
f − 1

8N
2
f

)

→ 1

5
. (36)

5 We now refer to the original g studied as g1.
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Fig. 3 The value of βc in systems grown from Ns = 2 to N f , with Pd = 1 and ρ0 = 0.5. a C, b A, and g2

(blue diamonds), g3 (red circle), and g4 (yellow stars). Data points were generated using Eq. (10)

In the case of g4 isolating βc as in Eq. (18) is not possible. However, asymptotically the
following must hold when β is βc

lim
N f →∞

⎛

⎝1

4
N 2

f ∼ β̂−1
∞∑

j=2

β j
(
j − 1

2

)

N 2
f + β̂−1(1 − β)

1

8
N 2

f

⎞

⎠ , (37)

where β̂ is the asymptotic normalization factor

β̂ = (1 − βc) +
∞∑

j=2

β
j
c . (38)

Expression (37) holds when βc = 1/3. The data points in Fig. 3b, calculated numerically
using Eq. (10), validate expressions (35)–(37) and corroborate expressions (30) and (31),
which were derived analytically using assumptions based on numerical observations.

2.2.2 Intermediate Values of Pg and the Role of N(t)

In the previous section we used Eq. (25) to relate the expected number of flips as Pg → 0 in
the limit to the expected number of flips as Pg → ∞ in the limit. The limit Pg → 0 can be
thought of as a quasistatic transition, whereby C orA are always allowed to find an absorbing
state before the next growth event occurs, whereas the limit Pg → ∞ can be thought of as
initializing C orA at N f . This means that in both of these limiting regimes the more complex
interactions between growth and self-organization in determining the expected number of
flips in C orA are not present, and we could also ignore the nature of N (t). For C orA grown
with intermediate values of Pg , which we indicate by P̄g , this is not the case.

To better characterize the interaction between P̄g and N (t) in the evolution of C and A
we decompose 〈F g(βc)〉P̃g in the following manner:

〈F g(βc)〉P̃g = f Ns→N f + f N f , (39)

where f Ns→N f is the expected number of flips as the lattice grows from Ns to N f , but not
including flips when the lattice is at size N f , and f N f is the expected number of flips while
the lattice is size N f until an absorbing state is reached. It is clear that when Pg → ∞ in the
limit

f Ns→N f = 0,
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and

f N f = 〈F g(β)〉Pg→∞.

Similarly, when Pg → 0 in the limit

f Ns→N f = 〈F g(βc)〉Pg→0 − f N f .

The first possibility we consider is

lim
N f →∞

f Ns→N f

f N f
→ 0, (40)

whereby if O( f N f ) → O(〈F g(β)〉Pg→∞) as N f → ∞ in the limit this combination of P̄g
and N (t) asymptotically behave like Pg → ∞ in the limit. Intuitively, this can be understood
as the lattice is growing faster than the voter model can self-organize. As an example let us
consider the exponential growth we have examined in this work, in which

O( f Ns→N f ) ∼
N f −1∑

N=Ns

εN . (41)

In exponential growth the ratio of the expected number of growth events with the expected
number of attempted decision events in a given interval is constant for both C and A, i.e.
Pd/Pg , and so at most, ε ∼ O( 1

N ). This means for exponential growth we have

O(〈F g(βc)〉P̃g ) ∼ O(N f ) + O( f N f ),

∼ O( f N f ), (42)

as O( f N f ) ∼ N 2
f , and P̄g and exponential growth interact to behave like Pg → ∞ in the

limit so long as O( f N f ) → 1
4N

2
f as N f → ∞ in the limit6.

For C numerical results suggest

〈F g(β=1)
C 〉Pg→0 ≥ f Ns→N f + f N f ≥ 〈F g(βc)

C 〉Pg→∞, ∀ N f , (43)

and so in the case of exponential growth O( f N f ) → 1
4N

2
f for all g and Pg . We refer to

this behavior as Pg-invariance for some N (t). Pg-invariance can be thought of as a process
becoming conservative: by which we mean at βc the leading order term in the expected
number of flips in C or A becomes independent of re-scalings of the path N (t), that is,
changing the value of Pg . More generally, expression (43) appears to hold for all N (t) in
the case of C, for instance with linear growth. This more general property we refer to as
N (t)-invariance, whereby at βc for a given g, the leading order term for the expected number
of flips in C or A becomes independent of any path taken from Ns to N f , so long as N (t) is
monotonically increasing. A similar assumption as expression (43) cannot be employed for
A however, one reason being that 〈F g(β=0)

A 〉Pg→0 ∼ 1
8N

2
f .

Conversely, one can also imagine a functional form of growth whereby

lim
N f →∞

f Ns→N f

f N f
→ ∞, (44)

such that f Ns→N f → 〈F g(βc)〉Pg→0− f N f . In this instance this combination of P̄g and N (t)
would asymptotically behave like Pg → 0 in the limit. Expressions (40) and (44) can be

6 An argument of this nature holds for any functional form of the growth greater than linear, so that ε < O(1).
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envisaged as postulating ‘basins of attraction’ for models C and A, whereby irrespective of
the value of P̄g the expected number of flips asymptotically approaches the value associated
with either Pg → 0 or Pg → ∞ in the limit. Behavior such as this would be reminiscent of
renormalization group methods [3]. The final possibility to account for is

lim
N f →∞

f Ns→N f

f N f
→ κ, (45)

where κ is a constant greater than zero. In this instance the growth rate, dN (t)/dt , is decreas-
ing in proportion to the increasing complexity of finding an absorbing state as N f → ∞ in
the limit.

3 Discussion

As suggested in themain text, the evolution ofβc inmodelsC andA is perhaps best understood
as a boundary effect. In the case of C as Pg → 0 in the limit all internal growth events result in
the same leading order behaviour for the expected number of flips before an absorbing state is
achieved, and only the leading order term at the boundary site evolves differently. Conversely,
in A as Pg → 0 in the limit the leading order behaviour for each site is determined by its
distance from the nearest boundary. It is these boundary-related effects that are being balanced
whenβc is being calculated for a given ĝ inC orA. The role of boundary effects in determining
the behavior of growing active matter has been reported in other modeling approaches. For
instance, it has been shown in population models on growing lattices that the implementation
of growth can determine the competition outcome by manipulating the evolution of spatial
correlations [13,16]. In this study, one of the two growth implementations studied requires
an ‘origin of growth’, i.e. a boundary, to be specified. This origin of growth breaks both
translational and scale invariances present in the other growth implementation studied, and
so explains the different competition outcomes for these two growth implementations. A
boundary effect has also been shown to be responsible for the generation of a traveling wave
in a network growth model [14]. In this model network growth is coupled to the dynamics
of a random walker situated on the network, and the boundary effect can be envisaged as the
boundary of the network ‘chasing’ the walker, as such the random walker travels like a wave
in the age-space of the network.

Another useful framework for understanding the physics of growing active matter is as
the manipulation of relaxation times. For example, in the work presented here as Pg → 0
in the limit the relaxation time to find the next absorbing state following a growth event
is a function of the distance from the boundary in the case of A. For C this is not the
case, as all internal growth events result in the same leading order behavior before the next
absorbing state is found. This difference in relaxation times following a growth event in the
limit Pg → 0 is what underpins the differences between C and A. Returning to the network
growth model previously mentioned, the traveling wave is generated by repeatedly sampling
the position of random walker as it forever tries (and fails) to equilibrate on an ever-growing
network [14,15]. These examples demonstrate how phenomena observed in the physics of
growing active matter are often due to the growth of a space interacting with a process whose
equilibration/relaxation/fixation/information propagation ‘rate’ is held constant in someway.

Finally, it is interesting to considerwhat othermacroscopic properties beyond the expected
number of flips could be controlled by the implementation of growth. For instance, different
energetic costs could be associated with different state transitions, and in this way the imple-
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mentation of growth could be used to control the energetic cost of self-organisation. However,
in this case we may want to associate an energetic cost with decision events whether they
result in a flip or not, the expected number of which tend to infinity as Pg → 0 in the limit.

Data availibility Availability of data and material: not applicable
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