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Introduction

Rule-based modeling languages for molecular biol-

ogy, such as Kappa [3] and BioNetGen [7], or or-

ganic chemistry, such as Mød [1], can be used to write

mechanistic models of complex reaction systems. In

these approaches, chemical transformations are rep-

resented by local graph-rewrite rules equipped with

stochastic firing rates. In a dynamical simulation,

rules induce a time series of events that might reach

a state of interest in processes like the assembly of a

molecular machine, the activation of a transcription

factor, or the synthesis of a specific chemical com-

pound. While rule-based models provide compact-

ness, transparency, and the ability of handling com-

binatorial complexity, the perhaps most significant

advantage lies in their suitability for causal analy-

sis that takes into account the logically concurrent

nature of interactions. The causal analysis [5, 3]

of event series generated by such models provides

a formal definition of “pathway” and a means for

revealing the emergence of pathways from low-level

interactions. These methods take advantage of rule

structure to (i) compress a given simulation trace

into a minimal subset of events that are necessary

and jointly sufficient to replicate a phenomenon of

interest and (ii) highlight the direct causal influences

between events, exposing the extent of concurrency.

We propose a distinct but complementary ap-

proach based on counterfactual reasoning that im-

proves causal explanations by (i) being more sensi-

tive to kinetics and (ii) properly accounting for the

causal impact from inhibition between events.

1 Motivating example

We illustrate the need for counterfactual reasoning

on a toy example in Kappa. Consider a model with

two types of agents, kinases K and substrates S, in-

teracting according to the rules depicted in Figure 1.

KSKSp:

KSKSu*:

KSKSu:

KSKSb:

KKpK:

Figure 1: A motivating toy model. As usual in

Kappa, sites not mentioned in a rule are left un-

changed by it. Instead of naming sites, we here iden-

tify them by their position on an agent. Phospho-

rylated sites are shown in gray. Slow reactions are

indicated by dotted arrows.

For the sake of simplicity, consider an initial mix-

ture I with only a single kinase and a single substrate

whose sites are free and unphosphorylated. We then

ask: Starting from I, how is p triggered ? We are

not merely looking for an account of reachability but

rather for causal narratives, that is, collections of

necessary events connected by causal influences.

A stochastic simulation [4] might produce the fol-

lowing trace (events are labelled by the rules that
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induced them):

b, u, pK, b, p, u∗, · · ·

Figure 2 depicts the causal narrative explaining the

occurrence of p according to existing techniques [5,

3]. The arrow between b and p is called an activation

arrow, meaning that b modifies an aspect of state (by

creating a link) that enables p to happen.

���� � �

Figure 2: A causal explanation for p.

This narrative, however, is blind to the critical role

of pK in the original trace. Looking at the rules in

Figure 1 one notes that: (i) the phosphorylation rule

p is slow (ii) the average time K and S remain bound

depends on whether K is phosphorylated, as mani-

fest in the two unbinding rules u (fast, if K is not

phosphorylated) and u∗ (slow, if K is phosphory-

lated). It seems reasonable to assert that p would

probably not have happened had pK not happened,

as the opportunity for p would have been cut short by

a fast unbinding event. We therefore argue that pK,

although it does not activate b or p directly, should

be part of a causal narrative for p. Reasoning of this

kind is counterfactual and can be deployed to define

causality [9, 10].

In section 2, we give a rigorous semantics to this

line of reasoning. In section 3 we show that counter-

factual statements can be expressed using inhibition

arrows, leading to the explanation shown in Figure 3.

2 Counterfactual simulation

Counterfactual statements are tricky because their

truth is context-dependent. The statement “Had it

not rained, the driver might have arrived earlier” can

fail to be true in many ways. Intuitively, how easily

the driver could have arrived earlier depends on how

great a departure from actuality is required for it to

be case [11]. This is why counterfactual reasoning

is tied to modal logic. The standard approach is

to require that the consequent in a counterfactual

be true in some of those possible worlds (in which

the antecedent holds) that are most similar to the

actual world. If the counterfactual statement is true

in all of these worlds, we can replace “might” with

“would”. We now operationalize this approach in

the context of Kappa traces and interpolate between

“might” and “would” using probabilities.

We start by formalizing the notion of an interven-

tion. An intervention ι (“blocking pK” in our ex-

ample) is a predicate blockedι[t, e] that determines

whether or not event e is blocked at time t. Given

a predicate ϕ over traces, we write the proposition

“Had intervention ι happened in trace τ , ϕ would

have been true with probability greater than p ∈ [0, 1]”

as:

τ |=p [ι]ϕ.

To give an operational meaning to this state-

ment, we invoke the continuous time Markov chain

(CTMC) semantics of a Kappa model as defined and

implemented in [4, 2]. For the present purpose it is

conceptually useful to think of a CTMC abstractly in

terms of the random realization of “potential events”.

A potential event is a pair (r, ξ) where r is a rule and

ξ an injective mapping from local agents involved in

r to global agents in a huge virtual mixture of many

instances of all possible molecular species.1 For ev-

ery such potential event, we imagine a bell that rings

at a time t drawn from an exponential distribution

λr exp(−λrt), where λr is the stochastic rate con-

stant of r. A simulation trace can be viewed as the

realization of a random variable T determined by the

set ω of ring times: Starting with an initial mixture,

when a bell rings at t, its associated potential event

(r, ξ) transforms the mixture according to r if ξ yields

a valid embedding of the left hand side of r in the

current mixture and time advances by t. Otherwise,

time advances and nothing happens—a null event.

Repeat on the resulting mixture.

We can extend this viewpoint to include interven-

tions. For an intervention ι, we define the random

variable T̂ι much in the same way as T , except that

each time the bell rings, we require blockedι[t, e] to

be false for the potential event e = (r, ξ) to be con-

sidered.

1For the sake of simplicity, we assume that no agent is

created or deleted by a rule.
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Counterfactual traces that are closest to the ac-

tual trace τ are then sampled by generating real-

izations of T̂ι that inherit, whenever possible, the

subset of ω that made up τ . An efficient im-

plementation of this specification for sampling the

conditional random variable T̂ι | (T = τ) is avail-

able at https://github.com/jonathan-laurent/

kappa-counterfactuals. We refer to this natural

extension of CTMC semantics as counterfactual re-

simulation or co-simulation for short.

Using co-simulation, we operationalize the coun-

terfactual statement τ |=p [ι]ϕ as:

τ |=p [ι]ϕ ⇔ P(ϕ(T̂ι) | T = τ) ≥ p

3 Inhibition arrows

Returning to our example, we can use co-simulation

to quantify the influence of pK on p by estimating

the probability of p happening had pK not occurred.

However, we can go further by using counterfactual

traces to explain this influence using both activation

and inhibition arrows (Figure 3).

Activation arrows are easy to define and identify

in a trace. We say that an event e activates e′ if e

is the last event before e′ that modifies some site to

the value it is tested for by e′. Inhibition arrows are

trickier because they must relate events that hap-

pened to events that did not. We use counterfactual

traces to give a rigorous account of inhibition using

arrows that connect events from the factual trace to

events in the counterfactual trace and vice versa.

A counterfactual experiment is any triple (τ, ι, τ ′)

for which there exists a random realization ω such

that τ = T (ω) and τ ′ = T̂ι(ω). Such triples are

produced by co-simulation. Then, an event e that

occurs at time t in τ is said to inhibit an event e′

that occurs at time t′ in τ ′ if all of the following

hold: (i) t < t′ (ii) there exists a site s such that e is

the last event in τ before t′ that modifies the value

of s away from what e′ tests it for (iii) there are no

events in τ ′ that modify s during the time interval

(t, t′).

Figure 3 shows the influence of pK on p based on a

counterfactual experiment. Dotted nodes correspond

to events proper to the counterfactual trace τ ′, thick
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Figure 3: A better causal explanation for p. It

is based on the counterfactual experiment (τ, ι, τ ′)

where τ = (pK, b, p), ι blocks pK and τ ′ = (b, u).

nodes to events proper to the factual trace τ , and

the remaining nodes correspond to events common

to both traces. Activation arrows are depicted in

black and inhibition arrows in red.

The example illustrates the influence of pK on p

mediated by the counterfactual event u. Such medi-

ating events always exist, as stated by the following

theorem.

Theorem. Let (τ, ι, τ ′) be a counterfactual experi-

ment and e an event that belongs only to τ . Then

there exists an event e0 ∈ τ that is blocked by ι and

there is a path from e0 to e with an even number of

inhibition arrows.

Conclusion

We have proposed a new way to generate causal ex-

planations in Kappa based on counterfactual reason-

ing, in which causal explanation are augmented by

including inhibition between events. By leveraging

the Kappa stochastic simulator for co-simulation, we

expect this technique to increase the sensitivity of

explanatory accounts to kinetics.

Future work will investigate how this approach

interacts with trace compression [5] and establish

heuristics to determine which counterfactual inter-

ventions are worth attempting on a given reference

trace.
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