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Abstract: An algorithm is presented for generating rigorously all suboptimal secondary structures
between the minimum free energy and an arbitrary upper limit. The algorithm is particularly fast
in the vicinity of the minimum free energy. This enables the efficient approximation of statistical
quantities, such as the partition function or measures for structural diversity. The density of states
at low energies and its associated structures are crucial in assessing from a thermodynamic point
of view how well-defined the ground state is. We demonstrate this by exploring the role of base
modification in tRNA secondary structures, both at the level of individual sequences from Esche-
richia coli and by comparing artificially generated ensembles of modified and unmodified sequences
with the same tRNA structure. The two major conclusions are that (1) base modification consider-
ably sharpens the definition of the ground state structure by constraining energetically adjacent
structures to be similar to the ground state, and (2) sequences whose ground state structure is
thermodynamically well defined show a significant tendency to buffer single point mutations. This
can have evolutionary implications, since selection pressure to improve the definition of ground
states with biological function may result in increased neutrality. © 1999 John Wiley & Sons, Inc.
Biopoly 49: 145–165, 1999
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INTRODUCTION

The structure of RNA molecules can be discussed at
an empirically well established level of resolution

known as secondary structure. It refers to a topology
of binary contacts arising from specific base pairing,
rather than a geometry cast in terms of coordinates
and distances (see Figure 1). The driving force behind

Correspondence to:Walter Fontana; email: walter@santafe.edu
Contract grant sponsor: Austrian Fond zur Förderung der Wis-

senschaftlichen Forschung (FWF) and Santa Fe Institute
Contract grant number: 11065-CHE (FWF)

Biopolymers, Vol. 49, 145–165 (1999)
© 1999 John Wiley & Sons, Inc. CCC 0006-3525/99/020145-21

145



secondary structure formation is the stacking of base
pairs. The formation of an energetically favorable
helical region, however, also implies the formation of
an energetically unfavorable loop region. This “frus-
trated” energetics leads to a vast combinatorics of
helix and loop arrangements spanning the structural
repertoire of an individual RNA sequence.
The secondary structure provides both geometri-

cally and thermodynamically a scaffold for the ter-
tiary structure. Its free energy accounts for a large
share of the overall free energy of the full structure.
This linkage puts the secondary structure in corre-
spondence with functional properties of the tertiary
structure. Consequently, selection pressures become
manifest at the secondary structure level as evolution-
ary conserved base pairs.
A secondary structure can be conveniently dis-

cretized as a graph representing a pattern of base pair
contacts (Figure 1). This yields a formally well-de-
fined combinatorial object that can be subject to math-
ematical treatment. Of particular interest are second-
ary structures possessing some extremal property with
respect to a given sequence, such as having the largest
number of admissible base pairs or minimizing the
free energy. The theoretical importance of RNA as a
model system for sequence–structure relations in
biopolymers lies in the fact that structures of this kind
can be computed by dynamic programming.1–5 This
method produces a single structure with the desired
extremal property (even in the case of degeneracy). It
has been stressed,6 however, that this may not ade-
quately describe a real situation for two major rea-
sons. First, the energy parameters on which the fold-
ing algorithm relies are inevitably imprecise. Hence,
the true minimum free energy (mfe) structure might
be one that is suboptimal with respect to the param-
eters used. The same might hold because of unknown
biological constraints that may change relative ener-

gies, turning an otherwise suboptimal structure into
the most favorable one. Second, under physiological
conditions RNA sequences may exist in alternative
states whose energy difference is small. Aside from
their possible biological significance, the density and
accessibility of such low lying states may determine
how well defined an mfe structure actually is.
Issues like these have prompted several approaches

to generating suboptimal structures.6–8 While repre-
senting an improvement, these approaches share one
problem: they do not compute all suboptimal struc-
tures within a given energy range from the mfe. For
example, a widely used algorithm is Zuker’s exten-
sion6 of his own dynamic programming procedure.4 It
generates for each admissible base pair in a given
sequence the energetically best structure containing
that base pair. Hence, for a sequence of length n at
most n(n ! 1)/ 2 suboptimal structures are produced.
Furthermore, each base pair present in the mfe struc-
ture regenerates by definition the mfe structure as the
best structure containing it. It follows that no struc-
tures are generated that differ from the mfe by the
absence of one or more base pairs. In addition, if an
mfe structure consists of two substructures A-B con-
nected by a stretch of external bases, no suboptimal
alternatives will be produced that are suboptimal in
both modules. As a calibration for the number of
structures missed, consider the Escherichia coli se-
quences tRNAhis (RH1660) and tRNAser (RS1661)
from the EMBL Heidelberg tRNA Database (see Ap-
pendix C), which have 5 and 73 structures, respec-
tively, within 10% of their minimum free energy. Of
these, 2 (tRNAhis) and 17 (tRNAser) structures would
show up under Zuker’s scheme.
Many of the missing structures may well be clas-

sified as “uninteresting” by some account, yet this
cannot be said with certainty for all of them and not
for all accounts. They clearly are relevant in the
calculation of measures for structural well defined-
ness, in approximating statistical quantities such as
the partition function, or in calculating the density of
states at low energies. Among the major benefits of a
complete suboptimal folding procedure is the possi-
bility of rigorously analyzing the low energy section
of the energy landscape on which the actual kinetic
folding process occurs.
In this paper we describe a fairly simple algorithm

that generates all suboptimal folds of a sequence
within a desired energy range from the mfe. The idea
underlying the algorithm is straightforward, and we
took it literally from Waterman and Byers,9 who
developed it in the context of suboptimal solutions to
the shortest path problem in networks. Waterman and
Byers also applied their scheme to obtain near-opti-

FIGURE 1 An RNA secondary structure graph. Unpaired
positions not enclosed by base pairs, such as free ends or
links between independent structure modules, are called
“external.” Here they are marked by ticks.
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mal sequence alignments.9 Yet, to our knowledge,
their idea has not been exploited to produce subopti-
mal solutions to RNA folding, which is somewhat
puzzling, since the energy minimization of secondary
structures is handled by the same technique employed
in the shortest path problem or in sequence alignment.
We first illustrate the Waterman–Byers scheme for the
case of base pair maximization. While being of the-
oretical interest only, the case serves as a pedagogical
exposition of the logic underlying the algorithm. We
then briefly discuss the more involved case of energy
minimization, while relegating excruciating details to
appendices A and B. We proceed by applying the
algorithm to study the degree to which a minimum
free energy structure is thermodynamically sharply
defined. We are specifically interested in the role of
base modification in tRNA sequences to that effect.

MAXIMUM MATCHING AND THE
WATERMAN–BYERS SCHEME

The usual formalization5,10 views a secondary struc-
ture as a graph whose nodes represent nucleotides at
positions i " 1, . . . , n of an RNA sequence of length
n. The set of edges connecting the nodes consists of
two disjoint subsets. One is common to all secondary
structure graphs, while the other is specific to each
sequence. The common set represents the covalent
backbone connecting node i with node i # 1, i
" 1, . . . , n ! 1. The sequence-specific part consists
of a set ! of edges i ! j, ! " {i ! j!i $ j and j $ i
# 1}, representing admissible hydrogen bonds be-
tween the bases at positions i and j, such that (i) every
edge in ! connects a node to at most one other node,
and (ii) the pseudoknot constraint is met. The latter
states that if both i ! j and k ! l are in !, then i % k
% j implies that i % l % j. Failure to meet this
constraint results in interactions that are considered to
be tertiary (pseudoknots), or perhaps more to the
point, computationally and thermodynamically un-
wieldy at present. The set of admissible base pairs that
we shall consider consists of the Watson–Crick pairs
{AU, UA, GC, CG} and {GU, UG}.
The problem of finding the largest possible set !

of admissible base pairs compatible with the above
definition of a secondary structure is known as “max-
imum matching.” A matching in an undirected graph
G is a set of edges, no two of which have a vertex in
common. Evidently, any set! of base pairs compliant
with the definition of secondary structure is a match-
ing. A matching M is called a maximum matching, if
no matching contains more edges than M.

When maximizing base pairing, the basic structural
building block is an individual base pair. This is in
contrast to energy minimization, where the building
blocks to which an energy can be assigned are larger
chunks of context known as “loops” (or faces of the
secondary structure graph). It is this property that
makes maximum matching considerably simpler than
free energy folding.
The dynamic programming procedure to compute

the maximum number of admissible base pairs is
straightforward.1,10 Let Pi, j, i % j, denote the maxi-
mum number of base pairs on the sequence segment
[i, j]. Pi, j can be defined recursively:

Pi, j ! max&Pi, j!1, max
i"l"j!2

&'Pi,l!1 # 1

# Pl#1,j!1($'al, aj())
'1(

where ai ! {A, U, G, C} denotes the base at position
i, and $( ! , ! ) is an indicator function of biophysically
legal base pairs:

$'ai, aj( ! "1, if ai and aj can pair;
0, otherwise

The recursion in Eq. (1) works by filling the P array
in such a way that all smaller fragments needed in the
computation of Pi, j have already been computed. (For
example, let index i run from n down to 1, while
index j sweeps from i # 2 to n.) Adding bases
sequentially at the 3*-end, procedure (1) checks
whether a pairing between the added base and some
position downstream improves the total number of
pairs on the segment, as compared to leaving the
added base unpaired. When all is done, the maximum
number of base pairs is Pmax " P1,n. A structure with
Pmax pairs is obtained by tracing back through the P
array. Although the backtrack is simple, we shall
explain it in some detail, since it is the key procedure
in understanding the Waterman–Byers extension.
Let us define a partial structure " to be a pair " "

(%; !) consisting of a stack % of sequence segments
{[i1, i2] ! [i3, i4] ! . . .}, and a set ! of base pairs. A
complete structure is a partial structure whose stack is
empty, " " (A; !).
The backtrack starts with the partial structure ([1,

n]; A), pops the segment from the stack, and follow-
ing Eq. (1), checks whether the nth position shall
remain unpaired, i.e., whether P1,n " P1,n!1. In that
case, [1, n ! 1] is pushed on the stack %, and the
procedure repeats similarly with " " ([1, n ! 1];
A). If P1,n $ P1,n!1, the procedure follows the
second term of Eq. (1), looping over l ! [1, n ! 2]
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attempting to find a pair l ! n that is consistent with
the value of P1,n. Such a pair splits the sequence into
two disjoint substructures on the segments [1, l ! 1]
and [l # 1, n ! 1]. Both segments are pushed on the
stack, and the pair l ! n is added to !, yielding " "
([1, l ! 1] ! [l # 1, n ! 1]; {l ! n}). The procedure
now repeats in a similar fashion by popping the next
segment from the stack. The process bottoms out as
segments become too small for holding a base pair.
Such segments are popped from the stack without
causing other segments to be pushed. Finally, when
the stack is empty, a complete structure " " (A; !)
with Pmax " !!! base pairs has been reconstructed.
The algorithm is sketched in Table I.
In suboptimal folding we wish to find all structures

that meet a given suboptimality criterion. In the max-
imum matching case the criterion is to have at least
Pmax ! + base pairs, with 0 " + " Pmax. It is here
that the notion of a partial structure becomes useful. "
" (%; !) actually represents a set of structures, all of
which have the base pairs! in common. We shall call
a partial structure "1 " (%1; !1) a refinement of a
partial structure "2 " (%2; !2), written "1 % "2, if
!2 " !1 and @ [a, b] ! %1 ? [c, d] ! %2, such that
[a, b] " [c, d], with strict inequality holding at least
once (otherwise "1 " "2).
As before, backtracking consists in the iterated

refinement of the set of all structures " " ([1, n];
A). The difference now is that at each stage all
refinements "* are kept that represent sets of (com-
plete) structures with at least Pmax ! + base pairs. To
decide whether an "* qualifies, consider a refinement
generated from " " ([i, j] ! %; !) by splitting
segment [i, j] with a base pair l ! j for some l, i " l
" j ! 2. This yields the partial structure "* " ([i,
l ! 1] ! [l # 1, j ! 1] ! %; ! # {l ! j}). The

maximum number P"* of base pairs that any structure
in the set represented by "* can have is given by

P"* ! !!! # 1 # Pi,l!1 # Pl#1,j!1 # #
,a,b-!%

Pa,b (2)

where the entries of the P array have been computed
in a previous optimization pass. If P"* is less than the
required minimum, Pmax ! +, the set "* can safely be
pruned from further consideration. If, on the other
hand,

P"* & Pmax ' + (3)

the partial structure "* is kept for further refinements.
Previously we backtracked (1) by refining a par-

ticular partial structure all the way down to a single
complete structure. Now, in contrast, we push each
refinement satisfying the suboptimality criterion (3)
on a stack R of partial structures for further iterative
refinement. The algorithm is summarized in Table II.
When choosing + " 0, the algorithm produces all

degenerate optimal solutions to the maximum match-
ing problem. If + " Pmax, the algorithm degenerates
to a systematic construction of all admissible struc-
tures on the given sequence. The latter can take a long
time, since the number of structures scales exponen-
tially with the sequence length. We performed sanity
checks of our implementation by comparing the num-
ber of admissible structures generated by it with out-
puts from independent structure counting procedures
based on the partition function algorithm11,12 and a
density of states algorithm.13
For example, the maximum matching solution for

the E. coli tRNAhis sequence RH1660 has 26 base

Table I Pseudocode for the Backtrack Process in the
Maximum Matching Problema

" " {% " {[1, n]}; ! " A}
Repeat:
If (% " A)
Terminate with " " {A; !}

[a, b] d %
If (Pa,b " Pa,b!1)
[a, b ! 1] f % and repeat

If (l ! b with l ! [a, b ! 2] and Pa,b
" Pa,l!1 # Pl#1,b!1 # 1)

! 4 ! # {l ! b}, [a, l ! 1] f %,
[l # 1, b ! 1] f % and repeat

a The x d % denotes the popping of the first element from the
stack %. That element is assigned to x, and is deleted from %. The
x f % denotes the pushing of x on the stack %.
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pairs (we require that a hairpin turn must have at least
3 unpaired positions). Choosing + " 0 we find
149,126 structures, all having the maximum of 26
base pairs. Two instances are shown in Figure 2. To

find all “ground states” required 125 s CPU time on a
SUN Ultra 2 (256 Mb memory) with our prototype
implementation not tuned for efficiency. There are
9,889,659 solutions with 25 or more base pairs (2.2
h), and 318,369,772 structures with 24 or more base
pairs (68.6 h).

SUBOPTIMAL FREE ENERGY FOLDING

From the thermodynamic point of view, the building
blocks of secondary structures are loops (Figure 3)—
stacked base pairs, internal loops, bulges, and mul-
tiloops (i.e., structural elements delimited by more
than one base pair)—rather than individual base pairs.
As a consequence, the minimum free energy folding
algorithm requires a number of distinct arrays (see
below). This complicates the backtrack procedure.
Like in the previous section, the suboptimal free

energy backtrack must refine partial structures by
exactly reversing the optimization procedure used to
systematically generate structures from smaller seg-
ments. If we were not to proceed in this way, the
energy arrays filled during the optimization pass could
not be used in the pruning criterion. A problem arises,
however, when reversal of the optimization procedure
yields more than one way of generating the same
structure. It is in particular the construction of mul-
tiloops that needs attention in this regard. Reversing
the usual Zuker–Stiegler procedure4 yields vast
amounts of structure repetitions (with the same en-
ergy) due to the nonuniqueness of their multiloop

Table II Pseudocode for Generating Suboptimal
Solutions to the Maximum Matching Problema

" " {% " {[1, n]}; ! " A}, R " A
" 3 R
Repeat:
if (R " A)
Done

(%; !) d R
If (% " A)
Output suboptimal solution (A; !) and repeat

[a, b] d %
Let "* " ([a, b ! 1] ! %; !)
If (P"* & Pmax ! +)

" . f R
For each l ! b with l ! [a, b ! 2]
{
Let "* " ([a, l ! 1] ! [l # 1, b ! 1] ! %;

! # {l ! b})
If (P"* & Pmax ! +)

"* f R
}
If (nothing has been pushed on R since the last repeat)
(%; !): f R

Repeat

a The meaning ofd andf is explained in Table I. Recall that
[a, b] d % deletes [a, b] from %. It is understood that in the case
of illegal intervals ([a, b] with a / b), all statements referring to
that interval are skipped.

FIGURE 2 Two solutions maximizing base pairing in E. coli tRNAhis (RH1660). Certain
modified bases in the sequences were replaced by a nonbonding nucleotide N, see Appendix C.
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decomposition. This is obviously irrelevant when
tracing back for the optimal structure, but of little use
in the systematic generation of suboptimal structures.
Our solution to this consists in modifying the Zuker–
Stiegler procedure by decomposing multiloops in a
unique way (see Appendix A).
A further problem arises from energy contributions

due to so-called dangling ends. Unpaired bases adja-
cent to a helix may lower the energy of a structure by
stacking onto their neighboring base pairs. These con-
tributions are taken into account for external bases (a
base not enclosed in any loop, see Figure 1) adjacent
to the 5*- and 3*-end of a helical region. The same
holds for unpaired nucleotides inside a multiloop ad-
jacent to helical regions (Figure 3). Normally, a base
may not simultaneously participate in both interac-
tions a 5* dangling end with one helix and a 3*
dangling end with another. The problem for the sub-
optimal backtrack is that, when decomposing a mul-
tiloop, we do not know yet whether a base adjacent to
a helix is available for a dangling end interaction, that
is, whether that base is unpaired and not already
involved in another dangling end interaction. We han-
dle this situation simply by always adding a dangling
end contribution without checking whether the base
involved qualifies. This leads to additional dangling

end contributions for helices directly adjacent to one
another. Incidentally, such helices often do engage in
stabilizing interactions through coaxial stacking.14
Our treatment of dangling ends thus can actually
improve predictions in some cases. Alternatively, the
contributions from dangling ends can be switched off
altogether. They can, however, be substantial. Com-
pilations of energy parameters used in our implemen-
tation are given in Refs. 15–18.
With the algorithm described in Appendix A the

Waterman–Byers scheme can be used to find all sub-
optimal structures within a given energy range above
the minimum free energy Emin. Exactly like in the
maximum matching case, we proceed by refining par-
tial structures, and checking whether the refinements
survive a pruning criterion analogous to Eqs. (2 and
3). The technical definition of a partial structure needs
two slight amendments. First, in addition to the set of
base pairs ! and the stack of segments %, we keep
track of the total free energy EL"

, of all loops L" that
constitute a given partial structure ". Second, each
segment on the stack % requires an additional label,
indicating in which one of the arrays F5, C, FM, and
FM1 (see Appendix A) the best energy attainable on
that segment should be looked up. These labels are
also needed in switching the backtrack between the
appropriate arrays. The labels are assigned according
to how a segment is generated through refinement
from another segment (see Appendix B).
Let us denote the best possible energy attainable on

segment [i, j]E with Ei, j, where E ! {F5, C, FM,
FM1}. Suppose now that we are refining a partial
structure " " ([i, j]E ! %; !; EL"

) by reversing the
minimization procedure outlined in Table IV of Ap-
pendix A. Depending on the equation used, this will
yield subintervals of [i, j]E whose total best possible
energy we denote here with ! to avoid distracting
details. All (complete) structures represented by the
attempted refinement of " have an energy not lower
than E", where

E" ! ! # EL" # #
,k,l-E!%

Ek,l (4)

In analogy to Eq. (3), we will accept any refinement
for which

E" " Emin # ( (5)

with some desired ( / 0. The strategy for tracing
back all suboptimal structures in the energy range
between Emin and Emin # ( is detailed in Appendix B.

FIGURE 3 Secondary structure elements.
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The logic is the same as in the maximum matching
case, but the details are more sophisticated.
Again, a choice of ( " 0 yields a conventional

backtrack with the added benefit of finding all degen-
erate “ground structures,” should there be more than
one. Choosing ( large enough, say ( " 0, makes the
algorithm degenerate again into a structure counting
procedure. This is quite handy for a basic soundness
check by comparing whether its output coincides with
that of the maximum matching algorithm with + "
Pmax.

Performance Considerations

The time to compute all structures with energy in the
interval between Emin and Emin # ( trivially depends
on how many structures this interval contains. The
relevant point for practical purposes comes from full
density of states calculations (providing energy levels,
but no structures),13 which suggest that the number of
states is rather modest around Emin, and typically
blows up only at energies substantially higher than
Emin (see, for example, Table III). This is a welcome
contrast to the maximum matching case. Thus, as long
as ( is small (say within a few multiples of kT), our
procedure is extremely fast.
Table III summarizes CPU requirements of the

algorithm for 4 test sequences of lengths 25, 50, 75,
and 100 at various energy intervals above Emin in
multiples of kT. The data show exponential behavior
in this energy range with regard to number of struc-
tures and CPU time. Memory demands remain modest
even for large sequences and (. Normally a sorted list
of the calculated structures is desirable, in which case
the sorting becomes the dominant time and memory
factor.

THERMODYNAMIC STABILITY OF
tRNA CLOVERLEAF STRUCTURE

An Example from Yeast

Using the suboptimal folding algorithm just devel-
oped, the 50 energetically lowest structures of the
yeast tRNAphe (RF6280) were generated. Figure 4
shows a clustering of that set of structures based on
Ward’s variance criterion.19 The procedure starts out
with each structure being a cluster. At each iteration
two clusters are merged into a larger one so as to
minimize the associated increase in variance. Com-
puting the variance requires a notion of distance be-
tween two structures. Here we take distance to be the
total number of base pairs that both structures do not
have in common, that is, the symmetric difference
between their sets of base pairs. For example,
“(((( . . . . ))))” and “ . (((( . . . ))))” have a distance of
8 (each structure has 4 base pairs that the other has
not), while “(((( . . . . ))))” and “ . (((( . . . )))) . ” have
a distance of 1 (the former structure has 1 base pair
that the latter lacks, but the latter has no base pair
missing in the former).
The input sequence for Figure 4 was obtained from

the original RF6280 by replacing all modified bases
with their unmodified analogues. We shall refer to
sequences of this kind as “unmodified sequences.” A
second “modified” input sequence was obtained by
translating a subset of modified bases into a nonbond-
ing nucleotide following Refs. 20–22 (see Appendix
C). The structures of the unmodified sequence which
coincide with the 12 best structures of the modified
one are highlighted in boldface (Figure 4).
The first point made by this example is the exis-

tence of structures in the neighborhood of the mfe
structure that differ substantially from it. The data of
Figure 4 show that the low energy region of the

Table III CPU Time of the Suboptimal Folding Algorithma

Sequence
Length

Range of Energy (kT)

5 10 12 15 17 20

25 17 187 441 1299 2569 6048 Structures
0 0 0 0 0 0 CPU s

50 9 108 254 900 2178 6477 Structures
0 0 0 0 0 2 CPU s

75 86 1664 5056 24,299 67,601 295,722 Structures
0 1 2 10 34 201 CPU s

100 121 4439 16,567 103,935 341,054 1,864,633 Structures
1 6 10 54 169 1815 CPU s

a Calculations were made on a DEC AlphaServer 2100 5/375.
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unmodified tRNAphe comprises at least two major
classes of structures. In particular, the mfe structure
(!19.26 kcal/mol) is in one class, while a structure as
close to it as no. 3 (!18.83 kcal/mol) belongs to a
different class. These classes are split into further
clusters, and Figure 5 gives an indication of their
structural diversity. This is a static picture, and noth-
ing is said about the barrier between no. 1 and no. 3.
By systematically generating the complete configura-
tion space around the mfe, our procedure can assist in
obtaining either the barrier itself or a lower bound to

it. However, we shall not be concerned with kinetics
in this communication.
Both modified and unmodified sequences fold into

the same mfe structure, and the 12 structures with
lowest energy of the modified sequence are among the
50 lowest structures of the unmodified variant. How-
ever, all 12 structures of the modified sequence group
into the same cluster. This raises the issue about the
effect of tRNA base modification on the density and
diversity of states around the mfe. In cases where the
unmodified sequence folds into the correct cloverleaf

FIGURE 4 Similarity clustering of suboptimal structures of yeast tRNAphe. The 50 energetically
lowest structures, ranging from !19.26 kcal/mol to !17.28 kcal/mol, of yeast tRNAphe (EMBL
accession RF6280) are clustered using Ward’s variance method19 with the symmetric difference
distance as a metric on the structures. Numbers at the leaves of the tree indicate the energy rank of
a suboptimal structure (mfe structure is no. 1). The structures belong to the sequence obtained from
RF6280 by translating modified bases into their corresponding unmodified analogues. Numbers in
boldface flag structures that coincide with the 12 lowest suboptimal structures of the sequence
obtained from RF6280 by replacing certain modified bases by a nonbonding nucleotide. Arrows
indicate structures satisfying the definition of Zuker’s suboptimal folding scheme.6
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structure, modifications that prevent base pairing do
not alter the mfe structure. They seem, however, to
constrain structures at low energies to be similar to the
ground state. This suggests that base modification
improves the “definition” of the mfe structure. We
shall return to this point in greater detail.

Figure 4 also indicates that Zuker’s subset of sub-
optimal structures6 (those that are optimal with re-
spect to the choice of a base pair) does indeed con-
stitute a representative sample of the structural vari-
ability in the vicinity of the mfe (arrows in Figure 4).

Diversity of States in Modified and
Unmodified Artificial tRNAs

The previous example suggests a role for modified
bases in altering the structural states in the vicinity of
the mfe. Yet, conclusions that rest on the details (in
particular the ordering) of these states for a single
sequence remain susceptible to the same imprecisions
in the available energy parameters as pure mfe fold-
ing. One way around this problem is to turn away
from the structure prediction and analysis of a single
sequence to a statistical approach23 in which we iden-
tify and compare robust properties of specific (natural
or artificial) sequence ensembles. This approach can
be expected to yield conclusions that are robust to
variations in the energy parameters.

FIGURE 6 tRNA secondary structure shared by six sequences from E. coli. The figure shows the
secondary structure (obtained with the thermodynamic folding algorithm) shared by the six listed
tRNA sequences. (The second letter in the accession number identifies the amino acid.) The
structure has the tRNAasp sequence (RD1660) superimposed, indicating the positions at which a
nonbonding base N was placed. The shaded areas in the list of sequences indicate the positions at
which Ns were placed in inverse folded sequences of the modified sample.

FIGURE 5 Structural diversity near the mfe of yeast
tRNAphe. The structures shown correspond to the cluster
nucleators no. 1, no. 3, no. 11, no. 12, and no. 13 (from left
to right, top to bottom) in Figure 4.
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Using an inverse folding procedure,24,25 we gener-
ated a pool of 2000 sequences whose mfe structure
coincides with that of the six natural sequences listed
in Figure 6. This constitutes an ensemble of unmod-
ified sequences, or “unmodified sample” for short.
Similarly, we generated a pool of 2000 sequences
with a nonbonding nucleotide at every position indi-
cated in Figure 6. These sequences were chosen so as
to have the same mfe structure as the unmodified
pool. We shall refer to this ensemble as the “modified
sample.”
For each sequence in both samples we computed

the energy gap between the mfe structure and the
second best structure. The distribution of these first
gap energies is shown in Figure 7. An immediate
observation is that natural tRNA sequences have large
first gap energies, located far out in the tail of the
distribution. A more subtle feature, however, is that
the modified sample exhibits a set of spikes rising
distinctively above a generally flatter background as
compared to the unmodified sample. An analysis of
the structures associated with the gap energies at these
spikes reveals that the extent to which all major spikes
rise above the background is due precisely to those
structures resulting from the ground state by removing
one base pair at either end of a helical region. For

example, 74, 70, 80, 92, and 88% of the structures at
gap energies 0.09, 0.17, 0.29, 0.69, and 0.97 kcal/mol
above the mfe, respectively, lack either one base pair
at the acceptor end of the multiloop or at the loop end
of one of the hairpin turns. This “quantized” super-
structure in the gap distribution of the modified sam-
ple shows that nonbonding bases constrain the second
best structure to be as similar as possible to the ground
state. This is in marked contrast to the unmodified
sample, where larger refolds at the first energy level
are considerably more likely. Consider that the energy
difference between the ground structure and the sec-
ond best structure cannot be larger than the largest
stacking energy (!+GGC ! CG, which is about 3 kcal/
mol at 37°C). To see this, assume that S is the second
best structure. If S were to differ more than the stated
amount from the mfe structure, we could construct a
better structure by simply removing a base pair at
either end of some stack in the mfe structure, thus
contradicting the assumption that S is the second best
structure. Hence, the next structure above the ground
state will be a similar structure with just a base pair
removed from a helix end only if there exists no
refolded configuration with a lower energy. Figure 7
shows that properly placed nonbonding bases make
the latter possibility distinctively less likely.

FIGURE 7 Distribution of first gap energies. The upper and lower half show the distribution of
gap energies in the unmodified and modified sample, respectively. The dotted vertical lines indicate
the gap energies of the six natural sequences in Figure 6.
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Structural Stability of Secondary
Structures

In view of the previous analysis we ask whether the
density of states at low energies and their associated
structures can be used to quantify the degree to which
an mfe structure is “well defined.” Intuitively, and
from a static viewpoint, a structure is well defined if
there are no “substantially different” structures in its
thermodynamic neighborhood. Even in the absence of
a kinetic assessment, criteria of static well definition
can be useful in identifying parts of an RNA structure
with biological significance.
Extant measures of well definition use McCaskill’s

partition function algorithm.11 For example, one may
quantify the most likely state—paired or un-
paired—of a position k in a sequence by the proba-
bility of the most probable base pair involving k,
or the probability that k is unpaired, whichever is
larger.26 These base pair probabilities are obtained
from the partition function Z,11 which can also be
approximated with the suboptimal folding procedure
by summing over the density of states at low ener-
gies.27
At the other extreme one might consider a simple

global measure as given by the fraction of the mfe
structure in the Boltzmann ensemble:

fmfe !
e!+Gmfe/kT

Z !
1

1 # #i e!+gi/kT (6)

where +gi is the ith gap energy +Gi ! +Gmfe. This
can also be expressed as kT ln fmfe " F ! +Gmfe,
where F is the free energy of the Boltzmann ensem-
ble. Another such measure is the mean gap energy
1+g2:

1+g2! #
i

'+Gi ' +Gmfe(
e!+Gi/kT

Z (7)

Figure 8 shows the distribution of fmfe in the modified
and unmodified samples, together with the values for
the natural sequences of Figure 6. Again, the latter
show a remarkably high fmfe as compared to both
samples with the same mfe structure. The comparison
between the two samples evidences the role of mod-
ified bases in shifting fmfe to higher values. The bad
news, however, is that a high fmfe does not imply a
large separation to the energetically adjacent struc-
ture, although the reverse is true (Figure 9).
Neither the quantified pairing state of an individual

position nor fmfe provide sufficient information about
structural stability. The former is too local a measure
to say much about structural diversity in the vicinity
of the mfe, and a low fmfe can be caused by a number
of similar structures that are energetically nearby the
mfe. Yet, in the latter case, we would still consider the
basic architecture of the mfe to be well defined.
A simple measure for the structural diversity

present in the secondary structure configuration space

FIGURE 8 Fraction of mfe structure in the Boltzmann ensemble. The upper and lower half show
the distribution of fmfe in the unmodified and modified sample, respectively. The dotted vertical lines
indicate the fmfe of the six natural sequences of Figure 6.
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of a sequence is the Boltzmann weighted sum over the
structure distances between the ith configuration and
the ground state. As a structure distance we use the
so-called base pair distance, defined as follows: each
position in structure A that is not paired to the same
position as in structure B increases the distance by one
count. In this metric one-strand shifts of helical re-
gions give large distances. For example, “(((( . . . . ))))”
and “ . (((( . . . . ))))” have a base pair distance of 9 (all
8 paired positions differ), while “(((( . . . . ))))” and
“ . (((( . . . )))) . ” have a base pair distance of 2. (Base
pair distance is similar but not identical to the sym-
metric difference distance used earlier in this section.)

1dbp2! #
i

dbp'0, i(
e!+Gi/kT

Z (8)

where dbp(0, i) denotes the base pair distance be-
tween the mfe structure (0) and the ith structure
above it.
In Figure 10 we plot for three classes of tRNA

sequences the mean gap energy against the mean base
pair distance, which we approximated by considering
all structures within 10kT of the mfe. The three
classes were derived from Steegborn’s compilation28
of E. coli tRNA sequences. The first class (solid
circles in Figure 10) consisted of the natural tRNA

sequences whose modified bases were replaced by
nonbonding bases in their original positions (accord-
ing to the translations of Appendix C), the second
class (open circles) had the same amount of nonbond-
ing bases, this time in random positions, but so as to
yield the same mfe structure as the originals. The third
class (crosses) had the modified bases replaced by
their corresponding unmodified ones. Not all of the
latter had the same mfe structure as their native (i.e.,
modified) counterpart. (The algorithm missed the clo-
verleaf also for a few modified sequences.) In such
cases we took the lowest lying cloverleaf structure as
the reference (0). As a consequence, the mean gap
energy can become negative. For better readability of
the plot, we assigned the mean base pair distance the
same sign as the mean gap energy (but it obviously
means a positive value).
Figure 10 shows that the natural modified se-

quences (solid circles) have by and large very small
1dbp2values indicating that most structures close to
the mfe structure are also similar to it. At the same
time the mean gap energy has a wide spread. This
shows that 1dbp2 is a better predictor of structural
stability than 1+g2. The same trend is confirmed by
plots similar to Figure 10 for the modified and un-
modified samples (not shown). Furthermore, se-
quences with nonbonding bases at random positions

FIGURE 9 Relation between fmfe and the first gap energy. The figure shows a scatter plot where
the first gap energy of each sequence in the modified sample is plotted against its fmfe. Recall that
an upper bound for +g1 is about 3 kcal/mol. The figure shows that a high +g1 implies a high mfe
fraction in the Boltzmann ensemble, but that the reverse is not true. A similar picture holds for the
unmodified ensemble.
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(open circles) have a better defined mfe structure than
unmodified sequences, but not as well defined as the
originals. Thus, the positioning of the nonbonding
bases is important, even when it does not affect the
mfe structure itself. It is tempting to interpret these
data as natural tRNA sequences having their non-
bonding bases positioned so as to also maximize the
definition of the ground state structure.
A further assessment of structural well definition is

obtained by counting the number of different structure
“architectures” as energy increases from the ground
state. By “architecture” we mean a coarse-grained
secondary structure obtained by disregarding the size
of loops and helices.29 Such a coarse-grained structure
constitutes an equivalence class of conventional sec-
ondary structures with respect to the topological ar-
rangement of loops and helices. The upper plot of
Figure 11 shows the density of states at low energies,
that is, the number of states existing at any given
energy up to 15kT from the ground state for the
unmodified E. coli tRNAlys sequence (RK1660), and
up to 30kT for the modified sequence. The lower half
of the plot displays the cumulative count of different
coarse grained structures encountered since the mfe
structure. The difference in the rates by which struc-
tural diversity increases is quite impressive, as is the
difference in energy from the ground state at which
diversity starts rising fast. This indicates once more
that, from a thermodynamic point of view, the mod-

ified sequence is structurally much more stable. We
found similar observations to hold for the other E. coli
tRNA sequences as well.
Finally, Figure 12 shows an intriguing relationship

between the thermodynamic stability of a structure
and the fraction of neutral mutants accessible by a
single point mutation. Neutral here means that refer-
ence sequence and the mutant have the same mfe
structure. Each part of Figure 12 plots for each se-
quence in the modified and unmodified sample the
logarithms of fmfe, 1dbp2, and 1+g2against the frac-
tion of neutral mutants of that sequence. For both
samples there is a clear correlation between well
definition of the ground state and the degree to which
a sequence can buffer mutations against altering that
ground state. Average neutrality is higher for modi-
fied sequences, since their mfe structure is on average
thermodynamically better defined than for unmodified
sequences. The best predictor of mutational stability
is again the mean base pair distance, while the mean
gap energy is virtually insensitive. Small mean base
pair distance (high thermodynamic structural stabil-
ity) implies high neutrality, but the reverse, while true
to some degree for unmodified sequences, does not
hold for modified ones. Given that properly modified
sequences have intrinsically a better defined ground
state, a high degree of neutrality does no longer dis-
criminate between different degrees of well definition
within that sample.

FIGURE 10 Structural diversity vs mean gap energy. The figure plots a 10kT approximation to
the mean structure distance, as defined in Eq. (8), and the mean gap energy, as defined in Eq. (7),
for E. coli tRNA sequences from the Steegborn compilation.28 Solid circles: natural modified
sequences. Open circles: sequences with nonbonding nucleotides at random positions but preserving
the mfe structure of their natural modified counterparts. Crosses: unmodified sequences.
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CONCLUDING REMARKS

Following an idea of Waterman and Byers,9 we have
devised and implemented an algorithm that rigorously
generates all energetically suboptimal secondary
structures of an RNA sequence within a desired en-
ergy range above the minimum free energy. The logic
of the algorithm was discussed for the simple case of
base pair maximization. To implement a suboptimal
folding procedure based on the free energy of struc-
tures, we had to modify the Zuker–Stiegler strategy
for free energy minimization. Minimization and sub-
optimal backtrack are detailed in the appendices.
Depending on the choice of energy range, the

algorithm has two limiting behaviors. If the interval
above the minimum free energy is set to zero, all
degenerate ground states are obtained, while a suffi-
ciently high energy range yields a systematic structure
counting procedure. Since the density of states is
relatively sparse in the 10–15kT vicinity of the min-
imum free energy, the algorithm is fast and practical
even for long sequences. Our implementation and all
algorithms used in this paper are freely available for
academic research,30 and will be integrated in the next
release of the Vienna RNA Package.24
A suboptimal folding algorithm that generates rig-

orously all suboptimal configurations between the
minimum free energy and some chosen upper limit is

important for a meaningful approximation of statisti-
cal quantities. Because of this property our algorithm
has the pleasant feature that energy minimization,
suboptimal structures, the (truncated) density of
states, the (truncated) partition function (and other
statistical quantities derived from it) are unified in a
single procedure and obtainable in the same optimi-
zation plus backtracking pass.
In the second part of this contribution we used our

procedure to compute indicators for the thermody-
namic stability of the minimum free energy structure
of an RNA sequence. We defined three simple indi-
cators capturing in different ways the degree of well
definition or well determination of the ground state
structure: (a) mean gap energy, that is, the average
energy separation of configurations in the vicinity of
the minimum free energy; (b) Boltzmann weighted
mean structure distance (here implemented as mean
base pair distance), that is, the average distance be-
tween the minimum free energy structure and the
configurations in its energy neighborhood; and (c)
topological diversity, that is, the number of different
coarse-grained structures in an energy interval around
the ground state. These quantities were used to assess
the influence of base modification on the thermody-
namic robustness of the ground state structure in
tRNA sequences. To this end we compared the sta-
tistics of these indicators in large samples of modified

FIGURE 11 Diversity of coarse grained structures. The upper half shows the density of states for
the unmodified sample (up to 15kT) on the left, and for the modified sample (up to 30kT) on the
right. The lower half is a plot of the cumulative number of different coarse grained architectures
encountered with increasing energy; left curve: unmodified sample, right curve: modified sample.
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and unmodified artificial sequences whose minimum
free energy structure is identical to that of naturally
occurring tRNA sequences from E. coli. The latter
were also studied individually. Base modification was
considered here only in its quality of preventing par-
ticular positions in the linear sequence from contrib-
uting base pairs to the secondary structure.
Our study shows from several perspectives that

base modification considerably sharpens the definition
of the ground state structure by constraining energet-
ically adjacent structures to be similar to the ground
state. Base pair distance turned out to be the best
indicator for how well the ground state is determined.
Artificial sequences with nonbonding nucleotides at
random positions, yet with the natural tRNA clover-
leaf pattern as ground state, determine the cloverleaf
better than unmodified sequences, but not as well as
natural sequences with the same secondary structure.

This indicates that certain positions when locked into
a nonbonding state are more effective than others in
sharpening the thermodynamic definition of the min-
imum free energy structure.
There is a noteworthy correlation between the ther-

modynamic stability of the minimum free energy
structure of a given sequence and its capacity to buffer
mutations. The better the ground state is defined, the
more one-error mutants preserve the minimum free
energy structure. This may have evolutionary conse-
quences at the molecular level. If well definition of a
secondary structure is important for biological func-
tion, then evolving a sequence that improves the ther-
modynamic definition of that structure has as a likely
side effect an increased stability toward point muta-
tions–that is, neutrality.
The importance of a rigorous suboptimal folding

algorithm rests not only with computing criteria for

FIGURE 12 Relationship between thermodynamic stability and neutrality. Each graph (a), (b),
and (c) plots one measure of thermodynamic well definition of the ground state vs the fraction of
neutral mutants accessible by one point mutation for each sequence in the unmodified sample (upper
plot in each part) and the modified sample (lower plot in each part).
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discerning biologically relevant structures held under
selection pressure, or for detecting relevant alternative
states to the ground state. A key issue will be to
unravel the kinetic aspects of RNA folding, and to
understand what makes a sequence fold well. By
providing access to the complete configuration space
at low energies, we expect a rigorous suboptimal
folding algorithm to be a valuable tool towards that
goal.

APPENDICES

A. Optimization with Unique Multiloop
Decomposition

In this appendix we explain the modified optimization
procedure on which we base the suboptimal backtrack
detailed in Appendix B.
We recall here for later reference the usual treat-

ment for multiloop energies #,5

# ! #C # #I ! no. interior pairs

# #B ! no. unpaired bases
(9)

where #C denotes the stabilizing energy deriving
from the multiloop closing pair, #I denotes the sta-
bilizing energy for each base pair interior to the mul-
tiloop, and #B the destabilizing energy for each un-
paired base in the loop.17
As in the maximum matching case, energy arrays

are filled in a recursive fashion. Let Ci, j be the min-
imum free energy on the segment [i, j], provided that
i and j pair with one another. As is well known,5 by
virtue of the additivity of loop energies, the best
energy attainable on the segment [i, j], with i ! j, is
given by the energy of the particular loop L closed off
by i ! j plus the energy of any substructures ending
with a base pair p ! q in that loop.

Ci, j ! min
loops L

closed by i !j

&E'L( # #
interior pairs

p!q!L

Cp,q) (10)

FIGURE 12 (Continued from the previous page.)
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with Ci,i " 0. The minimization in Eq. (10) runs over
three major classes of structures, consisting of various
loop types closed off by i ! j (see Figure 13 for a
schematic representation).

Ci,j !min&

(11)
$'i, j(,

min
p!,i#1, j!m!2-
q!,p#m#1, j!1-

&Cp,q # %'i, j, p, q()

min
k!,i#1, j!m!2-

&Fi#1,k!1M #Fk, j!1M1 # di, j, j!15 # di, j,i#13 # #C)

}

The first term, $(i, j), denotes the tabulated free energy
of a hairpin loop closed by i ! j. The second term
considers all cases where i ! j closes an interior loop (or

a bulge) whose interior delimiting base pair is p ! q. The
loop has a tabulated energy %(i, j, p, q), the structure
“behind” p ! q has energyCp,q, and the minimum is taken
over all admissible pairs p ! q. The third term refers to
multiloop structures closed by i ! j. A multiloop is
constructed from two pieces with energy Fi#1,k!1M and
Fk,j!1M1 (to be explained shortly; see also Figure 13), and
the multiloop closing pair i ! j with energy #C [see Eq.
(9)]. We also take into account the stabilizing energy
from dangling ends on the 5*- and the 3*-side of the pair
i ! j. The di,j,j!15 denotes the energy contribution of the
base at position j! 1 stacking from the 5* direction onto
the pair i ! j. Similarly for d3.
As indicated in Figure 13(c), Fi, jM1 denotes the

minimum free energy of the last stem (closed, say, by
i ! l ) toward the 3*-end of the multiloop being con-
sidered, including an arbitrary number of unpaired
bases at the 3*-end. Its energy is the sum of the en-
ergy Ci,l of the structure closed by i ! l, the energy
#B( j ! l ) of j ! l unpaired multiloop bases, the

FIGURE 12 (Continued from the previous page.)
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multiloop energy contribution #I deriving from the
interior pair i ! l, and the dangling ends:

Fi, j
M1 ! min

l!,i#m#1, j-
&Ci,l # #B' j ' l(

# di,l,i!15 # di,l,l#13 # #I)
(12)

The remaining 5* piece of the multiloop structure is
further split recursively into a 3*-stem plus a remain-
ing 5* section. The recursion bottoms out when no
3*-stem is possible. In terms of energies:

Fi, j
M ! min& min

k!,i#m#1, j!m!1-
&Fi,k!1

M # Fk, j
M1), (13)

min
k!,i, j!m!1-

&Fk, j
M1 # #&'k ' i()) (14)

This procedure ensures that there is only one decom-
position of a multiloop into substructures, thus en-
abling a meaningful suboptimal backtrack.
Finally, all we need is the best free energy on a

segment [1, j], denoted by Fj5, irrespective of
whether position j is paired. Fj5 is constructed recur-
sively, as illustrated in Figure 14,

Fj
5 ! min&Fj!1

5 , min
l!,i, j!m!1-

&Fl!1
5 # Cl, j

# d l, j,l!15 # d l, j, j#13 ))
(15)

The first term represents the case where j is left
unpaired. The second term considers all possible po-
sitions l that might be paired to j. The free energy
Emin of the best structure on the entire sequence is
then given by Emin " Fn5.

FIGURE 13 Schematic representation of the terms in Eq. (11). First term (a): base pair i ! j closes
a hairpin loop of a certain size. The minimal loop size is 3. Second term (b): base pair i ! j closes
an interior loop, whose inner base pair is p ! q. All possible pairs p ! q must be considered. Third
term (c): base pair i ! j closes a multiloop with a certain number of interior base pairs (solid circles,
such as k ! l ). Multiloops are divided recursively into substructures, containing the last stem at the
3*-end (energy Fk, j!1M1 ) and the remaining 5* structure (energy Fi#l,k!1

M ). The remaining structure
is again split in the same way, see Eq. (13). Dangling end contributions are not shown.

FIGURE 14 Schematic representation of Eq. (15). The left scheme and right scheme represent the
first and second term, respectively, in the minimization of Eq. (15). Dangling end contributions are
not indicated.
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Table IV summarizes the algorithm for computing
the minimum free energy on a given RNA sequence.
It has complexity O(n3), and its implementation is
very fast. A structure corresponding to the minimum
free energy is again obtained by backtracking through
the various arrays.
In Appendix B we detail the trace back yielding all

suboptimal structures with energies between Emin and
Emin # (, with ( / 0 chosen by the user.

B. Suboptimal Backtrack

We label segments [i, j] with subscripts F, C, M, and
M1, referring to the arrays F5, C, FM, and FM1,
respectively. As usual, the backtrack starts with " "
([1, n]F; A; 0). We outline the procedure involved in
refining the partial structure " " ([i, j]E ! %; !; EL"

)
which has just been popped from the partial structure
stack R. The segment [i, j]E is popped from the
partial structure’s segment stack, and refined accord-
ing to the marker E.

‹ Case E ! F 'backtrack in F5(

The i and j are external bases, and the possible re-
finements follow Eq. (15). Leaving the 3* end un-
paired, leads to the acceptance condition

Fj!1
5 # EL" # #

,k,l-!s

Ek,l " Emin # ( (16)

If (16) is fulfilled, we push the new partial structure
"* " ([i, j ! 1]F ! %; !; EL"

) on the stack R for
later refinement.
Next we scan for all possible outermost pairs l ! j.

If for a particular l ! j the criterion

Fl!1
5 # Cl, j # dl, j,l!15 # dl, j, j#13 # EL"

# #
,k,l-!s

Ek,l " Emin # (
(17)

is fulfilled, we push the refinement "* " ([l, j]C ! [i,
l ! 1]F ! %; !; EL"

# dl, j,l!15 # dl, j, j#13 ) on the
stack R. Note that we do not to add the base pair
l ! j here, but we shall do so when refining the interval
[l, j]C closed by it.

‹ Case E ! C 'backtrack in C(

Position i pairs with j in the popped segment [i, j]C.
We first take it to be a hairpin. If

$'i, j( # EL" # #
,k,l-!s

Ek,l " Emin # ( (18)

we obtain a refinement of ", "* " (%; ! # {i ! j};
EL"

# $(i, j)), which is pushed on the structure
stack R. Next, we construct stacks, interior loops, and
bulges by scanning for all admissible pairs p ! q, and
checking the condition

Ci, j # %'i, j, p, q( # EL" # #
,k,l-!s

Ek,l " Emin # ( (19)

Each time inequality (19) is fulfilled, we obtain a
refinement of ", "* " ([ p, q]C ! %; ! # {i ! j,
p ! q}; EL"

# %(i, j, p, q)), which is stacked on R.
We proceed to construct multiloops in correspon-
dence with the third term of Eq. (11). To this end we
loop over k, monitoring condition

Fi#1,k
M # Fk#1, j!1

M1 # di, j,i#15 # di, j, j!13 # #C # EL"

# #
,k,l-!s

Ek,l " Emin # (
(20)

yielding more " refinements, "* " ([k # 1,
j ! 1]M1 ! [i # 1, k]M ! %; ! # {i ! j}; EL"

#
di, j,i#15 # di, j, j!13 # #C), to be pushed on the partial
structure stack.

‹ Case E ! M1 'multiloop backtrack in FM1(

Table IV Recursive Calculation on the Minimum
Free Energya

Ci,j !min&$'i, j(, min
k!,i#1, j!m!2-
l!,k#m#1, j!1-

&Fk,lB # %'i,j,k,l(), min
k!,i#1, j!m!2-

&Fi # 1,k ' 1
M # Fk, j ' 1

M1 # #C))
Fi, jM1! min

l!,i#m#1, j-
&Ci,l # di,l,i' 1

5 # di,l,l# 1
3 # #B'j' 1( # #%)

Fi, jM !min& min
k!,i#m#1, j!m!1-

&Fi,k ' 1
M # Fk, jM1),

min
k!,i, j!m!1-

&Fk, jM1 # #B'k ' i())

Fj5 ! min
l!,1, j!m!1-

&Fj ' 1
5 ,Fl ' 1

5 # Cl, j # dl, j,l ' 1
5 # dl, j, j # 1

3 )

a Calligraphic symbols denote tabulated energy parameters for
different loop types. Hairpin loops: $(i, j); interior loops; bulges,
and stacks: %(i, j, k, l ); the multiloop energy is modeled by the
linear ansatz of Eq. (9). The particular recursion on the multiloop
arrays FM and FM1 yields a unique decomposition. The overall
calculation proceeds from smaller segments to larger ones. The
minimum free energy on the segment [1, j] is stored in Fj5. Upon
completion the minimum free energy is in Fn5.
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Equation (12) is effectively traced back by nibbling
away at the 3*-end, and checking for a base pair that
initiates the stem of the FM1 segment under consid-
eration. We first eat way at the 3*-end:

Fi, j!1M1 # #B # EL" # #
,k,l-!s

Ek,l " Emin # ( (21)

If (21) holds, we push "* " ([i, j ! 1]M1 ! %; !;
EL"

# #B). When "* is popped again, the 3* nib-
bling will continue.
We next check whether i and j can pair. If they can,

we must consider

Ci, j # di, j,i!15 # di, j, j#13 # #I # EL"

# #
,k,l-!s

Ek,l " Emin # (
(22)

which leads us to push "* " [(i, j]C ! %; !; EL"
#

di, j,i!15 # di, j, j#13 # #I).

‹ Case E ! M 'multiloop backtrack in FM(

To trace back equation (13), we insert the definition of
FM1, (12), into (13). As in the FM1 case, we start
nibbling away at the 3*-end, and also consider an
interior base pair. This takes partially care of the FM1
term in Eq. (13). The procedure here follows exactly
the E " M1 case, except that the nibbled segment
[i, j ! 1], to be pushed, is now marked M.
To complete Eq. (13) we only need to loop over k,

considering pairs k # 1 ! j, which fulfill

Fi,k
M # Ck#1, j # dk#1, j,k5 # dk#1, j, j#13 # #I # EL"

# #
,k,l-!s

Ek,l " Emin # (
(23)

The corresponding refinements "* " ([k # 1, j]C !
[i, k]M ! %; !; EL"

# dk#1, j,k5 # dk#1, j, j#13 # #I)
are pushed on R.
To cover the case in which the multiloop decom-

position segment [i, j]M contains exactly one interior
base pair, we complete the backtrack of Eq. (14) by
looping over k, searching for pairs k # 1 ! j such that

Ck#1, j # dk#1, j,k5 # dk#1, j, j#13 # #I # 'k' i' 1( ! #B

#EL" # #
,k,l-!s

Ek,l "Emin # (
(24)

and pushing "* " ([k # 1, j]C ! %; !; EL"
#

dk#1, j,k5 # dk#1, j, j#13 # #I # #B) ! (k ! i # 1).

‹ If " ! ',i, j-E ! %; !; EL"( caused no refinement to
be pushed on R, then push '%; !; EL"(.

C. Translation of Modified Nucleotides

All tRNA sequences of E. coli are from the compila-
tion of Steegborn,28 which can be obtained via anon-
ymous ftp from EMBL Heidelberg, ftp.embl-heidel-
berg.de, in directory /pub/databases/trna.
Bases are translated as suggested by Higgs.22 Most

modified bases occur only in loop regions and are
therefore classified as nonbonding. Only the follow-
ing bases are often found in paired regions and are
translated to their canonical equivalents:

H (?A) Unknown modified adenosine
ˆ [(Ar(p)] 2*-O-ribosyladenosine (phosphat)

% (?C) Unknown modified cytidine
B (Cm) 2*-O-methylcytidine
M (aC4C) N4-acetylcytidine
? (m5C) 5-Methylcytidine

; (G) Unknown modified guanosine
L (m2G) N2-methylguanosine
# (Gm) 2*-O-methylguanosine
R (m22G) N2,N2-dimethylguanosine

N (?U) Unknown modified uridine
J (Um) 2*-O-methyluridine
P (psi) Pseudouridine
] (m1psi) 1-Methylpseudouridine
Z (psi m) 2*-O-methylpseudouridine

Several drawings were kindly provided by Jan Cupal. This
work was supported by the Austrian Fond zur Fr̈derung der
wissenschaftlichen Forschung, project no. 11065-CHE, and
by the integrative core research of the Santa Fe Institute.
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