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Abstract. We present and study the behavior of a simple 
kinetic model for the melting of RNA secondary struc- 
tures, given that those structures are known. The model 
is then used as a map that  assigns structure dependent 
overall rate constants of melting (or refolding) to a se- 
quence. This induces a "landscape" of reaction rates, or 
activation energies, over the space of sequences with fixed 
length. We study the distribution and the correlation 
structure of these activation energies. 
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1. Introduction 

Single stranded RNA sequences fold into complex three- 
dimensional structures. A tractable, yet reasonable, mod- 
el for the map from sequences to structures considers a 
more coarse grained level of resolution known as the 
secondary structure. The secondary structure is a list of 
base pairs such that no pairings occur between bases 
located in different loop regions. Algorithms based on 
empirical energy data have been developed to compute 
the minimum free energy secondary structure of an RNA 
sequence (Zuker and Stiegler 1981; Zuker and Sankoff 
1984). 

The structure influences a variety of biophysical quan- 
tities such as, for example, kinetic rate constants of melt- 
ing. The situation is a composition of two mappings: a 
folding map that assigns a structure to a sequence, and a 
second map that assigns some biophysical property to the 
structure. By "landscape" we refer to the graph of this 
composite mapping that assigns to each sequence a scalar 
that quantifies some property based on the structure at- 
tained by the sequence. 

Systematic studies on RNA landscapes (Fontana et al. 
1991; 1993 a,b; Bonhoeffer et al. 1993) were encouraged 
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by the recent interest in statistical properties of randomly 
assembled RNA molecules which are used by several ex- 
perimental techniques in applied molecular evolution 
(Horowitz et al. 1989; Joyce 1989; Tuerk and Gold 1990; 
Ellington and Szostak 1990; Beaudry and Joyce 1992). 
The only class of value landscapes that is presently ac- 
cessible to extensive computer explorations is derived 
from RNA secondary structures (Fontana et al. 1991, 
1993 a, b). In this case fairly reliable prediction algorithms 
are available (Jaeger et al. 1989; Zuker 1989). Computa- 
tions of RNA tertiary structures or protein structures are 
both too expensive and not sufficiently accurate to allow 
systematic studies. 

In recent work we have investigated essentially two 
kinds of landscapes: the scalar landscape of the free ener- 
gy of folding, and the non-scalar landscape of the mini- 
mum free energy secondary structures themselves 
(Fontana et al. 1991, 1993 a,b). In this contribution we 
look into a further biophysical property that is mediated 
by the structure: the kinetics of melting. To this end we 
build a very simple kinetic model of melting (and, con- 
versely, re-folding) of RNA secondary structures. The 
model is then used as a specification to compute, for any 
given sequence, overall rate constants of melting and 
structure formation, or, equivalently, to compute the cor- 
responding activation energies. It is the landscape of these 
rates, more precisely: of the activation energies, that we 
investigate in this paper. It follows, in principle, the same 
generic concept mentioned recently in a short note (Fer- 
nfindez and Shakhnovich 1990), in which, however, no 
explicit sequence dependence was discussed. 

We also consider three different alphabets: the binary 
GC alphabet, the biophysical AUGC alphabet and the 
synthetic GCXK alphabet. A, U, G and C denote the 
naturally occurring bases adenine, uracil, guanine and 
cytosine. K and X are abbreviations for 3-fl-D-ribofura- 
nosyl-(2,6-diaminopyrimidine) and xanthosine, a deriva- 
tive of purine. The basic pair between K and X has rough- 
ly the same energy as the base pair between G and C 
(Piccirilli et al. 1990). Owing to the lack of experimental 
data we used the GC parameter set for XK. The synthetic 
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2.1. A mode l  f o r  mel t ing  R N A  secondary  s tructures 

An RNA secondary structure is a list of base pairs ( i , j )  
with i < j  and satisfying two conditions: (1) each base is 
involved in at most one pairing interaction, and (2) if (i, j)  
and (k, l) are pairs, then i < k < l < j  or k < i < j  < l (Water- 
man and Smith 1978). Such a list can be visualized as a 
planar graph with two major structural elements: loops, 
or unpaired regions, and stacks of contiguous base pairs, 
also referred to as stacks. Condition (2) states that bases 
within a loop cannot pair with bases outside that loop. 
Secondary structures can be assigned free energies by 
summing up the (measured) energy contributions from 
their constituent loops and stacks. In the following the 
term "secondary structure" refers to the minimum free 
energy secondary structure. 

Melting of RNA secondary structures is considered as 
an "all-or-none" process in the sense that only the com- 
pletely folded minimum free energy secondary structure, 
S, and the open chain, C, are assumed to be present at 
measurable concentrations. According to the common 
stationarity assumption of chemical reaction kinetics the 

hccc G CXK alphabet represents an alphabet with two equally 
strong base pairs. It is of particular interest since it allows 
one to study the effects of two base pairs versus one base 
pair (GC) without obscuring the results by the additional 
influence of different base pair strength and (GU) base 
pairing as in the natural AUGC alphabet. 

CCCC 
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5 

30 

hhhh chhh 
Fig. 1. Stepwise formation and melting of an RNA secondary struc- 
ture consisting of four helical regions. The unfolded molecule, C, the 
completed secondary structure, S, and all intermediates are repre- 
sented by the corners of a hypercube. Edges correspond to reversible 
reactions involving the formation and the melting of a single stack 

are encoded as a binary string (sl, s2...  s.) of length n 
with si= h or s~ = c indicating whether the ith stacking 
region is in double helical form or in the molten state, 
respectively. The complete secondary structure S is ex- 
pressed as (hhh ... h), and the open chain C is represented 
by (ccc ... e). The system, therefore, consists of 2" different 
states: S, C and the 2 " - 2  intermediates encoded as 

H 1 = (hcc ... c) H 2 = (chc ... c) ... H,  = (cc ... ch) 
H l z = ( h h c . . .  c) H13=(hchc . . .  c) ... H , _ I , , =  (c. . .  chh) 

: ... 
H12 .... - 1  - =  (hh ... hc) H13 .... = (hch ... h) ... H£3 .... = (chh ... h) 

concentrations of all intermediates are considered as 
small and constant in time. The over-all process is then 
described by the following reaction equation: 

kR 
c ~ _  s (1) 

ko 
Consistent with the current biophysical literature 
(P6rschke 1974) we use the terms "recombination" rate 
constant, kR, and "dissociation" rate constant, k D, when 
referring to the refolding and melting process, respective- 
ly. These terms were originally used in studies of double 
helix formation from separate RNA strands (P6rschke 
and Eigen 1971; P6rschke 1971). 

Consider a minimum free energy secondary structure 
S consisting of n double helical stacks denoted by ~/t, 
th, ... t/,. We obtain S from a sequence by using a variant 
of the Zuker-Stiegler algorithm (Zuker and Stiegler 1981; 
Zuker and Sankoff 1984). We further assume that the 
stacks q~, i = 1 . . . . .  n, form and melt independently of one 
another, and that the only intermediates between C and 
S are the partially folded structures containing any of the 
stacks ql. We do not consider intermediates consisting of 
other structural elements. Accordingly, all intermediates 

We retain the symbols C -  H 0 for the open chain and 
S ~ H12 .... for the folded molecule. The individual struc- 
tures can be thought of as occupying the corners of a 
Boolean hypercube of dimension n (Fig. 1). 

Expressions for overall interconversion C~,~ S can be 
derived from the general reaction mechanism which al- 
lows for interconversion of any two species. The kinetic 
equations are given by [C] = c, [H] = h  and [H,] =hu, 
(/~ = 1, 2, ..., 23 ... n). Let k,Q be the (first order) rate con- 
stant for the conversion of the intermediate/~ into Q 

= Z (kQc hQ-- kco c) 
Q 

tiu = Y'. (kQ~, h o - k~o h~,) - (kuc + k~s ) h u + kcu c + ks~ , s, 
0~C,S 

= Z (kes h e -  ksQ s) (2) 

with ku,= o. This may be rewritten in matrix form as 

l ~ = ( - - A ) . h + c  . p + s .  q, (3) 

where h = (h,) is the concentration vector of the interme- 
diates, p is the vector of the kc,, p = (kcl . . . . .  kclz  .... -1) 



31 

and q =  (ks2 , . . . ,  ks12 . . . .  -2)"  The matrix entries of A are 
given by 

• ~=-kQ,+[~k~+kuc+k~,s]6o~ ,  (4) 

The steady state assumption for intermediates, 

h , : 0  Vp ~ C,S (5) 

allows one to compute the stationary concentrations h-~ of 
all partially folded structures from the system of linear 
equations: 

A" h =  c .p  + s .  q. (6) 

If the system of monomolecular  reactions is strongly con- 
nected, that is: if there is a reaction pathway with positive 
rate constants between any two species, then A is invert- 
ible, and the concentrations of the intermediates are 
uniquely determined by 

= (A-2 p) c + (A --2 q)  S. (7) 

This is also an immediate consequence of Feinberg's 
deficiency 0 theorem (Feinberg 1977). From the equation 
for c, 

~ = k o ' s - k R ' c =  Y k, c h , -  Y'. kc, c + k s c s - k c s c ,  
/t¢C,S ,u¢C,S 

we obtain the explicit expressions for the overall rate 
constants as 

k~ = l p  + k c s - k c A - l p  

k o=k~A -1 q+ksc  (8) 

where k~ is the vector k~c and 1 is the vector (1, ..., 1). 

2.2. Sequential melting 

The case of sequential folding and melting of the sec- 
ondary structure S along an unbranched dominant path 

kot k12 ~ k23 k34 
C ~ - - -  H 2 ~  ---~-- -*ol ~ H223 klo k21 k43 

km-2, m ~ km-I m 
• .. ~, . . . . . .  H22 . . . .  -1 "k.,.'  ," S (9) 

can be readily solved analytically. The intermediates are 
ordered along this path such that the stack t/1 forms most 
easily, ttz is the next most likely, etc. Format ion of the 
stack t/~ is least likely. Equivalently, the stack q,~ melts 
most easily, etc. All other intermediates except the m - 1 
explicitly shown in the reaction scheme (9) are neglected. 

Let us now denote the concentrations of the intermedi- 
ates by: [H2]=hl ,  [H12]=hz,..., [H22 . . . .  - 2 ] = h , , - ,  
[C] = c and [S] = s. The kinetic equations are straightfor- 
ward: 

d l = - k o l c + k l o h ,  
/~l = kol c - (klo + k12 ) h I + k22 h 2 
/~2 = k12 h i -  (k21 + k23) h2 + k32 h3 (10) 

/~,.- 1 - k,.- 2,,.- 1 h,.-2 - (k,.-1,m-2 + k.,-1,,.)h,.-1 +k,.,,.-1 s 
= -k,,,~_ I s +km_l,mhm_ 1. 

The matrix A in Eq. (3) becomes (11) 

tklo + k12 -k21  0 ... 0 
-k12  k22+k23 -k32  .,. 0 

0 --k23 k32-]- k34... 0 
A = 0 0 -k34  ... 0 

: : ... : 
0 0 6 ... --km_'l.m_ 2 
0 0 0 ... k,,_l.~_2+km_i,m 

and the vectors p and q have only one non-zero compo- 
nent P2 = kcl and q~, = ks, m- 1" The overall rate constants 
results as 

kR = kol"k12".. . 'k, ,-2,m , 
IAI 

klo" k22"..." k,,,m_ 1 (12) 
k D =  IA[ 
As a consequence of the assumption of independent sub- 
structure formation the overall equilibrium constant fac- 
torizes into equilibrium constants for individual stacks: 

K =  k R = kol k12 k,._l,,. - - ' . . .  - (13) 
ko klo k21 kin, m-l" 

We shall make use of this fact in the computation of 
individual rate constants. 

2.3. Hypercubic melting 

It is reasonable to assume that the only allowed reversible 
reactions are those that involve structures differing in the 
state of one stack. The total reaction network is then 
given by the edges of an n dimensional hypercube, that is: 
all k,0 in Eq. (2) are zero except for intermediates whose 
binary encodings have Hamming distance d h = 1. The ex- 
plicit expressions for kR and kD become very unwieldy 
with this mechanism. We restrict the analytical treatment 
to the most simple non-trivial case of n - 2 .  For  cases 
with n > 2 we used Eq. (8) for numerical computation. 

Concentrations of intermediates are now denoted by 
[Ha] = [(ch)] = hi and [H2] = [(hc)] = hz, and the kinetic 
differential equations are given by 

= -- (k01 -[- k02 ) c ~- klo hi + k20 h2 
hi = ko~ c - (klo + kl 3) hi + k31 s 
/~2 = k02 c - (k20 + k23) h 2 + k32 s (14) 

= k13 hi + k23 h 2 -  (k31 + k32) s. 

After elimination of h 1 and h 2 we find for the two over-all 
rate constants 

koa k13 (k2o + k23) + k02 k23 (klo +k13 ) 
kR= 

(k~o + kx3)(k2o + k23) 
05) klo k31 (k2o ~- k23) Jr- k2o k32 (klo + k13 ) kv = 

(klo + k13)(k2o + k23) 

which, of course, fulfill the equilibrium condition 

kg k°l k13 k°2 k23 (16) 
K =  k~ = klo"  k3~- - k2o k32'  
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3. Estimation of rate constants 

Rate constants of a chemical reaction ~ are, in the sim- 
plest case, related to activation energies by means of an 
Arrhenius law 

{ (17) k~=A¢.exp -- R T J "  

In order to actually compute the magnitude of the overall 
rate constants via Eq. (8), we need some assumptions con- 
cerning the individual rate constants k,o. 

Each reaction involving two partially folded structures 
must have an equilibrium constant 

k~ (18) K ~  = kQ u . 

The corresponding change in free energy, AGue, is com- 
puted from the set of energy parameters used in the fold- 
ing algorithm (Jaeger et al. 1989; Freier et al. 1986). For a 
calculation of the rate constants we partition the free 
energy into contributions resulting from both the folding 
and the melting process. This is done in accordance with 
experimental data reported by P6rschke (1974) for the 
folding kinetics of the oligoribonucleotide A 6 C 6 U 6 into a 
hairpin helix. The individual contributions are split as 
follows. 

Let # and Q be two structures which differ by a single 
stack which is present in Q but molten in /1. Thus the 
relevant structural state in ~ consists of a stack of lengths 
s and the two flanking loops A1 and A2, of sizes 21 and 22, 
respectively. In ~t this state turns into a large loop A of size 
21 + 22 + s, according to the reaction path 

stack +A 1 + A  2 ~ A 1 + A  2 ~ A, (19) 

with A 1 + A 2 as the transition state. Let the destabilizing 
(positive) energy of a loop I be A G (l). The contribution 
from eliminating loop A is calculated from the energy 
tables underlying the folding procedure as: 

A G~Q °p ---- A G (A 1) + A G (A 2) - A G (A). (20) 

(In the case of a stack that does not close an internal loop 
both A 2 and A are joints or free ends, whose free energy 
contributions are set to zero.) The contribution from the 
stack formation is denoted b'y AG staekuo , and is directly read 
off the energy tables. 

The key assumption in estimating the rate constants is 
that along the reaction path (19) the absolute value of the 
stacking energy enters the rate constant of melting as the 
free energy of activation, A Go~: 

A t,~ stack \ 
k o . = A _ . e x p  - ~ "  ) ,  (21) 

while the activation energy of recombination, A G~, is giv- 
en by the change in loop energy: 

k,o= A + • exp ( 
ACrlOOp\ 

The rate constants determined by P6rschke for a loop of 
six bases at room temperature, ko= 2.6 x 10" s -1 and 

k R =  2.4 x 10 4 s -1  (T= 24.2°C), serve as reference. The 
energy parameter set used here (Jaeger et al. 1989, Freier 
et al. 1986) yields AG stack= -5 .2kcal /mol  and AG l°°v 
= 5.1 kcal/mol, and thus 

A+=1.35.10 s and A_=1.75.108 , (23) 

which agree within experimental error. We set A = 
A+ =A . The effective overall activation energies then 
are simply given by 

A G~ = - R Tin ~ and A G~ = -- R Tln k_p_~ . A  (24) 

Our calculations will refer to A G~ and A G~, since the 
over-all rate constants vary by more than 10 orders of 
magnitude (see also the Appendix). 

4. Computational results 

4.1. Dynamics 

In this section we briefly discuss the melting dynamics by 
numerically integrating Eqs. (2) for the case of tRNA Phe 
from E. coll. The secondary structure of tRNA Phe is 
shown in Fig. 2 a. It contains four stacks, labelled from 1 
to 4 clockwise, with stack 4 being the acceptor stack. A 
configuration is a binary string of length four, with the 
leftmost position referring to stack 1 and the rightmost 
position to stack 4. Configuration chch, for example, indi- 
cates the presence of stacks 2 and 4, and the absence of 
stacks 1 and 3. 

Figure 2b shows the dynamics at 37°C starting from 
the linear form. The two structures, each consisting of one 
stack that closes the smallest hairpin loop, hccc and chcc, 
build up fastest. Formation of hairpin 3, cchc, is slightly 
slower, while ccch, leading to the largest loop, is negligi- 
ble. Once a hairpin structure has formed, other hairpin 
components are added more easily than the closing of 
stack 4, since it now involves the formation of a more 
destabilizing internal loop. Hence from hccc, chcc and 
cchc the folding process leads to hhcc, chhc and hchc. The 
closing of stack 4 is now even more delayed, since it would 
involve formation of a multiloop whose free energy of 
formation is less favorable than other loop structures. 
Hence hhcc, chhc and hchc, all contribute to the build-up 
of hhhc. Finally the fully developed secondary structure, 
hhhh, is formed by closing the multiloop with stack 4. 

Figure 2 c shows the melting curve of tRNA Phe as the 
temperature dependence of the specific heat C, where 
C = d H / d T  and H = k  T 2 O l n Q / ~ T  (McCaskill 1990). 
The partition function Q has been obtained using Mc- 
Caskill's generalization of the dynamic programming al- 
gorithm for secondary structures (McCaskill 1990). The 
shoulder at about 45 °C is due to the opening of the mul- 
tiloop closing stack 4. The rest of the structure melts at 
68°C. The kinetics of melting are shown in Fig. 2d for a 
temperature of 80°C. The melting process begins with 
stack 4, and essentially reverses the sequence of the fold- 
ing events. With rising temperature the stacking energy of 
stack 4 drops the most relative to the other stacks: it 
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therefore opens first, even if it is the longest paired region. 
The temperature at which the linear structure is domi- 
nant for the first time, 71.5°C, agrees fairly well with the  
major peak at 68°C in the computed melting curve. 

k o l  k 1 2  k23 k34 
C ~ H 1 ~ Htz ~ H12 3 

klo k43 

km-2,  m - t  km l,m 

• " ~- H 1 2  . . . .  -1 -'~Z,~-, 
kin- -  l , m  2 

(9) 

4.2. Comparison of sequential and hypercubic mechanism 

The hypercubic melting model, Eq. (3), is solved numeri- 
cally to calculate k R and k D. The vectors (A-lp) and 
(A-~q) are obtained from the linear system A h =p and 
A h--q by a Gaussian elimination scheme based on 
Crout's algorithm for the LU decomposition (Press et al. 
1988, p. 43). 

The sequential model strictly underestimates the rate 
constants. A comparison of the effective activation ener- 

gies (Eq. (23)), AG~ and AG~, calculated for a sample of 
random sequences with both the sequential and the hy- 
percubic mechanism is shown in Fig. 3. Although the dif- 
ferences are small, we chose the full hypercubic mecha- 
nism for all subsequent computations. 

In the remaining sections we study the statistical struc- 
ture of the landscapes that results from assigning to each 
sequence a AG~ and a AG~ at 37°C according to our 
model. 

4.3. Distribution of activation energies 

Figure 4 shows that the average of AG~o increases linearly 
with the chain length n. The single most important contri- 
bution to k D is likely to come from the most stable stack. 
We know that the average size of a stack rapidly becomes 
a constant as sequences grow longer, while the average 
number of stacks increases linearly with n (Fontana et al. 
1993 b). Hence the linear increase in A G~. 

For a given length n, GC sequences form the most 
stable structures, GCXK sequences are less stable and 
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AUGC sequences are the most unstable. This fact is re- 
flected in the dependence of A G~ on the chosen alphabet• 
For the GC alphabet the dissociation activation energies 
of longer chains are so large that the structures practically 
never open totally• 

The average of A Gg" (Fig. 4) tends towards a constant 
value for longer chains. This suggests that the rate limit- 
ing step for structure formation is the closing of the first 
hairpin loop (and there may be several parallel and equiv- 
alent paths for this). The loop formation energies enter 
A G~, and the average loop size becomes constant for long 

chains (Fontana et al. 1993b). The alphabet dependence 
for the overall activation energy of recombination is re- 
versed with respect to the melting (dissociation) case. 

The distribution of activation energies is consistent 
with a Gaussian distribution for long chains (not shown). 
This behavior is to be expected since the individual struc- 
ture elements contribute independently to the activation 
energies and the number of structure elements increases 
(linearly) with chain length (Fontana et al. 1993 b). For all 
alphabets the variance of A G~ decreases with n, whereas 
the variance of A G~ increases approximately linearly 
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(Fig. 5). The  distr ibut ion of  free energies of  act ivat ion for 
the r e c o m b i n a t i o n  landscape,  therefore, sharpens  with in- 
creasing n. 

The  a lphabet  and chain  length dependencies  are exclu- 
sively due to the differences in the average structure sta- 
bility they induce.  This  is seen in Fig. 6, where  average 
act ivat ion energies of  b o t h  r e c o m b i n a t i o n  and dissocia-  
t ion are represented as a funct ion  of  the average free 
energy of  folding: the curves  are independent  of  a lphabet  

and chain  length. The  same holds  for the variances  (not 
shown) .  

4.4. Landscape correlation lengths 

Landscapes  that arise by ass igning s o m e  property  f(x) to 
a conf igurat ion  x can be characterized by their rugged- 
ness (Kauf fman and Levin 1987; K a u f f m a n  et al. 1988; 
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Macken and Perelson 1989; Eigen et al. 1989; Weinberger 
1990, 1991; Schuster 1991; Fontana et al. 1991, 1993a, b; 
Weinberger and Stadler 1992). This ruggedness can be 
conveniently quantified by means of a landscape correla- 
tion function 

( f ( x )  f (Y ) )au~m =d --  ( f ) Z  
a(d)= ( f ( p )  f ( q ) ) r ~ , . d o m _ _ ( f ) 2  . (25) 

The averages ( . ) a t ~ , y ) = a  refer to pairs of sequences with 
given Hamming distance d in sequence space, and 
(')ra.dom refers to a pair of sequences which are chosen 

independently at random. It has proven useful (Fontana 
et al. 1991) to characterize the autocorrelation function 
by a "correlation length" l defined by 

Q (l) = 1/e (26) 

although Q (d) is usually not a single decaying exponen- 
tial. 

The correlation lengths computed for both activation 
energy landscapes increase linearly with chain length n 
(see Fig. 7). The same behavior is observed for the correla- 
tion length of the free energy of structure formation 
(Fontana et al. 1993 b). For all three alphabets the rate of 
increase is considerably smaller for the activation energy 
of recombination. 

The AUGC alphabet has the highest correlation 
lengths for both activation energy landscapes; the GC 
alphabet has the smallest. This reflects the alphabet de- 
pendency in the stability of the secondary structures to- 
wards mutations in the underlying sequences. Indepen- 
dently of alphabet the correlation lengths of the A G ~  
landscapes are extremely short, indicating an almost un- 
correlated landscape. 

In agreement with Fig. 6 the A G~ landscape has a very 
weak dependence on chain length, suggesting once more 
that structure formation according to this model depends 
mostly on the first stack formation event. 

5. Conclusions 

We have presented a simple model for the kinetic melting 
(and refolding) behavior of RNA secondary structures. 
The model does not formalize a kinetic process of folding, 
or melting, that occurs on the space of all possible sec- 
ondary structure configurations that are accessible to a 
given sequence. It rather assumes that the secondary 
structure is known beforehand by an independent calcu- 
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lation. It then considers only those processes that involve 
those structural elements that constitute the minimum 
free energy secondary structure. Nevertheless, in the case 
of tRNA Ph~ the melting point, as determined by the kinet- 
ic model, agrees remarkably well with an independently 
calculated melting curve that takes into account the en- 
tire equilibrium ensemble of structures for the sequence 
(Computations according to McCaskill 1990 and Bon- 
hoeffer et al. 1993). 

The average values and variances of the activation 
energies of both melting and refolding are seen to depend 
only on the average energy of the structures, independent- 
ly of the alphabet used to build the sequences and inde- 
pendently of their chain length. 

The average overall activation energy of refolding sat- 
urates to a constant, and its distribution sharpens for 
longer chains. This indicates that the rate limiting step is 
the formation of the first stack from the linear structure. 

The correlation lengths for both activation energy 
landscapes scale linearly with chain length for all alpha- 
bets. The detailed scaling behavior of the "melting land- 
scape" closely resembles the landscape of the free energy 
of structure formation investigated in earlier work. The 
correlation structure of the "recombination landscape" 
varies weakly with chain length, in agreement with the 
previous result indicating a nucleation event. 
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Appendix 

In this appendix we explain formally why we consider the 
landscape of activation energies rather than directly the 
landscape of rate constants. The informal reason is obvi- 
ous: owing to the exponential relationship between acti- 
vation energy and rate constants, the landscape of the 
latter will appear practically uncorrelated. 

For the sake of simplicity we will assume that the 
pre-exponential factor Ae in Eq. (17) does not depend on 
the RNA sequence. We further assume that the AG ~ land- 
scape has a Gaussian distribution with correlation coeffi- 
cients 

( AG ~ (x) AG ~ (y)) - ( A G~) z 
O(x,y) = ((AG~)2) _ (AG~)2  (A1) 

where x and y denote fixed-length sequences. In view of 
our results in section 4.3 the Gaussian assumption is jus- 
tified. In order to facilitate the subsequent calculations we 
will use the dimensionless variables 

AaO(x)- <aG ~) 
O~ = x / ( ( A G , ) 2 >  _ ( A G , > 2  • ( A 2 )  

The correlation coefficient remains unchanged by this 
linear transformation. From the assumption of a Gaus- 
sian distribution we obtained for the joint distribution 

1 
p(g~,g,)  = 

2 re x / 1 - 0 2  (A3) 
{ 1 _ gyZ)} 

• exp -- 2(1 0 2 - - ~ ' ( g f f - - 2 Q g = g Y  

for any two sequences x and y (using the abbreviation ~ = 
(x, y)), and 

p ( g ) = ~ e x p  - ~ g  . (A4) 

The correlation coefficient 0 (x, y) of the corresponding 
rate constants is given by 

(kxk~,) -- @)2 
0 (x ,y )=  ( ~ f ~  . (A5) 

This expression is evaluated by considering that the rate 
constant can be expressed as 

k ~ = B - e  q'g~ with 
(AG ~) 

B = A . e  R T  ' 

q = _ , , / ( (a  G~) 2) -- (AG~> 2 
R T  

From the Gaussian integrals 
+ c o  

(k)  = 1 exp - -  ~ -  g 2  . B e qg dg 
- o o  

=Beq2/2 - B x ~  

(k 2 ) =  ~ e x p  - ~ g  "B 2(eq°) 2dO 
- o o  

= B  2 e2q 2 = B  2 o~ 2 

(A6) 

(A7) 

(k x k y ) -  exp - 

' e q(°~+°') dgx dgy = B  2 e q2(1 +e) = B  2 o~1 +e(x,y) 

and with the abbreviation 

= e q2 = exp [ ( ~ -  j (a8) 

we obtain 

0= (x, y) - ~ - 1 (A9) 

The function f ( t )  = 77]-_1 is concave for all t and all ~ > 1, 

i.e. all T > 0 ,  and furthermore f ( 0 ) =  0 and f ( 1 ) =  1. It 
follows immediately that 

I Q (x, Y) I > I O~ (x, Y) I (A1 O) 

for all T > 0 whenever ~ (x, y) ¢ 0 (x, y) = 0 or 1. 
Let us assume that ~ (x, y) is only a function of the 

Hamming distance d = d~ (x, y) between sequences x and 
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y. Suppose  0 (d) has  a r ep re sen t a t i on  

1 
0 (d) = 1 - ~- d + o (d) (A11) 

where  I m a y  be in t e rp re t ed  as a charac te r i s t i c  length  scale. 
A s imple  ca lcu la t ion  then  shows tha t  ~ (d) m a y  be repre-  
sented as 

1 
~, (d) = 1 - ~ d + o (d) (A12) 

wi th  the  charac te r i s t i c  length  scale on  the  l andscape  of 
ra te  cons tan t s  given by  

r, = - - '  I. (A13) 
log 

F o r  large n the  p a r a m e t e r  ~ increases  exponen t i a l l y  be-  
cause  

(AG~) 2) - -  (AG~)  2 ~ s 2 .  n (AI4)  

~ - - 1  
and  thus  - -  ~ 1. We final ly o b t a i n  

In  view of  the resul ts  of  Sect. 4.4, the  co r r e l a t i on  lengths  
for the  ac t iva t ion  energy  l andscapes  cons ide red  here cer- 
ta in ly  obey  the re la t ion  

I < C (n) (A16) 

and,  therefore,  we expect  tha t  

/'~ < C (1) (A17) 

for any  pos i t ive  t e m p e r a t u r e  T. We conc lude  tha t  l and -  
scapes of  r eac t ion  ra te  cons tan t s  become  essent ia l ly  un-  
co r r e l a t ed  for long  sequences.  
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