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The current implementation of the Neo-Darwinian model of evolution typically assumes that
the set of possible phenotypes is organized into a highly symmetric and regular space equipped
with a notion of distance, for example, a Euclidean vector space. Recent computational work
on a biophysical genotype-phenotype model based on the folding of RNA sequences into
secondary structures suggests a rather different picture. If phenotypes are organized according
to genetic accessibility, the resulting space lacks a metric and is formalized by an unfamiliar
structure, known as a pre-topology. Patterns of phenotypic evolution—such as punctuation,
irreversibility, modularity—result naturally from the properties of this space. The classical
framework, however, addresses these patterns by exclusively invoking natural selection on
suitably imposed fitness landscapes. We propose to extend the explanatory level for
phenotypic evolution from fitness considerations alone to include the topological structure of
phenotype space as induced by the genotype—phenotype map. We introduce the mathematical
concepts and tools necessary to formalize the notion of accessibility pre-topology relative to
which we can speak of continuity in the genotype-phenotype map and in evolutionary
trajectories. We connect the factorization of a pre-topology into a product space with the
notion of phenotypic character and derive a condition for factorization. Based on anecdotal
evidence from the RNA model, we conjecture that this condition is not globally fulfilled, but
rather confined to regions where the genotype-phenotype map is continuous. Equivalently,
local regions of genotype space on which the map is discontinuous are associated with the loss
of character autonomy. This is consistent with the importance of these regions for phenotypic
innovation. The intention of the present paper is to offer a perspective, a framework to
implement this perspective, and a few results illustrating how this framework can be put to
work. The RNA case is used as an example throughout the text.
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1. Introduction

The Neo-Darwinian model views evolutionary
change as resulting from the spontaneous genera-
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tion of genetic variation and the fixation of vari-
ants in the population through natural selection
and genetic drift. It provides a useful framework
for studying the evolution of phenotypic adapta-
tion, the evolution of gene sequences and the
process of speciation; for recent overviews,
see Futuyma (1998) and Graur & Li (2000). Yet,
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many important evolutionary phenomena do not
result naturally from the current implementation
of the Neo-Darwinian model. These phenomena
comprise patterns and processes of phenotypic
evolution (Schlichting & Pigliucci, 1998), such as
the punctuated mode (the partially discontinuous
nature) of evolutionary change (Eldredge &
Gould, 1972), developmental constraints or con-
straints to variation (Maynard-Smith et al., 1985;
Schwenk, 1995), innovation (Miiller & Wagner,
1991), directionality in evolution and phenotypic
stability or homology. Many of these issues were
debated extensively in the last two decades, but
their relationship to the mechanistic theory of
evolutionary change, as represented in popula-
tion genetics, remains unclear and tense.

Before selection can determine the fate of a new
phenotype, that phenotype must first be produc-
ed or “accessed” by means of variational mecha-
nisms. Phenotypes are not varied directly in
a heritable fashion, but through genetic mutation
and its consequences on development. We shall
take development fairly broadly and refer to it as
the genotype-phenotype map (Lewontin, 1974;
Wagner & Altenberg, 1996; Fontana & Schuster,
1998a). The evolutionary accessibility of new
phenotypes depends on this map, since it deter-
mines how phenotypes vary with genotypes. Its
structure therefore bears on how a biological
system evolves. In the early days of population
genetics, insufficient knowledge justified ignoring
the relationship between genotype and pheno-
type. This pragmatic approach has resulted in the
habit of representing the accessibility of pheno-
typic and genetic states by means of metric spaces
or even stronger structures, such as the Euclidean
vector space of quantitative genetics or the Ham-
ming graph of possible haplotypes in population
genetics. This habit has become a deeply embed-
ded assumption in the mathematical structure of
classical population genetic theory, yielding
models in which biological organization at the
phenotypic and genetic level is extremely fluid.
The phenomena cited above suggest that this
fluidity is largely a fiction and point at profound
asymmetries in the accessibility of phenotypic
and genetic states.

We argue here for the need of a mathematical
theory of evolution based on spaces that are less
structured than metric spaces. The motivation for

this apparently simple step comes from studies in
which RNA folding from sequences to secondary
structures is used as a biophysically realistic, yet
extremely simplified toy-model of a genotype-
phenotype map (Fontana & Schuster, 1998a, b).
These studies show that the space derived from
organizing the set of possible RNA shapes
(phenotypes) in terms of mutational accessibility
exhibits a weak and rather unfamiliar structure, a
so-called pre-topology, as explained in Section 4.
That topology provides a natural framework
for understanding punctuated change, direc-
tionality and modularity in simulated popula-
tions of evolving RNA molecules.

The classical way of addressing these pheno-
mena under the assumption of highly symmetric
phenotype or genotype spaces consists in resort-
ing to “fitness landscapes” conveniently construc-
ted to yield the right asymmetries. If not reflected
upon, this practice eventually becomes the claim
that these phenomena are caused by the structure
of the fitness landscape in conjunction with natu-
ral selection. In contrast, we argue here that the
asymmetries underlying these phenomena can be
rooted in the structure of the genotype—pheno-
type map itself, and thus can be logically prior to
fitness assignments. This shift has two conse-
quences. It grounds patterns of phenotypic evolu-
tion in biophysical principles and mechanisms
rather than arbitrary and convenient assump-
tions about fitness. It provides a far more natural
mathematical setting in which to address these
patterns.

The present work offers, in essence, but a per-
spective. In conjunction with Cupal et al. (2000),
it connects the intuitions underlying Fontana
& Schuster (1998a) with the proper mathematical
structures and vocabulary. Our goal is three-fold.
First, we argue that many of the recalcitrant
phenomena in evolutionary biology, like punc-
tuated innovation, developmental constraints,
homology and irreversibility, are but statements
about the accessibility topology of phenotype
space. Second, we review in a rigorous, yet hope-
fully accessible fashion the main results of the
mathematical theory of pre-topological spaces to
a degree that we understand them as relevant to
our present concerns. We then extend and apply
these instruments, illustrating the concepts by
means of the RNA case. Third, we suggest a few
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directions of how this abstract framework might
be utilized to model phenotypic evolution.

2. Accessibility Structures in Biology
2.1. METRIC SPACES

Accessibility structures, frequently called con-
figuration spaces, are an important conceptual
construct in evolutionary biology, computer
science and physics which often deal with combi-
natorial objects, such as genetic sequences, net-
work routings or spin systems. One typically
considers the collection of all possible objects
(configurations) in that class together with a suite
of “variation operators” representing processes
which transform one object into another. In gen-
etics, such operators may represent various types
of mutation, like base pair substitution or recom-
bination. In computer science, the operator may
be more abstract, such as the permutation of the
itinerary of a traveling salesman. In physics, it
may be the flip of a spin. Variation operators
define neighborhoods by establishing which
objects are accessible from which other objects.
For instance, the nearest neighbors of a DNA
sequence with respect to point mutations consist
of all one-error mutants of that sequence.

In many cases, the variational operators sup-
port a natural notion of “distance” which permits
upgrading the notion of a set to that of a “metric
space”. A distance measure, or metric, is formally
a mapping d from pairs of elements of a set X to
the positive real numbers, d: X x X — Ry, sat-
isfying four axioms for all x, y, z € X:

(D0) d(x, x) = 0.

(D1) d(x,2) <d(x,y) + d(y, z).
(D2)ifd(x,y) =d(y,x) =0 then x = y.
(D3) d(x, y) = d(y, x).

A well-known example of a metric space is the
set of all binary strings of fixed length n that can
be interconverted by point mutations alone. Con-
necting each sequence with its n immediate
neighbors yields the hypercube as a graph.
The hypercube is a highly regular topological
space where distance is the number of positions
in which two sequences differ (Hamming dis-
tance). This distance is an appropriate measure of
genetic accessibility between sequences.

Metric accessibility topologies have far-reach-
ing consequences for evolutionary dynamics.
Every element can be reached from any other
element by a series of mutations and the varia-
tional operator (e.g. point mutation) does not
bias the production of variants. Accessing ele-
ment y from x is as easy (or difficult) as accessing
x from y. This same symmetry is oftentimes as-
sumed to also hold for the effects of mutations on
the phenotype. In that case, selection becomes
the only process that can give a direction
to evolution. The problem, however, is that
phenotypic variation may well be biased even in
the absence of any variational bias at the genetic
level. Concepts like developmental constraint
and homology express this fact. Since they con-
flict with the assumption of a metric phenotype
(and/or genotype) space, these concepts are diffi-
cult to integrate with the existing mathematical
framework.

2.2. NON-METRIC SPACES

The notion of distance allows an intuitive con-
struction of the notion of “neighborhood” in
terms of “small distance”. The notion of distance
is so familiar that one is easily fooled into believ-
ing that it precedes the concept of “neighbor-
hood”. Yet, neighborhood is the weaker and
more primitive concept. To work with spaces
that support a notion of neighborhood but not of
distance runs against common sense. Some
examples may soothe the pain.

2.2.1. RNA Shape Space

In RNA, both genotype (polymer sequence)
and phenotype (polymer structure) are properties
of a single molecule. The folding of RNA se-
quences into secondary structures? (henceforth

YLet i, j, k, | denote positions of bases in the linear
sequence and (i, j) a base pair. The secondary structure of an
RNA sequence is defined as the set P of allowed base pairs
(here Watson-Crick pairs plus GU) which minimize free
energy, subject to a no-knot condition requiring that if (i, j)
and (k, ) are both in P, then i < k <j implies i <1 < (i.e.
base pairs do not cross). The secondary structure is com-
puted with an implementation (Hofacker et al., 1994) of
a dynamic programming algorithm (Nussinov & Jacobson,
1980; Waterman, 1978; Zuker & Stiegler, 1981) widely used
in laboratories to assist in the prediction of secondary struc-
tures. The procedure is based on empirical energy para-
meters (Turner et al., 1998; Walter et al., 1994).
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GCGGAUUUAGCUCAGDDGGGAGAGCGCCAGACUGAAYA UCUGGAGGUCCUGUGTPCGAUCCACAGAAUUCGCACCA

FIG. 1. RNA folding. A secondary structure (right-hand side) is a coarse-grained description of the three-dimensional
shape (left-hand side) of an RNA molecule. The secondary structure does not refer to spatial coordinates, but only to the
planar topology of base pair contacts. It can be viewed as a graph consisting of structural elements called cycles or loops:
a hairpin loop occurs when one base pair encloses a number of unpaired positions, a stack consists of two base pairs with no
unpaired positions, while an interior loop has two base pairs enclosing unpaired positions. An internal loop is called a bulge, if
either side has no unpaired positions. Finally, multiloops are loops delimited by more than two base pairs. A position that
does not belong to any loop type is called external, such as free ends or joints. Despite its abstract quality, the secondary
structure is not a fictitious entity. It represents a crucial folding stage on the path towards the tertiary structure of an RNA

molecule.

shapes) (Fig. 1), inspires a simple biophysically
grounded genotype-phenotype map that is
computationally and experimentally tractable.
Simulated populations of replicating and
mutating RHA sequences under selection exhibit
many phenomena known from organismal evolu-
tion: neutral drift, punctuated change, plasti-
city, environmental and genetic canalization,
and the emergence of modularity. Laboratory
experiments have also generated phenomena
consistent with these patterns (Spiegelman,
1971; Lenski & Travisano, 1994; Szostak &
Ellington, 1993; Schultes & Bartel, 2000). The
RNA model can therefore illuminate the extent to
which these patterns of phenotypic evolution are
rooted in statistical regularities of the geno-
type-phenotype map.

It is an important fact about RNA folding that
the shapes realized by sequences of fixed length
n do not occur with the same frequency. Only
a tiny fraction of shapes is “typical”, in the sense
of being realized significantly more often than

others.** As a consequence, (simulated) evolu-
tionary histories exhibit statistical regularities
that can be understood in terms of the statistical
properties of typical shapes.

We single out one such statistical feature that
is of special interest in the present context. Many
sequences have the same (typical) shape « as their
minimum free energy structure. We call such se-
quences “neutral” (in the sense of “equivalent”)
with respect to «. A structure « therefore identifies
an equivalence class of sequences. A one-error
mutant of a sequence that shares the same

**More precisely, as sequence length goes to infinity, the
fraction of such typical shapes tends to zero (their number
grows nevertheless exponentially), while the fraction of se-
quences folding into them tends to one. Consider a numer-
ical example: In the space of GC-only sequences of length
n = 30, 1.07 x 10° sequences fold into 218 820 shapes. 22 718
shapes (10.4%) are typical in the sense of being formed more
frequently than the average number of sequences per shape.
93.4% of all sequences fold into these 10.4% shapes (Griiner
et al., 1996a, b; Schuster, 1997).
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minimum free energy structure as that sequence
is called a “neutral neighbor”. By “neutrality” of
a sequence we mean the fraction of its 3n one-
error mutants that are neutral. (Again, the term
neutrality refers here to the phenotype—the
minimum free energy structure—of RNA se-
quences, and should not be confused with fitness-
based neutrality). Any given sequence folding
into a typical shape has a significant fraction of
neutral neighbors, and the same holds for these
neighbors. In this way, jumping from neighbor to
neighbor, we can map an extensive mutationally
connected network of sequences that fold into the
same minimum free energy structure (Schuster
et al., 1994; Reidys et al., 1997). Such networks
were termed “neutral networks” (Schuster et al.,
1994). The possibility of changing a sequence
while preserving the phenotype is a key factor
underlying evolvability. The evolutionary role of
neutrality has for the most part been viewed
conservatively as buffering the phenotypic effects
of mutations. Yet, neutrality critically enables
phenotypic change by permitting phenotypically
silent mutations to set the context for subsequent
mutations to become phenotypically consequen-
tial. Stated differently, neutrality shapes the ac-
cessibility structure of phenotype space.

To observe this, let us first ask what is meant
by phenotype space in the case of RNA. At the
outset we are given a set, not a space, of possible
shapes (on sequences of length n). To turn this set
into a space, we must define relationships of
nearness between shapes. One approach would
be to simply define a distance measure between
shapes based on a morphological comparison
and then derive a notion of neighborhood in
terms of small distance. This would assume
a metric space of shapes to begin with. The prob-
lem with this procedure is that it does not reflect
evolutionary accessibility among shapes, because
the variational operators underlying the defini-
tion of shape distance do not correspond to phys-
ical events or natural processes. In evolution,
a shape is modified through mutations in the
underlying sequence, rather than by direct modi-
fication of the shape, and the phenotypic effect of
a mutation is determined by the folding map. An
evolutionarily meaningful relation of nearness
between shapes must be mediated by the folding
map and not be independent of it. The interesting

case arises when the genotype-phenotype map is
many-to-one, as it is in RNA. A robust notion of
nearness among two shapes then must reflect the
mutual adjacency of the corresponding neutral
networks as determined in the mutational neigh-
borhood structure of genotype space (Fontana
& Schuster, 1998a, b) (see Fig. 2).

More precisely, the nearness of shape f to
shape o should correlate with the likelihood of
a transition from o to f through, say, a single
point mutation. In the simplest case, this likeli-
hood will be given by the fraction of boundary
shared by the neutral genotype sets of f and
o relative to the total boundary of the neutral set
of a. Let us write S(x) for the set of all sequences
folding into o, and 0S(x) for the set of all se-
quences obtained by one point mutation from
sequences in S(a). 0S(«) is the boundary of S(x) in
sequence space. For any two structures o and f,
S(B)n 0S(«) describes all those sequences folding
into f which are neighbors of sequences folding

Shapes

Neutral netyork

FIG. 2. Accessibility topology of shape space. In this
schematic representation of the map from genotypes (se-
quences) to phenotypes (shapes), nearness of phenotype
green: (light grey) to phenotype red: (medium grey) is deter-
mined by the size of the joint boundary between the red and
green neutral networks relative to the size of the red net-
work, A(greenvred). In this picture, a random step off the
red network is likely to end on the green network. Hence,
phenotype green is near red. However, a random step off
green is unlikely to end in red. Hence, red is not near green.
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into «. The accessibility of f from o, A(f v ),
now becomes the frequency ratio

_IS(Anas@)

AP =g

; (1)

where | X| stands for the number of elements
(cardinality) of set X.

Note that A(f v a) is not a distance measure
and a so-organized shape space is not a metric
space. In general, accessibility lacks symmetry:
A a) # A(x\ ), because the neutral sets
(and hence the boundaries) of o and f can vastly
differ in size. To pin down ideas with a cartoon,
suppose we organize the United States of Amer-
ica in terms of accessibility based on relative
shared boundary size. In this topology, Pennsyl-
vania is near New Jersey—a random step out of
New Jersey is likely to end up in Pennsyl-
vania—but New Jersey is not near Pennsyl-
vania—a random step out of Pennsylvania is
unlikely to end up in New Jersey. Consider, for
example, an RNA structure f that differs from
o by the presence of a small stacking region. The
formation of a stacking region implies the forma-
tion of an energetically costly loop. (To make
a stack, the RNA sequence must bend back on
itself, thereby creating a constrained loop region).
A stack cannot be initiated with just one isolated
base pair because that base pair cannot offset the
destabilization resulting from the loop it creates.
A minimum of three contiguous base pairs is
required on average to balance the cost of a small
hairpin loop. This is a thermodynamic all or none
situation. Triggering a transition from o to f (cre-
ating a small stack) requires, therefore, specially
poised sequences with the potential of establish-
ing three contiguous base pairs in a single point
mutation. Such sequences can be found by neu-
tral drift on the genotype network of «, but they
constitute only a tiny fraction of «’s neutral geno-
type set. Yet, they make up all the boundary that
o shares with f. Thus, f is hard to access from
o or, in topological language, f is not near o.f¥
Consider now a sequence randomly picked on

F1Just how hard is “not near”? A meaningful cutoff point
must be defined, but we deliberately gloss over this question
here. Details are found in Fontana & Schuster (1998b) and
we shall briefly return to the issue in Section 5.2.

the neutral genotype network of f. While the
stack in question is present, it is unlikely to be
energetically well stabilized, since this would re-
quire special rather than random sequences on
p’s network. A point mutation that destroys any
base pair of a marginally stable stack will there-
fore cause the entire stack to unwind, ending up
with shape «. It becomes clear, then, that many
sequences of network f border network o«. In
other words, « is easy to access from f. Thus, o is
near f3, but f is not near a.

Sequences that fold into f and that are located
in the boundary of o’s neutral network are often-
times compatible with both structures;if a suit-
able mutation then tips the energy balance in
favor of f. In RNA, the size of the intersection
between the set of sequences compatible with
o and the set of those compatible with f is a good
predictor for the accessibility A(ff v a) (Weber,
1997). Further properties of a neutral network of
a structure o, such as its degree of locality in
sequence space and its density within the corre-
sponding network of compatible sequences, are
related to the average thermodynamic properties
of o on the network and can to some extent be
read off the structure itself (Gobel et al., 1997).

In the topological sense of the word, an evolu-
tionary path is “continuous” at a point in time at
which a phenotypic change occurs, if the trigger-
ing mutation is between neighboring genotypes
(in the topology of genotype space) and the new
phenotype is near the old one (in the topology of
phenotype space). Absent a notion of distance,
a neighborhood structure in phenotype space has
to be defined. We just argued informally that the
appropriate neighborhood structure is the one
induced by the genotype-phenotype map which
determines the likelihoods for converting one
phenotype into another by the application of
a genetic operation. This is to be distinguished
from an approach in which continuity is defined
through the presence or absence of some discrete
character, or even by a mere “jump” in fitness.
RNA secondary structures are discrete objects
to begin with and so is their change. What

11A sequence is compatible with a structure, if it is able to
fold into that structure, although the latter may not be (and
typically is not) the minimum free energy structure.
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determines continuity is not the degree to which
a modification is incremental, but the degree
to which that modification is easy to achieve
by virtue of the mechanisms underlying the
genotype—phenotype relation. In our picture, a
phenotypic change is discontinuous, if it consti-
tutes a “jump” from a developmental perspective
(fitness, for that matter, may not change at all),
that is, if it is realizable by a continuous genetic
change for only a small fraction of genotypes. At
least in RNA, the discontinuity and the magnitude
of change are not always congruent. The stack
example illustrates how morphologically large
changes (absence of a stack) can be continuous.
Examples given in Fontana & Schuster (1998b)
show how morphologically small changes, such
as a simple shift between opposing strands of
a stacking region, can be discontinuous.

Finally, the asymmetry of phenotype space can
cause evolutionary change that is directional
in the absence of directional selection. The size
difference between a large and a small neutral
network acts as a ratchet for a drift-induced
discontinuous phenotypic transition that leaves
fitness the same. If a phenotype o is near f, but
p is not near o, a fitness-neutral transition from
p to o is difficult to revert since the entry point
will be rapidly lost by drift on the large o-net-
work.

RNA shape space, if organized (statistically)
in terms of shape variability through genetic
mutation, is not a metric space. In Section 5, we
shall see that its structure is even weaker than
a topology.

2.2.2. Subspecialization of Duplicated
Genes—the DDC Model

After a duplication, two copies of a gene can
undergo different evolutionary fates. One copy
may lose its function through a destructive muta-
tion, becoming a pseudo-gene (Walsh, 1995). In
this case, the functional situation of the genome
reverts to the state preceding the duplication. In
another scenario, one gene acquires a new func-
tion, while the other maintains the original one
(Ohno, 1970). Finally, both genes may each spe-
cialize to a subset of the functions of the ancestral
gene. There is an emerging consensus that
the most frequent mode of evolution after gene

duplication is functional subspecialization
(Hughes, 1994). The causes of subspecialization,
however, are unclear. One model assumes that
the ancestral gene represents a compromise be-
tween the multiple functions it carries out, and
that disruptive selection after duplication will
drive each copy to optimize a subset of the ances-
tral functions (Hughes, 1994). An alternative
model, the DDC model (Force et al, 1999),
explains subspecialization by variational biases
in phenotype space similar to the ratchet-driven
directional change in RNA secondary structure
described above.

DDC stands for duplication, degeneration and
complementation. The model considers a gene
that is expressed in a variety of domains
(organ tissues) where it participates in different
developmental functions. Each expression do-
main is assumed to be regulated by a different set
of modular enhancer domains. An enhancer do-
main is a short stretch of non-coding DNA that
binds transcription factors which influence the
expression of the gene. Enhancers often are
modular, that is, for each expression domain,
there is a physically and functionally distinct
enhancer directing the expression in the corre-
sponding domain. Some enhancers are phylo-
genetically highly conserved, and therefore seem
to be tightly constrained. A mutation is likely to
destroy the function of such an enhancer. As in
the RNA case, a first asymmetry arises because
a non-functional sequence is “near” an enhancer,
but no enhancer is “near” a non-functional se-
quence. Thus, enhancers of duplicated genes will
tend to degenerate. Since gene function is re-
dundant after duplication, any degeneration of
one enhancer will be phenotypically neutral as
long as the other enhancer is maintained. The
deleterious mutation will simply be comp-
lemented by the enhancer(s) of the duplicated
gene. The degeneration of redundant enhancers
will continue until either one gene has lost all its
enhancers while the other copy has retained
them, or until a complementary set of enhancers
remains among the two genes. In the former case,
one gene becomes a pseudo-gene. The latter case,
however, enables the evolution of subspecializ-
ation (through mutations in the coding regions)
which will be maintained as long as the functions
served by each copy are required for survival and
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reproduction. Examples consistent with this
model are the expression of engrailed (eng) (Force
et al., 1999) and distal less (Dlx) (Quint et al.,
2000) paralogues in zebrafish. Since there are
many more combinations of complementary en-
hancer sets enabling subspecialization than caus-
ing the loss of a gene, there is a strong bias
towards evolving subspecialization (provided the
ancestral gene has more than two expression
domains). The model does not assume that sub-
specialization is favored by natural selection; it
only assumes that mutations which eliminate an
expression domain (a developmental function)
from a gene are selectively neutral because of
complementation and that the total loss of
a function is selected against.

The DDC model is an elegant and genetically
plausible model of how directionality can be the
outcome of an evolutionary process without di-
rectional selection. Like in the previous RNA
example, the main reason for this directional bias
resides in the mutational accessibility structure of
the phenotypic (functional) states involved.

2.2.3. Unequal Crossover

Asymmetric accessibility structures are not
limited to phenotypic states, but can arise at the
genetic level as well. Accessibility structures in-
duced by homologous recombination (crossover
at corresponding regions within chromosomes or
sequences of fixed length) are topologically
equivalent to the metric spaces induced by point
mutations (Gitchoff & Wagner, 1996; Stadler
& Wagner, 1998; Stadler et al., 2000). The situ-
ation, however, differs with unequal crossover
(where chromosomes are misaligned and the
number of genes on a chromosome can change).
Shpak & Wagner (2000) suggest that the geno-
type space induced by a model of unequal cross-
over is not metric. The problem here is again
a lack of symmetry. Of course, distance measures
on this genotype space can be defined, but any
such measure would not reflect the accessibility
structure induced by unequal crossover. This
is analogous to the RNA case where any number
of morphological similarity measures between
shapes can be defined—but they do not reflect
the mutational accessibility induced by the
folding map.

3. Evolutionary Patterns and Phenotypic
Accessibility

3.1. PUNCTUATED EQUILIBRIA

The term punctuated equilibrium was intro-
duced to describe a pattern of phenotypic
evolution inferred from the fossil record
(Eldredge & Gould, 1972) in which a lineage
spends a large amount of time in a state of stasis,
that is, of no directional change, and then
suddenly undergoes a phenotypic transition.
A variety of mechanisms, ranging from sudden
changes in the environment to speciation
events that break up the homeostasis of the geno-
type (Maynard-Smith, 1983) can generate this
pattern. It is worth noting, however, that some
well-documented examples of punctuation, like
the fossil record of Olenus, a trilobite, are charac-
ter specific rather than involving the whole
phenotype. This runs against the idea that
punctuation is caused only by some general
factor like the breakdown of genetic homeo-
stasis during speciation (Wagner, 1989b). Com-
putational models of RNA secondary structure
evolution (Huynen et al., 1996; Fontana & Schus-
ter, 1998a) also show a pattern of punctuation.
The population drifts on a neutral network
in genotype space while maintaining the same
phenotype o, until it encounters the neutral
network of a new advantageous phenotype f.
If § is not near « in the topological sense sketched
previously (Section 2.2.1), a (finite) population
will spend a long time drifting on the network
of o. In the RNA model, punctuation correlates
with a discontinuous phenotypic transition.
Recall, however, that our definition of discon-
tinuity does not hinge on “suddenness”; the
phenomenology of “long periods of stasis ending
in phenotypic change” is but a population dy-
namic manifestation of the topological structure
of phenotype space induced by the genotype-
phenotype map, and does not require exogenous
events. It is therefore tempting to speculate that
some of the punctuation events seen in pheno-
typic evolution are discontinuous phenotypic
transitions in some appropriate developmental
sense. At the same time, the gradual transitions
typical for the Neo-Darwinian model of evolu-
tion correspond to continuous evolutionary
trajectories connecting nearby phenotypes.
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3.2. DEVELOPMENTAL CONSTRAINTS

Accessibility directly relates to the notion of
developmental constraints which emphasize the
limitations to phenotypic variation realizable in
the neighborhood of a genotype. Turning a snail
into a horse in a single step is not just discontinu-
ous, but an impossible operation if “step” means
a continuous genetic change, that is, one that
remains in the neighborhood of a given genotype.
There may, however, exist continuous paths in
phenotype space that connect a snail with
a horse. The existence (or absence) of such paths
is a statement about the accessibility structure of
phenotype space. The issue is important, because
such paths are likely to show up as definite evolu-
tionary trajectories.

We mention two well-documented examples of
developmental constraints, because there is still
some confusion about the existence of such con-
straints. The best understood example concerns
patterns of phalanx reduction which is highly
regular in amniotes and frogs (eutetrapods) and
differs from the patterns in newts and salaman-
ders (urodeles). This is caused by developmental
differences in hand/foot development between
urodeles and eutetrapods (Shubin & Alberch,
1986), as shown experimentally by Alberch
& Gale (1983, 1985) in two landmark papers. The
logic of the argument is that the last digit to
develop is the first to be lost. In eutetrapods, the
sequence of digit development is 4-3-2-(5)-1 with
some limited variation in the timing of digit “5”
development. Consequently, the first digit to be
lost is digit “1” in frogs and amniotes. On the
other hand, the developmental sequence in
urodeles is (1,2)-3-4 in the forelimb and (1,2)-3-4-5
in the hind limb. Consequently, the first digits to
be lost are “4” and “5” in the forelimb and hind
limb, respectively. This pattern can be repro-
duced experimentally by decreasing the number
of cells available for digit development and is
thus not driven by natural selection. What is
driven by natural selection, of course, is whether
there is a loss at all. Another example of a devel-
opmental constraint underlies the fundamental
difference between the endoskeleton of higher ray
finned fish (teleosts) and that of fleshy finned fish
(Wagner, 1999), including tetrapods. The endo-
skeleton of the former consists in four radials

arranged along the anterior—posterior extension
of the fin basis, while the endoskeleton of the
latter is a complicated pattern of bones derived
from a branching arrangement of skeletal anal-
gen (Shubin & Alberch, 1986). The radials of the
teleost paired-fin endoskeleton are developmen-
tally derived from a cartilaginous disc that
arises early in ontogeny and is later divided in
two steps into four rods that ossify and form the
radials (Grandel & Schulte-Merker, 1998). This
mode of development constrains the pattern of
adult osteology to a distinct and more restricted
set of states than that of tetrapods and their fish
relatives, lung fish and coelacanths.

3.3. HOMOLOGY AND EVOLUTIONARY INNOVATION

Different characters in two species are homo-
logous if they have evolved from the same
character in a common ancestor (Fitch, 2000).
The notion of homology implies the existence of
alternative phenotypic solutions to the same
evolutionary problem. If there was only one solu-
tion, then all organs with the same function
would be structurally identical, which they are
not. For instance, there are obvious differences
between an insect wing and a bird wing even
though they both serve the same function. At the
same time, homologous characters can serve rad-
ically different functions and still retain the same
basic structure (Riedl, 1978). For instance, the
limb of tetrapods are used for everything from
swimming, running, digging to flying while re-
maining recognizably the same organ with the
same basic plan that is clearly distinct from, say,
arthropod appendages. Homology is a statement
about what remains the same despite the forces of
natural selection which act to adapt a character
for different functions. Homology is, therefore,
both a hypothesis about the existence of a com-
mon ancestral character and the accessibility
of character states by mutation and selection
(Wagner, 1989a, 1994, 1999). In the language of
this paper, different homologues exist in distinct
accessibility domains and two realizations of
the same homologue are elements of the same
accessibility domain.

The rather informal notion of evolutionary
innovation describes the fact that certain
phenotypic changes are difficult to achieve
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and seem more important for the subsequent
evolution of a character than others (Buss, 1987).
The concept is closely related to that of homol-
ogy (Miiller & Wagner, 1991), since identifying
“novelty” implies a definition of what constitutes
more of the “same”. An innovation may be char-
acterized as a transformation of a phenotypic
character that radically changes the set of sub-
sequently accessible phenotypes (Galis, 2001). It
is tempting to speculate that this notion is related
to the notion of discontinuous change in the
sense of Fontana & Schuster (1998a).

3.4. IRREVERSIBILITY AND DIRECTIONALITY

There are many examples of evolutionary re-
versibility, most notably the evolution of poly-
genic quantitative characters, such as body size
(Roff, 1997). Yet, not all evolutionary transitions
are readily reversible. For instance, the evolution
of a genetically inactive Y-chromosome or the
evolution of obligatory parthenogenesis seem to
be irreversible (Bull & Charnov, 1985). Many
examples of evolutionary irreversibility involve
the loss of genetic information, since it is easier to
lose a functional part of the genome, and the
corresponding phenotype, than regaining it by
mutation. Even if evolution as a whole is not
directional, there is sufficient evidence suggesting
that certain transformations are highly biased.
One direction of the transformation is easy,
like the loss of an enhancer element, but the
inverse step is unlikely to occur. The same holds
for the small stack example in the RNA case
detailed in Section 2.2.1. Some directional trends
in evolution are therefore explained more nat-
urally by asymmetries in transition probabilities
than by directional selection. These “entropic” or
combinatorial biases are, again, reflected in the
asymmetric accessibility between phenotypes.

3.5. CAVEATS

The definition of accessibility depends on the
available operators of genetic change and the rate
of mutation. In the RNA example (Section 2.2.1),
we defined accessibility in terms of a single point
mutation. This choice is motivated by simplicity
and assumes sufficiently high replication accu-
racies where the replica of a genome is unlikely to
contain two or more mutations with respect to its

template. In general, the definition of accessibility
should reflect the rate of mutation and the genetic
moves, such as insertions and deletions or recom-
bination, that are relevant in a given context.

A distinction must be made between the static
topology of phenotype space as induced by the
genotype—phenotype map under given genetic
operators and the consequences of that topology
for evolutionary dynamics. The extent of these
consequences depends, for example, on popula-
tion size. In an infinite population, evolution be-
comes essentially a kinetic problem in which the
issue of innovation does not figure. Two neutral
networks that share only a small fraction of their
boundary affect phenotypic transition times dif-
ferently in infinite and finite populations. This
contribution is only concerned with developing
a topological language for the static aspects of
phenotype space, motivated by our belief that
this topology profoundly affects evolution in
finite populations. In this section, we have
pointed at these consequences qualitatively, but
a quantitative analysis must take population size
into account. For the RNA case, see Weber
(1997); Fraser & Reidys (1997); Forst (2000);
Reidys et al. (2001).

Mutation rates, mutation operators, the envi-
ronment and the genotype—-phenotype map itself
are subject to evolution and so is the topology of
phenotype space. None of this is touched upon in
the present contribution.

Having brought together a series of arguments
of why it seems desirable, if not necessary, to
introduce non-metric accessibility structures
into the language of mathematical evolutionary
theory, we now proceed to present some of the
pertinent concepts.

4. Pre-topological Nearness and Neighborhood
4.1. TOPOLOGICAL CONCEPTS

This section provides a brief, yet rigorous, in-
troduction to the mathematical structures needed
to reason about the accessibility topology in-
duced by genotype-phenotype maps, such as the
RNA folding map. No original mathematics is
provided here. The effort rather consists in mak-
ing fairly abstract material accessible to the the-
oretical biologist who grapples with patterns of
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phenotypic evolution, but is unfamiliar with
topological concepts. We refer to the textbook of
Gaal (1964) for proofs that are not central to our
topic.

Sets augmented with relations among their ele-
ments are called “spaces”. Spaces are distin-
guished by the degree of structure they possess.
Figure 3 provides a highly simplified concept
chart. Euclidean vector spaces are perhaps the
most concrete, since they possess a rich algebraic
structure and are close to our intuitive under-
standing of time and space: vectors are elements
that can be added, multiplied with a scalar and
projected onto each other. We exploit this struc-
ture when making drawings. If it is removed, the
familiar notion of distance still remains intact
and characterizes a metric space. The shapes of
molecules—such as proteins or RNA—or the
sequences of genes are examples of elements
forming a metric space: shapes or sequences can-
not be added, but their distance (or similarity)
can still be quantified. If this traditional notion of
distance is dropped, a notion of neighborhood
still remains. Elements entertain relationships of
nearness, but nearness is not a number anymore.
Two elements may be near to a third, but there is
not enough structure to always state which one is
nearer. A space of this kind is a topological space.
It has enough structure to support a notion of
boundary that behaves in a familiar way like the
boundary we draw around an area on a sheet of
paper. More specifically, a set can be “closed” by
including its boundary, and closing a set twice
does not add anything further. Removing the
structure underlying this behavior of boundary
uncovers the weakest notion of nearness that
characterizes a pre-toplogical space. Dropping
the notion of neighborhood still saves conver-
gence. On giving up convergence, we are left with
a plain set.

Properties of an abstract space are often dis-
cussed in terms of a more concrete one. For
example, topologies are derived top-down from
metric spaces by using the notion of distance to
define neighborhood (such as ¢-balls in R"). This
makes everything a notch more familiar. Our
interest, however, is in those cases for which a no-
tion of distance is not available. This bottom-up
direction requires a more abstract axiomatic
approach.

Euclidean vector space

Orthogonality

(scalar product)

algebraic structure

(addition, multiplication with scalar)

Metric space

Distance

Uniformity ~ Completely regular topological space

Symmetry
Quasiuniformity ~  Topological space

Boundary
Pre-uniformity =~  Pre-topological space

Neighborhood

Convergence space

Convergence

Set

F1G. 3. Simplified topological concept chart. See main
text for details.

4.2. NEARNESS

When a numerical distance measure is not
available, nearness becomes a relationship that
must be explicitly declared to hold between two
elements of a set X.§§ The result is a list of pairs
(x,y) e X x X called a nearness relation U on
X(U < X x X):

U = {(x,y)|“y is U-near to x}.

It is not required that (x, y) € U implies (y, x) € U.
In general, U is not symmetric.

We expect a formal nearness relation to cap-
ture the essential intuitions about nearness. Any
nearness relation should, therefore, contain at the
very least (x, x) for all x € X, corresponding to the
intuition that an element x is always near to itself.
This is actually all one can say about a particular
U. Consider two nearness relations U and U’ (on
the same set X). If U = U’, we can think of U as

§§This usage of “nearness” is not related to the notions of
proximity or nearness in the sense of Pervin (1963); Herrlich
(1974).
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the result of applying a finer sieve, that is, a more
stringent set of conditions which is satisfied
by fewer elements compared to U'. Hence, U ex-
presses a finer scale of nearness compared to U’.
This affords a way of speaking about degrees of
nearness (or levels of resolution), despite nearness
not being a number. Furthermore, it seems natu-
ral to say that pairs of elements that are both
U-near and U’-near are also U nU’-near. (Note
that U n U’ is not empty, since (X, x) is contained
bothin U and in U’ for all x.) Finally, consistency
suggests that if y is U-near to x at one level of
resolution, it should remain so at any coarser
level.

Nearness is thus expressed by a collection %«
of relations U on X constrained to satisfy the
following axioms:

(Ul) 4= U for all Ue, where 4 = {(x, x)|
x € X} is called the diagonal.

(U2) U, U’ €% implies UnU' € %.

(U3) U e and U < U’ implies U’ € %.

The collection % is called a pre-uniformity.

4.3. NEIGHBORHOOD

An alternative way of structuring a set X with
a notion of nearness consists in defining for each
x € X a collection of subsets of X called neigh-
borhoods of x. In analogy to nearness relations,
a collection of neighborhood systems A" (x) on
X is formalized as a map A4": X —» Z(X) [where
2 (X)is the powerset of X such that for all x € X:

(N1) xe N for all N € A" (x).
(N2) Ny, N, € A/'(x) implies NynN, € A" (x).
(N3) N, € /(x) and N; = N implies N € A" (x).

The Ns are neighborhoods, ./"(x) is a neighbor-
hood system for element x, and the pair (X, ./")
is called a pre-topological space. We speak of
a neighborhood basis, if only (N1) and a weakened
version of (N2)

(N2') Ny, N, e A (x) implies that there is a N5 €
./V(X) such that N3 = NlﬂNz

are satisfied.

It will be useful to extend the notion of
neighborhood from individual elements to subsets
of X.

Definition (Neighborhood of a set). Let (X, A)
be a pre-topological space and B < X. Then N is
a neighborhood of B if and only if N contains
a neighborhood N, of each element x € B.

The neighborhood system, .4#"(B), for the set
B is thus given by

N (B)={N|Ne N/ (x)VxeB} = | N (x). (2

xeB

4.4. FROM NEARNESS TO NEIGHBORHOOD (AND BACK)

A pre-topological neighborhood system A~
can be constructed from a pre-uniformity %
in a natural way. For each x € X, we define its
neighborhood system ./ (x) to consist of the sets

Ulx]={yeX|(x,y)e U} foreach Ue#. (3)

It is easy to verify that the sets U[x] satisfy the
conditions (N1-N3) defining a neighborhood
system. We call A7, with A7, (x) = {U[x]|U € %}
the neighborhood system induced by the pre-
uniformity %.

Conversely, given a neighborhood system ./
we may construct a corresponding pre-uniform-
ity as the collection % - of all sets U of the form

U={(x,y)|xe X,yeN, forsome N, e N (x)},

(4)

plus all sets U’ containing some U [axiom (U3)].
Construction (4) says that a particular U is ob-
tained by choosing for each x € X, some neigh-
borhood of x and (naturally) declaring its
elements to be near x. The chosen neighborhoods
are removed from the system ./ and the
procedure is repeated to obtain a new U until
all neighborhoods have been used up. %, is
a pre-uniformization of the neighborhood
system A"

A pre-uniformity % and its induced pre-topol-
ogy (X, /") are very similar ways of structuring
the set X. The pre-topology .45, induced by the
pre-uniformization .47 of 4" always coincides
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with A" This is shown in Appendix A.1.1. The
converse, however, is not true in general. The
relation between pre-uniformities and pre-
topologies on X is not one-to-one. In general,
different pre-uniformities give rise to the same
pre-topology.

4.5. FROM PRE-TOPOLOGY TO TOPOLOGY

The concatenation of two nearness relations U’
and U" is defined by

U'oU" ={(x,y)|3z:(x, z)e U and (z, y) e U"}.
®)

U’°U"” contains both U’ and U” because each
nearness relation contains the diagonal 4 =
{(x, x)|x € X} by virtue of axiom (U1). The con-
catenation of nearness relations enables us to
lower the resolution of nearness: elements of U’
and U” are near on a finer scale than elements of
U’ U". We can think of the elements z in eqn (5)
as “in between” x and y.
A pre-uniformity % such that

(UB) for each U e there is a Ve with
VeV cU,

is called a quasiuniformity. In essence, (UB) states
that the structure of the universe X is such that
for any two elements x and y, there is another
element z in between [this may bottom out at
some finite resolution where the only elements
between (x, y) are x and y themselves.]

The condition (UB) has an interesting conse-
quence which is best explained in the language of
neighborhoods rather than nearness relations. In
Appendix A.1.2, we show that the neighborhood
equivalent of (UB) is

(N4) For each N € ./"(x), there is an N’ € A4 (x)
such that N € A"(y) for all ye N'.

A pre-topology that satisfies (N4) is called
a topology. The difference between the two spaces
lies in the concept of boundary. Given a neighbor-
hood systemon X andaset 4 < X,wecallxe X
a boundary element of A if all the neighborhoods
of x intersect both A and its complement X\ 4.
The boundary of A4, 04, is the collection of all

boundary elements of A:
0A={xe X|VNe N/ (x):NnA # 0 and
NA(X\A4) # 0}. (6)

We can now define the interior and the closure of
A as

A=A\04, A=AU0A. (7)

By definition, a set A is open if it contains no
boundary element. Stated positively, a set A4 is
open if it contains a neighborhood of each of its
elements, that is, for each x € 4, there is a neigh-
borhood N € .//(x) such that N = 4. A cartoon
of the concept is given in Fig. 4. Open sets play
a prominent role, because the collection of all
open sets that contain x, 7 (x) = {A|A is open
and x € A} constitutes a neighborhood basis at
x (Gaal, 1964). In fact, if a neighborhood system
N (x) satisfies (N4), then 7 (x) is a basis of A" (x)
and vice versa (Theorem IX' in Alexandroff &
Hopf, 1935).

Returning to the difference between a topology
and a pre-topology, consider the behavior of the
closure operation, 4UJA. For the sake of simpli-
city, assume the open sets .7 (x) as the neighbor-
hood basis of the topology. We close an arbitrary
set 4 by adding all its boundary elements (6).
What happens if we perform a closure twice?
Intuitively, once a set has been closed, there are
no further boundary elements and therefore
nothing should happen. This is indeed how the
boundary operation behaves in a topology. Yet,
in a pre-topology, adding all boundary elements
to a pre-topological neighborhood may result
in the creation of further boundary elements.

FIG. 4. Open sets. An open set contains a neighborhood
of each of its elements.
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Consider a scenario in which x is among the
boundary elements 04 just added to A. Suppose
further that there exists an element y outside of
A all of whose neighborhoods N, contain the
previous boundary element x. Owing to the in-
clusion of x, y has now become a boundary ele-
ment of 4UJdA. When y is added at the next
application of the boundary operator, this scen-
ario may repeat itself and the set may continue
growing. This cannot happen in a topology. If
x is in the neighborhoods N, of y, any N, must
contain at least one neighborhood of x (because
the N, are open sets). However, if x is a boundary
element, then y must be one too, because its N,
will intersect A by virtue of containing a neigh-
borhood of the boundary element x. Thus, once
all boundary elements have been added to A4, no
further boundary elements can be created. In
a topology, the boundary operator satisfies

00A < 04,

which is equivalent to the idempotence, A = A, of
the closure operation (Albuquerque, 1941). The
notion of boundary, in the sense of definition (6),
does exist in a pre-topology, but its behavior is
not as familiar as in a topology. Pre-topological
spaces can be specified by equivalent axiom sys-
tems in terms of neighborhoods, closure, interior,
or boundary. Their mutual translations are sum-
marized in Appendix A.1.5.

Finally, symmetry results from the additional
requirement:

(US) U € % implies U™ = {(x, y)|(y,x) e U} e %.

It follows from (U2) that the symmetric relations
UnU™" are also nearness relations. If (US) is
satisfied, one speaks of a semiuniformity, and if
both (US) and (UB) hold, we have a uniformity. In
terms of neighborhoods, the symmetry axiom
(US) implies two equivalent properties.||||

(RO) x € {y} implies y € {x} for all x, y € X.
(S') x € (A (y) implies y € (A" (x).

Axiom (RO), introduced by Sanin (1943), plays an
important role in topology as a notion of sym-

[lIThe equivalence is proven in Appendix A.1.4.

metry. Cech (1966, Theorem 23.B.3) proved that
a pre-topological space is semiuniformizable if
and only if it satisfies (S'), and, equivalently, (RO).

4.6. CONTINUITY

The debate on continuity in evolution would
greatly benefit from a formal definition of the
term. The notion of nearness is instrumental for
this purpose. Before connecting nearness with
continuity, however, we begin with the most gen-
eral notion of continuity, which depends on even
less structure than is available in pre-topological
spaces.

The definitions of both nearness (Section 4.2)
and neighborhood (Section 4.3) make use of the
same generic structure. This structure deserves
special emphasis. Let X be a set. A filter
on X (Cartan, 1937; Gaal, 1964) is a subset # of
the power set of X, #(X), with the following
properties:

(F1) 0¢ 7.

(F2) F;, F, e # implies the existence of a set
F; € # such that F5 = F; nF,.

(F3) If F, e # and F, < F, then F; € 7.

If & satisfies only (F1) and (F2), one speaks of
a filter basis (which uniquely defines a filter). It is
easy to verify that the neighborhood system
A (x) of an element x in a pre-topological space
(X, A7) is a filter on X, and that a pre-uniformity
% of nearness relations is a filter on X x X.

We say that & is coarser than ¥ (or ¥ is finer
than &) if # < 9. Equivalently, % is coarser
than ¥ if for every F € % there is G < F such that
G e 9. (Note the reversal in the subset relation
when passing from filters to their elements. See
also the notion of “resolution” in the context of
nearness relations, Section 4.2.)

A filter # 1is finest (or maximal) if it is
contained in no other filter. This is equivalent to
saying that

forany A < X either Ae F or X —AeZ (8)
which justifies the name “filter”.

Filters are useful in defining convergence.
Think of filters as generalizations of sequences.
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Given a sequence (x,) = {X;, X5, ..., |, define the
“ends” as F, = {xx, Xx+1,... }. It is straightfor-
ward to verify that the set of ends, {F,|ke N},
satisfies (F'1) and (F2) and is therefore the basis of
a filter #. (The basis here is like a series of
telescopically nested tubes.) In the case of a se-
quence, we say that (x,) converges to a limit point
X, x, — x, if for all ¢ > 0 there is an integer n, such
that |x, — x| <& for all kK > n,. The notion of
filter enables us to speak of convergence without
invoking a notion of distance ||x; — x/||. Stated in
terms of neighborhoods, the convergence x,, —» x
means that for every neighborhood N of x, there
is an integer ny such that x; € N for all k > ny.
The phrase “x; € N for all k > ny” simply means
that F,, = N. Recall that a neighborhood system
constitutes a filter. Thus, (x,) converges to x if
and only if the filter # generated by the ends F; of
(x,) 1s finer that the neighborhood filter of x, that
is, A '(x) < Z. This replaces the notion of a
distance becoming smaller and motivates the def-
inition of (filter) convergence in a pre-topological
space:

Definition (Convergence). Let (X, /") be a pre-
topological space and let # be a filter on X.
Then % converges to x, in symbols: # — x or
x elim %, if and only if 4"(x) = Z.

Filter convergence sets the stage for the notion
of a continuous function.

Definition (Continuity). Let f:(X, V) > (Y, .#)
be a function between two pre-topological
spaces. We say fis continuous in x € X if for all
filters # on X

F — x implies f(F) — f(x). 9)

Let us translate the definition of continuity
into the language of neighborhoods:

Lemma 1. Let f: (X, N) - (Y, . #) be an arbit-
rary function between two pre-topological spaces.
Then the following propositions are equivalent:
(i) fis continuous in x.
(i1) For every neighborhood M of f(x), there is
a neighborhood N of x such that f(N) < M.

(it) 4 (f(x)) S f(A (x))-

Assertion (iii) follows directly from the definition
of convergence and the definition of continuity.
Observe that “# — x implies f(#)— f(x)” be-
comes “A(x) € F implies (f(x) < f(F)".
A fact about filters (given here without proof)
asserts that an arbitrary function f preserves
coarseness, that is, # < ¥ implies f(F) < f(9).
Hence, flA"(x)) € f(#). But “f(AN(x) <f(F)
implies Z(f(x)) <f(%#)” is equivalent to
“AM(f(x)) = f(A(x))” which, in words, states that
the neighborhood filter of f{(x) is coarser than the
image of the neighborhood filter of x. This is
equivalent to assertion (ii) which is but the defini-
tion of filter coarseness. At the same time, (ii) is
the familiar neighborhood-based definition of
continuity (Fig. 5).

In Appendix A.1.3, we rephrase continuity in
terms of nearness relations or pre-uniformities.

4.7. FINITE SETS

Pre-topologies simplify considerably in the
case of a finite universe X. There are only finitely
many filters and every filter # is of the form

F =F={F|F<F, (10)

where F is a subset of X. (Such filters are called
discrete filters.) This one-to-one correspondence
between subsets of X and filters on X permits
most properties to be stated in terms of subsets.
A particularly useful subset is the vicinity asso-
ciated with the neighborhood filter .4 (x):

N(x) = ﬂ/V(x) = ﬂ{N|NEJV(x)}. (11)

The notion of vicinity can be used to establish
a correspondence between pre-topological spaces

FI1G. 5. Continuity. For each neighborhood M of f(x),
there is a neighborhood N of x such that f(N) € M.
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(X, A7) and directed graphs (digraphs) I'(X, E)
where X is the vertex set and E the set of directed
edges from x to y, E = {(x, y)|x € X, y € N(x)\{x}}.

Properties of pre-topological spaces can now
be stated in more familiar graph-theoretical
terms. For instance:

¢ By construction, the vicinity N(x) consists of
the forward-neighbors of x and x itself.

e A pre-topological space (X, ./7) is finer than
another pre-topological space on the same set
X, (X, A), if and only if, I'(X, E_ ) is a sub-
graph of I'(X, E ).

e A function f: (X, A7) = (Y, .#)1is continuous in
x if and only if, f(N(x) = M(f(x)), that is, if
fmaps the vicinity of x into the vicinity of f(x).

e Axiom (S') makes (X, ./") a symmetric directed
graph (two vertices are either connected by an
edge in each direction or not at all). Symmetric
digraphs are, of course, isomorphic to undirec-
ted graphs, which are, therefore, exactly the
finite pre-topological spaces satisfying (RO).

A finite pre-topological space is topological if
and only if, for each x € X and all y € N(x) there
exists an N (y) such that N(y) < N(x). This means
that the vicinities must be open sets.

e The open vicinity T(x) of an element x, that is,
the smallest open set containing x consists of
all elements that can be reached from x along
any number of forward-edges.

A concise characterization of directed graphs
that express particular topologies on their vertex
sets seems to be unknown. Some interesting re-
sults in this direction can be found in Cupal et al.
(2000).

5. Pre-topologies and the
Genotype—Phenotype Map

5.1. THE ACCESSIBILITY PRE-TOPOLOGY

Using the concepts reviewed in Section 4, we
next consider the structure of phenotype space
induced by a map ffrom genotypes G to pheno-
types P. The folding from RNA sequences to
secondary structures (Fig. 1 and Section 2.2.1)
will serve as an example.

The genotype-phenotype map assigns to each
genotype g a phenotype v = f(g).99 The central
question is how to organize the set of phenotypes,
that is, which neighborhood system is natural for
phenotypes? The corresponding question for
genotypes poses no difficulty, since physical pro-
cesses exist which directly change genotypes and
hence provide a natural neighborhood structure
on the set of possible genotypes. Phenotypes,
however, are not modified directly. Phenotypic
innovation is the result of genetic modification
mediated by development (the genotype—pheno-
type map). This reasoning motivated Fontana &
Schuster (1998a) to consider a notion of pheno-
typic neighborhood induced by the genotype-
phenotype map which differs fundamentally from
a notion of nearness among phenotypes based
solely on the comparison of their morphological
features.

The induced neighborhood structure on the set
of phenotypes reflects “accessibility” of one
phenotype by another through mutations in the
genotype of the former. An interesting situation
arises when the genotype-phenotype map is
many-to-one, which is typically the case in a real-
istic setting. The notion of nearness of a pheno-
type Y to another should be a robust property,
independent of a particular genotype giving rise
to y—it should, in a sense, reflect a feature that is
common to all genotypes whose phenotype is .
In a many-to-one map, phenotypes denote equiv-
alence classes of genotypes (the set of genotypes
sharing the same phenotype). Nearness among
phenotypes, then, must reflect the mutual adjac-
ency of these equivalence classes as determined in
the given neighborhood structure of genotype
space (Fontana & Schuster, 1998a, b).

We address this intuition formally by first ask-
ing a seemingly unrelated question: What kind of
neighborhood system .# on the set of phenotypes
makes the genotype—phenotype map everywhere
continuous?

From Lemma 1, we know that for f to be
everywhere continuous, we must have for all

494 To improve clarity of exposition, we shall ignore the
dependency of the phenotype on the environment. The in-
clusion of an environment does not affect the essence of the
arguments presented here.
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phenotypes ¥ and all genotypes g that . () <
f(A(g)). When several genotypes g; give rise to
the same phenotype V, the requirement for conti-
nuity becomes

M () < f(N(g1)) and
M) S f( N (g2) and ...

for all gef ().
system

(12)

Define the neighborhood

)= () f(N(9)

gef W)

= (SISef(V (@Vgef "W). (13)
In compliance with (N3), .&Z(y) is meant to
include all sets containing a set described in
eqn (13), but we shall not explicitly notate this
fact. Requirement (12) now becomes

M) < oY) for all . (14)
We shall see that .o/(y) has a simple inter-
pretation. By its definition (13), .7 (y) is just the
collection of sets S containing the image of some
neighborhood shared by all genotypes g with

phenotype y:
o/ (Y) = {S|3AN, € A (g) such that

fiN) = SVgef~ ')} =, (15

which is just the collection of images of neighbor-
hoods shared by all g with phenotype { [plus
supersets by virtue of (N3)]:

o = {fIN)|N e N (g)¥gef ()}

=/ < N A (g)>-
geS 1)

The collection Nyep-1(y)-4"(g) 1s the set of neigh-
borhoods shared by all genotypes g with pheno-
type ¥, {N|N € /" (9)Vg ef~()}. In the case of
RNA, () is the so-called neutral set (or neu-
tral network when all sequences folding into the
same structure are mutationally connected), and
Nger—wy-V (g) 1s the neighborhood system of the

(16)
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neutral set, A" ( ™ ()). (See the definition for the
neighborhood system of a set in Section 4.3.) In
sum, we have

M) = A () = SN (9)

gef'w)
=f< N /V(g)>=f(=/‘/(f1(lﬁ)))-
gef ')

In words, a phenotype 3 is contained in a neigh-
borhood N, of phenotype ¥ (N, € ./ (¥)) if and
only if there is a neighborhood of gef ()
which contains a genotype h folding into 4. This
is straightforward for maps between finite sets,
where the neighborhood structure is determined
by the vicinity (the smallest neighborhood, see
Section 4.7). In genotype space, the vicinity of the
neutral set of iy comprises all sequences obtained
by a single point mutation from sequences
folding into . With respect to phenotypes, the
vicinity of ¥, A(y), therefore consists of all struc-
tures 9 that can be accessed through a single
point mutation from sequences folding into :***

Ay = U fiNG@)

gef ' W)

— {9|3g ef () and h € N(g) such that

9=f(h)}. (17)
The pre-topology .7 on the set of phenotypes
is the weakest notion of phenotypic accessibil-
ity—weakest in the sense that, according to
eqn (17), for phenotype 4 to be in the neighbor-
hood of y, it suffices that 3 be realized just once
by some one-error mutant of a sequence folding
into . .o/ is the finest pre-topology on the set of
phenotypes P such that f:(G, /") - P is a con-
tinuous function. We refer to .o/ as the accessibil-
ity pre-topologytit of phenotype space or the
final pre-topology generated by f from (G, .4").

***The reader may wonder, in a first moment, why
the intersection in eqn (13) becomes a union in eqn (17).
More generally, the intersection of filters can be written as
the union of their elements. This is clarified in Appendix
A.l.6.

T11The concept of accessibility of phenotypes developed
here is not related to the notion of accessibility spaces in the
sense of Whyburn (1970).
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The most restrictive sense of accessibility arises
by requiring that 4 is in the neighborhood of
Y only if 9 is realized in the genetic vicinity of
every sequence with phenotype . In the finite
case, this translates to

J(N(g))

gef ' W)

C)

{9|Vg ef 1 (y):Ih e N(g) such that

9= f(h)}. (18)
In the infinite case, we cannot simply replace the
intersection of the filters f(.4/"(¢)) in eqn (13) by
their union, since the union of two filters is, in
general, not a filter (see Appendix A.1.6). Instead,
we must use the filter arising from the intersec-
tions of the individual neighborhoods. We use
the notation

FvYG={FnG|FeF, Ge%) (19

for the coarsest filter that is finer than both
Z and 9. Note that # v ¥ exists only if
FNnG #0 for all Fe Z and G e ¥%; otherwise,
Z and ¥ are called disjoint. Since f(g) € N for all
N ef(AN'(g)) and all g ef~ (), no intersections
are empty and the neighborhood filter

C) = (20)

\ AN ()

gef 1)

exists. % is the coarsest pre-topology that is finer
than f(A (g)) for all gef~'(y). We call it the
shadow pre-topology, because phenotype € € ()
“follows” y like a “shadow”, being the image of
a neighbor of every ¢ that folds into .

5.2. STATISTICAL NEIGHBORHOOD SYSTEMS

The accessibility pre-topology .o/ of the pre-
vious Section 5 was constructed from the require-
ment that the genotype-phenotype map be
continuous everywhere. This seems too strong a
requirement, resulting in a rather weak neighbor-
hood structure. One single genotype poised for
a transition from « to f suffices to make f access-
ible from o. The shadow pre-topology € errs
on the other extreme, as it requires that every

genotype of o be mutable into a genotype of f.
In the computational RNA genotype-phenotype
model, the @-pre-topology turns out to be trivial,
since the @-neighborhoods of o only contain .

The notion of accessibility described in Sec-
tion 2.2 emphasized the likelihood of a transition
from phenotype o to phenotype f§ by mutation of
genotypes underlying o. This affords a way
of interpolating between the extreme versions
of accessibility, ./ and %. The likelihood of
a phenotypic change is proportional to the num-
ber of genotypes with phenotype « that are adja-
cent to genotypes with phenotype f (Fontana
& Schuster, 1998b; Cupal et al.,, 2000), as ex-
pressed in eqn (1). An example distribution of
such numbers is shown in Fig. 6. In the simplest
case, a probabilistic version of accessibility intro-
duces a cutoff point. If A(fva) [eqn (1)] is
below that cutoff, f is not accessible from o.
Depending on the cutoff point, a range of accessi-
bility structures can be constructed on pheno-
types. The appropriate cutoff value should be
determined by biological factors, such as muta-
tion rate, population size, or the chosen time
frame (see Caveats in Section 3.5).

107 |
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;—E
Z 107 |
[
3
<

107 |

1 1 1 1
10° 10! 10° 10° 10* 10°

Rank

FI1G. 6. Accessibility distributions. The one-error mu-
tants of a sample of 2199 sequences folding into the tRNA
clover-leaf reference structure (length [ = 76, inset) were
folded. 28% had the same structure as the reference. 72%
folded into 141907 distinct shapes. The curve shown is
a log-log plot of the rank ordered A(f v tRNA) [eqn (1)]
for each of the 141907 shapes f. The vertical line is meant to
separate regions with different scaling, suggesting a natural
cutoff point above which a shape f3 is regarded as being near
the tRNA shape. For details, see Fontana & Schuster
(1998Db).
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The limiting pre-topologies constructed in Sec-
tion 5 served the purpose of formally justifying
the idea of a phenotype space topology defined in
terms of the mutational adjacency of genotypic
equivalence classes. A rigorous treatment of
a “statistical topology” (Fontana & Schuster,
1998b), however, must be based on consistent
probabilistic notions of neighborhood and near-
ness which are well beyond the scope of this
contribution. Probabilistic convergence spaces
(Richardson & Kent, 1996) or fuzzy topology
(Mordeson & Nair, 1998), in particular fuzzy
pre-uniformities (Badard, 1984), may perhaps be
useful in achieving this goal.

6. Continuity of Evolutionary Trajectories

An evolutionary trajectory can be viewed as
a map from the “time axis” into the space of
phenotypes. When analysing a series of paleon-
tological samples or a series of shape transitions
obtained from a computer simulation of RNA
evolution, the time axis is inherently discrete with
an obvious natural pre-topology. We simply
number subsequent samples and define the vicin-
ities on the time axis to be N(t) = {t,t + 1}.
The corresponding pre-topological space will be

Time

Genotype space

denoted by (N, 7). Its graph is the directed path
on the left in Fig. 7.

An evolutionary trajectory is the composition
of two functions. First, a function ¢g: (N, 7)) —
(X, %) that assigns a genotype ¢(t) to each point
t in (discrete) time. The genotype space (X, %) is
a pre-topology induced by the genetic operators,
such as point mutation in Fig. 7. This first func-
tion is then composed with a genotype—pheno-
type map f:(X, 9) — (Y, A"). The space structure
of the phenotypes Y is the accessibility pre-topol-
ogy N = ./ or €, as discussed in Section 5.1,
or a probabilistic version as discussed in
Section 5.2.

An evolutionary trajectory, then, is a map
T:(N, 7)) = (Y, N):t —1(t) = f(g(t)) whose first
component—the time series of genotypes
g(t)—is typically continuous, since genotypic
changes occur by means of elementary genetic
operators that determine the pre-topology ¢4 on
X. This need not always be the case, however.
For instance, if 4 is derived from point mutations
(as in Fig. 7), then multiple mutations [that is,
g(t) and g(t + 1) differ in more than one sequence
position], insertions, and deletions constitute dis-
continuities in ¢g: (N, 7) — (X, 9). Yet, if we do
not limit the case to continuity in the genetic

Phenotype space

x  fl) x [

x fx| x f@®

0000 OO | 0100 *O*
0001 OO | 0101 **0
0010 OO | 0110 *O*
0011 O ** | OI11 #hex

1000 **() | 1100 *()*
1001 **() [ 1101
1010 (%% | 1110 #xsx
1011 sk | 1111 (%%)

F1G. 7. Evolutionary trajectory. An evolutionary trajectory is the composition f° g of the temporal sequence of genotypes
and the genotype-phenotype map f. In the case of point mutations, the pre-topology % arranges the set X as a Hamming
graph. For illustrative purposes, the phenotype space is endowed with the accessibility pre-topology .«7. The genotype-pheno-

type map fis shown in the table.
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Pathin ‘~---»
phenotype space

Phenotype
space

F1G. 8. Continuity of an evolutionary trajectory. A short
trajectory t:(N, .7) — (Y, /") is shown. Transitions from
t to t + 1 are continuous, or more precisely, 7 is continuous
at t, if the transition [z(¢) ~ 7(t + 1)] follows a directed edge
in the pre-topology of phenotype space. In the present
example, there are two non-continuous transitions, namely
t(3)~1(4) and t(8)~t(9). Note that the transition
7(3) ~v t(4) becomes continuous in the topologization of
A since 1(4) is reachable from t(3) along a directed path.
The transition t(8) ~ 7(9), however, remains discontinuous.

trace of the evolutionary trajectory, anything
goes and nothing much can be said. If the
genotype—phenotype map f:(X,%) —»(Y,.A)
is everywhere continuous (/" = .</), only genetic
discontinuities can give rise to phenotypic
discontinuities.

In practice, accessibility will be more restrictive
than /" = .o/ (and less restrictive than A" = ¥).
As discussed in Section 5.2, “effective” accessibil-
ity is better described by a pre-topology that is
(much) finer than .&/. As a consequence, f will not
be everywhere continuous. It may even be
the case that for any genotype g, there is at least
one mutation of g that changes its phenotype in
a discontinuous fashion, making f nowhere con-
tinuous. However, because the remaining muta-
tions at g change its phenotype continuously, an
evolutionary trajectory t = f°g—consisting of
phenotypes constrained by selection—may still
turn out to be continuous (Fig. 8). A transition
at time ¢ 1is continuous if and only if
t(t + 1) € N(z(t)), that is, if it follows a directed
edge in phenotype space.fii We refer to Fontana

11iIn a continuous setting, the situation is qualitatively
similar, albeit more difficult to visualize. The time axis will
usually be the real axis R with the standard topology. Again,
T = f°g can be continuous even if neither g nor f are con-
tinuous everywhere.

& Schuster (1998a, b) for a classification and de-
tailed discussion of discontinuities in evolution-
ary trajectories of simulated RNA populations.

7. Product Spaces and the Notion of Character

A formal explication of the character concept
is a natural application of the present (pre)-
topological framework. In evolutionary biology,
the notion of character aims at identifying those
phenotypic descriptors that are the quasi-inde-
pendent units (Lewontin, 1978) of variation with-
in and between species. The phenotypic variation
of a character must to some extent decouple
from the remaining organism, and the parsing of
a phenotype into characters becomes a statement
about the accessibility structure of phenotypic
states. In this section, we shall argue that the
factorization of a phenotype space (constructed
on the basis of accessibility criteria) captures the
essential formal properties of quasi-indepen-
dence. Based on that argument, a notion of struc-
tural independence is proposed.

7.1. PRODUCT PRE-TOPOLOGIES

We start our discussion by introducing the
notion of the (Cartesian) product of two pre-
topological spaces (X;, /1) and (X, .4%). The
product pre-topology (Carstens & Kent, 1969) on
the Cartesian set product X; x X, = {(x, x5)|x; €
X1, x,€ X,} is defined by the product of the
neighborhood filters

JV(Xl, Xz) = e/‘/1(361) X </V2(x2)
={M < X; x X,|3IN; € N}(xy),
Ny e N5(x2): Ny x N, € M. (21)

We shall write the k-fold product as [T, (X4, %)
and restrict ourselves to a finite number of
factors.

In the finite case, the product of pre-topolo-
gical spaces (Xi, 47) X (X, /5) translates into
the strong product of the associated graph repre-
sentations (Section 4.7):

I'X,E)=T(X{,E; )BT (X,,E). (22)
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The vertex set X of I'(X, E) is X; x X,. The edge
set E consists of all pairs [(x1, x3), (x7,X5))
# ((x1, X3), (x1, x»)] such that (xq,x})e E,u4
and (x,, x5) € E,ud (Imrich & Klavzar, 2000,
Chapter 5).

7.1.1. Projectors

An important class of maps associated with
product spaces are the projectors pry:
[T(Xk, %) = (X, A7), defined as pri(x;, Xxa,...)
= X;. The product map f:(X, A") = [[.(Ys, -4)
is continuous in x € X (see Section 4.6) if and only
if each of the maps f;, = pr,°f is continuous in
x (Fischer, 1959, Theorem 13).

7.1.2. Isomorphism

Two pre-topological spaces (X, ./") and (X',
N") are isomorphic if there is a one-to-one map
¢:(X, N) = (X', /") such that both ¢ and ¢ ~*
are continuous, that is, if and only if
PN (x)) = N (¢p(x)) for all x e X. We then write
(X, N) =~ (X, N).

7.1.3. Factorizability and Phenotypic Character

The product (X, A7) X (X5, 45) is trivial if one
of the factors is a single point space, ({x}, X).
[Recall from Section 4.7 that F is the discrete
filter, eqn (10).] Obviously,

(Xla JV.I) X ({X}, X)z({X}, X) X (Xla JV.I) =~ (Xla e/‘/‘1)
This suggests the following:

Definition (Factorizability). A pre-topological
space (X, A") is factorizable if it is isomorphic to
a non-trivial product, in symbols

(X, N) = (Xq, A7) x (X35, N3).

If the phenotype space (Y, .#) can be repre-
sented as a product space of the form

(Y, M) ~ (Y1, Ay) X (Y, ), (23)

then phenotype y € Y can be viewed as a “vector”
(¥1, ¥2). A phenotype (y7, y>) is accessible from
(y1, y2) if y7 is accessible from y; in the factor

space (Yy, .#,) and if y), is accessible from y, in
the factor space (Y,, .#,). Since the components
y1 and y, do not impose accessibility constraints
on each other, they are structurally independent.
This notion should not be confused with a stron-
ger version of genetic independence. Structural
independence implies that the factors y; and y,
can be modified independently of each other, but
it does not mean that they always vary indepen-
dently. There still may be (continuous) mutations
of the genotype g underlying (y,, y,) that affect
both y, and y,. Structural independence also
does not imply statistical independence of the
factors in a population. Fitness constraints,
which by definition are not part of the geno-
type-phenotype map, may well cause covari-
ations between the frequencies of the variants of
two factors in a population.

A primitive character is one that cannot be
subdivided into a collection of other characters.
This suggests the following working definition:

Definition (Primitive phenotype character). If the
phenotype space can be represented in the form
(Y, M) = (Y, M) X (Y, M>) and (Y;, .#,) is not
factorizable, then (Y, .#;) is termed a primitive
phenotypic character.

The usefulness of this definition depends on the
ability to characterize and effectively compute
factorizations of pre-topological spaces. In gen-
eral, such a product decomposition will not be
unique. This is analogous to the finite-dimen-
sional case of vector spaces, R" ~[]}=1R[e;],
where we may choose any set {e;|1 <j <n} of
basis vectors. Yet, in the finite case, every connec-
ted graph has a unique prime factor decomposi-
tion with respect to the strong product defined
in eqn (22) (Dorfler & Imrich, 1970; McKenzie,
1971). Polynomial time algorithms for computing
the prime factor decomposition of an undirected
graph are known (Feigenbaum & Schiffer, 1992;
Imrich, 1998).

7.2. FACTORIZABILITY THEOREM—INFORMAL
NARRATIVE

The problem with factorizing phenotype
spaces is the identification of characters. Since
descriptors of characters are often neither obvi-
ous nor simple, a notion of phenotypic dimension
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that does not make a premature commitment
with regard to the physical nature of a character
seems desirable. Wagner & Laubichler (2000)
propose to use certain partitions of the set of
phenotypes (explained below) as representing
such dimensions (and, thus, possible characters).
A partition of a set X is a collection of disjoint
subsets such that their union recovers X. Such
a subset, then, corresponds to a character state
(that is, a phenotype “value” along a character
“axis”). These subsets are equivalence classes
containing all phenotypes that agree on that
character state. This is somewhat analogous to
the notion of “schema” in genetic algorithm
theory (Holland, 1993). For such characters to
correspond to “dimensions”, they must be “or-
thogonal”. In fact, the partitions P; considered in
Wagner & Laubichler (2000) are orthogonal,§§§
that is, for each P € P; and each Q € P; there is
a unique x € X, such that PnQ = {x}.

An example from RNA shape space should
help clarify these notions. The top of Fig. 9
depicts a shape consisting of two features, num-
bered 1 and 2. Suppose we decide to consider
these two features as characters. The character
states then consist of variations on these features,
such as longer or shorter stacks and correspond-
ingly shorter or longer loops. The characters
1 and 2 correspond to two partitions P, and P,
respectively, that are sketched in Fig. 9. Take P,
for example. The columns correspond to disjoint
subsets of RNA shape space in which the state of
character 1 is fixed, while the rest of the shape
varies. The first column of Py, for example, ex-
hibits a particular manifestation (state) of charac-
ter 1, distinct from column 2, and so on. The same
holds for P, and the states of character 2
(sketched at the bottom of Fig. 9). It is easy to see
that P, and P, are orthogonal partitions of the set
of RNA shapes. For example, consider the
second column—Iabel it P—in P, and the first
column—Ilabel is Q—in P,. The shape on the
sequence segment reserved for character 2 is fixed
in Q, while the shapes on the remaining segments

§§§Orthogonality is used here in a colloquial manner. In
the context of partitions, the notion of orthogonality has
to be generalized (Bailey, 1996). The correct term, defined
and used in the formal section, is “orthogonally com-
plementary”.

FI1G. 9. Orthogonal partitions. See text for details.

vary. In set P, however, the shapes on segment 2
vary. Hence, there will be a phenotype in P whose
shape on segment 2 coincides with the fixed
shape on the same segment in Q. Conversely,
there will be a phenotype in Q whose variable
portion coincides with the fixed portion in P.
Since the segments do not overlap, there will be
exactly one phenotype in both P and Q that
consists of the fixed P-state on segment 1 and the
fixed Q-state on segment 2. Thus, P, and P, are
orthogonal partitions. The same reasoning
applies to any features—and any number of
them—one wishes to choose.

The partitioning here really just slices the
sequence into disjoint segments (two in our
example) and declares any shape on a particular
segment as a state of the same character. In this
interpretation, a character is but a sequence seg-
ment (and a character state is a shape on that
segment). This may be questionable. An alterna-
tive, more satisfactory interpretation is to think
of a partition as a choice of “grain”, that is, as
setting the scale or size at which we choose to
consider characters. An element of the partition
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(@ column in Fig. 9) then corresponds to a
possible character of that size (rather than a
character state).

In the formal section below, we clarify the
relationship between orthogonal partitions and
the original phenotype space (X, .A). First, we
show that if (X, ./") is factorizable, that is, if it has
the same structure as the product of some factors
(which need not be derived from the original
space X), then there exist orthogonal partitions
of X. This means that in studying the factoriz-
ation of (X, A7), we might as well stick to (ortho-
gonal) partitions derived from the original set of
phenotypes. Second, using the partitions of X, we
pass to the corresponding quotients and their
quotient pre-topologies. That is, our units of
analysis shift to the equivalence classes them-
selves (the columns in Fig. 9), rather than their
elements. We then consider the (pre)-topology
of the product of quotients and derive a
simple condition under which this product has
the same topological structure as the original
space (X, .47). In other words, when this condi-
tion is fulfilled, we can faithfully represent the
phenotype space in terms of phenotype “compo-
nents” while preserving the original neighbor-
hood structure. This nails the notion of structural
independence alluded to above.

As an RNA example, consider the shape label-
led a in Fig. 9 and shown in Fig. 10(a). Using the
folding map and the techniques detailed in Fon-
tana & Schuster (1998b) and Cupal et al. (2000),
determine the shapes that are near a in the acces-
sibility sense, that is, determine the vicinity of a,
N(a). Next, assign that shape to its image in the
product space. Its image is given by the pair of
equivalence classes determined by the orthogonal
partitions P, and P, in Fig. 9, that is column 2 (set
P)in Py and column 1 (set Q) in P,. As representa-
tives of these classes, we select the shapes with an
unfolded configuration on the variable segment.
Next, determine the vicinities of each equivalence
class [proceeding in the same manner as for
N(a)]. The vicinity of the pair, N(P, Q), is given
by the smallest set in eqn (21), provided we re-
place everything by equivalence classes. Next, we
pass to the product space for each shape in N(a).
If RNA shape space is factorizable, we must
recover N (P, Q). This simply expresses a super-
position principle for the variability of shape

Ty (L)

(b

1 and 2 are modular characters

FI1G. 10. Factorization and character. (a) An illustration
of the product assigned to an RNA shape. (b) The figure
shows the series of shape changes as the temperature is
increased from O to 100°C for two sequences sharing the
same shape at 37°C. The shape features of the first sequence
are highly stable and react independently to changing tem-
perature. This correlates with a high mutational stability of
these features. Phenotypic changes upon mutation remain
localized to a particular feature and are continuous in the
sense of the accessibility pre-topology of Section 2.2. The
same shape features are only marginally stable for the sec-
ond sequence and melt in a highly interdependent fashion.
Mutations easily destroy these features. For more details,
see Ancel & Fontana (2000).

features: by analysing the variabilities of shape
features separately and then combining them, we
find the same accessibility structure as for the
overall composite shape.

Product spaces emphasize characters as quasi-
independent units of phenotypic variation.
Changes in one character should not affect other
characters in the same phenotype. Yet, two RNA
sequences (genotypes) with the same phenotype
can differ substantially in the degree of modular-
ity of their shape features. This is illustrated in
Fig. 10(b) which depicts the series of minimum
free energy secondary structures at various tem-
peratures for two sequences that share the same
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phenotype at 37°C. The first series reveals a high-
ly modular shape, in the sense that individual
features remain stable across a large temperature
range and melt independent of one another. This
behavior correlates with a high degree of muta-
tional stability (Ancel & Fontana, 2000). The
opposite is the case for the second series in
Fig. 10. Our definition of RNA shape space
topology (Section 2.2) is based on the accessibil-
ity of one shape from another, say «, by averaging
over all sequences that fold into «. However, the
stability, and therefore autonomy, of phenotypic
features is not an automatic property of a pheno-
type displaying these features. It rather depends
on the underlying genotype. Which RNA shape
transformations are continuous or discontinuous
is determined by the accessibility likelihoods
[egn (1)] and a cutoff (Section 5.2). It is therefore
important to consider the local properties of the
genotype-phenotype map in the light of that
topology. It turns out that the map is almost
never continuous at a randomly chosen geno-
type. In contrast, the map is continuous at the
specific genotype underlying the shape whose
melting behavior is highly modular in Fig. 10(b).
The inability to change a phenotype in a discon-
tinuous fashion upon mutation is an indicator of
phenotypic features that are sufficiently stabilized
to warrant the label of characters. The frame-
work proposed here would be right on target, if it
turned out that the factorization condition (de-
rived below) is in general not satisfied globally,
but only in those regions of genotype space where
the genotype—phenotype map is locally continu-
ous (which are the regions associated with stable
characters). The assessment of this possibility in
the RNA case requires a computational analysis
that constitutes a topic for future research.

7.3. FACTORIZABILITY THEOREM—FORMAL
TREATMENT

Lemma 2. Suppose (X, V") is factorizable. Then
there are two partitions Py and Py of X satisfying
(i) For each Py e Py and each P, € Py, there is
a unique x € X such that PP, = {x}.
(i1) P, and P, are non-trivial, i.e. they are neither
the universal partition {X} nor the identity parti-
tion {{x}|x € X}.

Proof. (i) Consider the isomorphism ¢ : (X, .A)
- (X, /) x(X;3, A5) and  write ¢; = pr;o ¢,
i=1,2. Then

P, = {¢i_ 1(xi)|xi € Xi} (24)

is a partition of X for i =1,2. Given x; € X;,
i=1,2, there is a unique xeX such that
¢1(x) = x; and ¢,(x) = x, since ¢ is invertible.
In other words, there is a unique x € ¢p; *(x;)
N5 1(x,), and (i) follows.

(i1) First, we show that (i) implies that if one
partition is universal, then the other one is the
equality partition: Suppose P, = {X} is the uni-
versal partition. Then (i) implies PinP, =
XNP, =P, = {x} for some x € X, ie. P, is the
equality partition. If P; is the equality partition,
then P, P, = {x} NP, = {x} for some x € X and
all P, e P,, hence P, = X and P, is the universal
partition. If one of the partitions is trivial, one of
them, say Py, is therefore the universal partition,
and thus ¢; (x;) = X for all x,. Since ¢ is in-
vertible, this implies that X, consists of a single
point, i.e. the product is trivial. []

A pair of partitions satisfying (i) in Lemma 2
is called orthogonally complementary (Wagner &
Laubichler, 2000). For more general notions
of orthogonality among partitions, we refer to
Bailey (1996). Cast in this language, Lemma 2
states:

If (X, A") is factorizable, then there is a pair of non-
trivial orthogonally complementary partitions of X.

Next, we introduce some more notations. Let
(X, A7) be a pre-topological space, and let P be
a partition of X. For each x € X, we denote the
(equivalence) class to which x belongs with [x].
It is customary to write X/P = {[x]|xe X}.
Moreover, for a set M < X, we write [M] =
{[x]]|x € M}. Associated with P is the canonical
map

w.X > X/P, x—[x], (25)
which induces the quotient pre-topology on X /P
with neighborhood systems

M= {ININe/ (). (26)
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This is the finest pre-topology on X /P such that
the canonical map yp is continuous (Fischer,
1959; Kent, 1969).

Lemma 3. If (X, /") is factorizable, then there is
a pair of orthogonally complementary partitions
P, and P, and pre-topologies N and NY such that

(X, N) = (X/Py, N) % (X/Py, AF). (27)

Proof. Assuming factorizability and using the
notation of Lemma 2, we see that there is a one-
to-one correspondence between the elements
x; € X; and the equivalence classes ¢; !(x;) eP;
because ¢ is invertible. That is, the function
Vit Xi - X/P, x> ¢ H(x)

is invertible. Defining the pre-topology on X/P;
by A (Wi(x:) = yi(ANi(xy) implies that y; is an
isomorphism, ie. (X;, A;) ~ (X/P;, A}¥) for i =
1, 2, and the lemma follows since the products of
these two factor spaces are, of course, also
isomorphic. []

By construction, the composition ; ° ¢»; maps
a point xe X onto its equivalence class
éi H(¢i(x)) = [x];, that is, Y;° ¢; = yp,. In order
for yp to be a projector of an isomorphism, it
must be continuous by Fischer (1959, Theorem
13). Hence, the pre-topologies ./ must be
coarser than the quotient pre-topologies, 4}/ <
v, i =1,2, since the quotient pre-topologies
are the finest ones for which the characteristic
maps yp, are continuous.

Lemma 3 shows that we can restrict ourselves
to quotient maps and suitable pre-topologies on
the sets X/P;. It appears natural to choose a pair
of orthogonally complementary partitions P; and
P, of X and to consider the pre-topological prod-
uct space

(X/Pyx X [Py, N wp) = (X/Py, Np ) X (X/Py, Np).
(28)

The map

5:(X7 ‘/‘/) _)(X/Pl XX/PZ’ ‘/‘/i’lez),

x = (IxIe,, [xTe,) = (12, (), 2p,(x)  (29)

is invertible if and only if P, and P, on X are
orthogonal complements. What we need to de-
rive is when ¢ is an isomorphism. As a first step,
we need a more convenient characterization
of the pre-topological structure of the product
space.

Lemma 4. The set
(LA ()] = {[M1p, x [MIp,| M € A(x)} (30)

is a filter basis of the neighborhood system
'/‘/PIXPZ([XJI’ [x]2)‘

Proof. Let N € Ap .p (2, ) with anf = {x}. By
definition of the product pre-topology, there is
Ny e Np (v) and N, € A3 (B) such that Ny x N, <
N. Since Ap (x) and A3 (B) are, by definition,
filter bases of the neighborhood filters in the
quotient spaces, there exist sets, M;, M, € A(x)
such that [M;]p, © N; and [M,]p, S N,, respec-
tively. From the filter axioms, we have
M = M;nM, € A'(x) and hence [M]p € Np (2)
and [M]p, € A5 (B), and finally [M]p x [M]p, €
b, «p, (% B). On the other hand, we have

[M]e, X [Mle, = [Mi]e, X [M2]p, = N1 X N,
S NeNp,«p, (0 B)

[[A(x)]] s, therefore, a filter basis of the product
space. []

Let us now consider the inverse map ¢~ %
é_l:(X/PIXX/P23 ‘/VI;IXPZ)_)X' (31)
Define the pre-topology .4/ * on X as the final
pre-topology generated by ¢~ . By definition, the
neighborhood filters ./"*(x) have filter bases con-
sisting of the sets
M* = 5_1([M:|P, X [M]Pz)
= (ye X|3ue[M]p,3f € [M]p, , and
[ode,N[Ble, = {¥}} (32

for each M € A" (x).
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In sum, we first constructed product space (28)
from orthogonal complement partitions on X,
and then returned from the product space back
to X via ¢~ 1. Now, observe that

Lemma 5. (X/Pyx X/Py, Ny, .p) = (X, N°¥).

Proof. We already know that ¢~ ':X/P;x
X/P, — X isinvertible. Hence, it remains to show
that ¢ =(£7')"! is continuous as map from
(X, 4"*) into the product space (X/P;x X/P,,
v xp,). This follows immediately, however,
since the image of the neighborhood basis
{M*|Me A (x)} under ¢ is just {E(M*) =
([M]e,, [M]e,) |M € A" (x)} = [[A"(x)]], the neigh-
borhood basis of the product space described in
Lemma 4. []

The purpose of this exercise was to character-
ize the relationship between product space (28),
or more precisely, the isomorphic pre-topological
space (X, /"*), and the original space (X, /).
Note that ¢ is an isomorphism if and only if
N* = . Of course, this is not always the case.
We show below, however, that the product space
always has a coarser pre-topology than (X, A").
Formally,

Lemma 6. A4"*(x) < A"(x).

Proof. There are two independent arguments to
see this. (i) We can of course write M € ./"(x) in
the form

M={yeX]| [yv]e, € [M]p, and [y]p, € [M]PZ}-

Comparison with eqn (32) shows M < M*, hence
A(x) contains the filter basis {M*|M € A (x)}
and the lemma follows. The second proof is even
simpler: we simply note that &:(X, A) —
(X/Py x X/P,, %lxpz) and  ¢71(X/Pyx X/Py,
Np xp,) = (X, A*) are continuous by construc-
tion. Hence, ¢ 1o =id:(X, ) - (X, N/
is also continuous, implying that the pre-topo-
logy A"* is coarser than the pre-topology A~
on X. []

This result can be obtained in the even more
general context of convergence spaces Carstens

& Kent, (1969). We next seek conditions under
which the neighborhood structure is preserved in
the construction of the product space:

Lemma 7. The following statements are equiv-
alent:
() (X, N) = (X/Pyx X/Po, N ).
(i) (X, A) = (X, N*).
(iil) A (x) = A*(x) for all x € X.
(iv) For each xe X and each neighborhood
N € N(x) there is an M € N (x) such that

[M]e, x [M1e, = {([V]e,, [vIe,) [y €N} (33)

Proof. (i < ii) follows from the transitivity of the
isomorphy relation ~. (ii < iii) is the fact that
the identity (X, .4") — (X, A¥) is continuous in
both directions if and only if the pre-topologies
coincide. Condition (iv), finally, is the set-wise
rewriting of the condition .4 (x) = A4 *(x), which
together with Lemma 6 implies (ii). []

Condition (iv) could be called the rectangle
condition, since it requires that every neighbor-
hood of ./'(x) contains the direct product
M; x M, of neighborhoods (a “rectangular”
neighborhood) from the two quotient spaces.

We are now in a position to state the main
technical result of this section:

Theorem 1. A pre-topological space (X, N") is fac-
torizable if and only if there is a pair of non-trivial
orthogonally complementary partitions that satisfy
rectangle condition (33).

Proof. It follows immediately from Lemma 7
that the condition is sufficient. Necessity follows
from Lemmas 2 and 3, and the fact that we can
rule out pre-topologies on (X/P,) that are strictly
coarser than the quotient pre-topologies as can-
didates for factorizability: Their product
NY x AY is then strictly coarser than 4* and
therefore always strictly coarser than ./", contra-
dicting that ¢ is an isomrophism. []

So far, we have considered the factorization of
the entire phenotype space. This appears to be
too demanding a structure, as it would imply that
the definition of a particular character is applic-
able to all phenotypes. A standard approach to
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turn global concepts into locall|||| ones leads to
the following.

Definition. The pre-topological space (X, .A") is
locally factorizable in x € X provided that for
each neighborhood N’ e ./"(x), there is a neigh-
borhood N = N’such that the restriction (N, .Ay)
is factorizable.

The trace pre-topology .4y is defined by
Ny(y)={N'nN|N' € A (y)} for each ye N. A
finite pre-topological space is locally factorizable
in x if and only if the subgraph induced by
the vicinity N(x) has a non-trivial prime-factor
decomposition.

8. Discussion

The products of evolution are shaped by both
the dynamics of selection in populations and the
attainability of variants that selection can act
upon. The mechanisms underlying the construc-
tion of phenotype from genotype mediate pheno-
typic innovation. This mediation, however, is
biased. Even if mutational mechanisms generate
genetic variation at random, the phenotypic con-
sequences need not be random, for they depend
on the genetic context in which a mutation is
expressed. Underlying this bias is ultimately
a genotype—phenotype relation that is strongly
many-to-one, thereby inducing a non-trivial rela-
tionship of mutational accessibility among
phenotypes. In Section 2.2.1, we illustrated this
issue with the folding of RNA sequences (repre-
senting genotypes) into secondary structures
(representing phenotypes).

When organized in terms of mutational acces-
sibility, the set of possible RNA secondary struc-
tures lacks a metric and exhibits an unfamiliar
topological structure in which a phenotype may
be near another without implying the reverse.
Yet, this weakly structured space naturally
addresses some classic patterns of phenotypic

[|IllIThis notion of locality is to be distinguished from the
one intended in the final paragraph of the informal narra-
tive. There, we meant a factorization of phenotype space as
induced by the genotype-phenotype map in a restricted
region of genotype space.

evolution, such as punctuation and irreversibility
and neatly expresses the consequences of folding
constraints (“developmental constraints”). We
presented a formal language that abstracts the
insights obtained from the specific RNA case.
We hope that this apparatus helps in preventing
a bias in thinking and facilitates further questions
that are relevant across diverse and complex
genotype—phenotype relations.

The appropriate formal structure for RNA
shape space is a pre-topology, a space whose
neighborhoods are, in general, not related to
open sets and thus represents a weaker structure
than a topology. In Section 4, we reviewed this
notion along with the necessary technical acces-
sories for connecting pre-topological neighbor-
hoods with continuity. While this material is well
known to topologists, the original literature may
not be easily accessible to a theoretical biologist.
The section contains some original material
when connecting finite (pre)-topological struc-
tures with graphs.

In Section 5, we applied these concepts to
characterize the finest and coarsest accessibility
pre-topologies resulting from the requirement
that the genotype—-phenotype map be everywhere
continuous. In practice, accessibility of a pheno-
type from another is a likelihood (Fontana &
Schuster, 1998b), see eqn (1). That likelihood is
converted into a binary attribute by choosing
a cutoff value below which a phenotype is re-
garded as inaccessible from the other. This leads
to a range of pre-topologies with various degrees
of discontinuity. Once phenotypes are equipped
with a (pre)-topological structure, continuity for
evolutionary trajectories can be meaningfully de-
fined (Section 6). Since the fate of a phenotype in
a population is constrained by selection, a locally
highly discontinuous map can nevertheless give
rise to locally continuous evolutionary trajecto-
ries (Fontana & Schuster, 1998a,b). The accessi-
bility topology may be such that no continuous
path exists between two particular phenotypes.
The dynamical signature of such irreducible
discontinuities is punctuation—long periods of
phenotypic stasis with underlying drift in geno-
type space until a genetic context arises that
enables the transition to occur in response to
a small mutation. By definition, phenotypic ac-
cessibility topologies depend on what constitutes
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a likely mutation. In our RNA examples, we have
always assumed accessibility to be relative to a
single point mutation.

Given a phenotypic accessibility topology, we
may ask whether it sustains a notion akin to
“dimension” that can be related to the notion of
“character” or “module”. We explored this issue
in Section 7 as the factorizability of pre-topolo-
gies into product spaces. This led us to define
characters in terms of structural independence
which is related to Lewontin’s notion of quasi-
independence (Lewontin, 1978). The notion of
units as independent entities is always relative to
a process with respect to which this independence
is expressed, such as natural selection (Kim &
Kim, 2001; Wagner et al., 2000) or the covari-
ation of mutational effects (Lande, 1980; Houle,
2001). Structural independence is independence
with respect to accessibility and thus expresses
the most primitive notion of independence. Fac-
torizability of a topology asserts the existence of
phenotypic units that can be varied independent-
ly (that is, they do not impose constraints of
accessibility on each other), it does not imply that
they always have to vary independently under
natural selection. The main result of Section 7 is
a factorizability condition such that the product
space remains isomorphic to the original, non-
factorized accessibility topology. This condition
may not be satisfied globally. In fact, our experi-
ence with the RNA map leads us to conjecture
that the factorizability condition is satisfied only
in special regions of genotype space—those in
which the genotype—phenotype map is locally
continuous. Equivalently, regions of genotype
space with discontinuous phenotypic transitions
cannot be factorized, which fits the intuition that
innovation, that is, a sudden change in pheno-
type, requires the loss of character identity. We
have not carried out the substantial computa-
tions required to corroborate this conjecture in
RNA, but circumstantial evidence is presented in
Ancel & Fontana (2000). If factorization is local,
then different factorizations may exist in different
parts of genotype space.

The topological framework presented here has
direct consequences for the developmental ex-
planation of major evolutionary transitions. Two
kinds of such transitions can be distinguished.
One refers to the integration of lower level repli-

cators into higher level replicators, like the
transition from single-celled organisms to multi-
cellular forms (Buss, 1987, Maynard-Smith &
Eors Szathmary, 1995; Michod, 1999). The other
refers to the evolution of major multicellular
body plans, as they originate from the differenti-
ation of cell colonies, or the origin of new body
parts (Miller & Wagner, 1991; Raff, 1996). The
present discussion addresses the second kind of
transition.

The origination of body parts or body plans is
arare evolutionary event and constitutes a plaus-
ible instance of a discontinuous transition in the
sense of the present paper. From a topological
point of view, a transition from an ancestral char-
acter to a derived one is discontinuous (“difficult
to achieve”) if the neutral network of the former is
adjacent to the neutral network of the latter in
only a small fraction of its boundary, that is, if
many genotypic states are able to realize the
ancestral state, but only a small fraction of them
are poised to generate the derived phenotype.
This implies that the actual transition to the
derived phenotype occurred in a genotypic state
that is unlikely to be realized in any extant spe-
cies. This has implications for our ability to ex-
perimentally dissect the molecular mechanisms
underlying morphological innovations. A major
goal of evolutionary developmental biology is to
understand how changes in the genetic regulation
of development gave rise to new morphological
characters and body plans (Hall, 1998; Raff, 1996;
Wagner et al., 2000). There is considerable
progress in identifying key molecular differences
underlying morphological innovations, like the
origin of butterfly eye spot patterns (Keys et al.,
1999) or the origin of flower organs (Kramer
& Irish, 1999), but the number of examples is
small. The most stringent experimental test for
a molecular explanation of a morphological in-
novation would be the induction of the derived
character in a species representing the ancestral
phenotype by genetic manipulation. If, however,
the topological explanation of discontinuous
evolutionary transitions is correct, this test can-
not be done, since the right genetic constellation
poised for the transition is extremely unlikely to
exist in any extant species bearing the ancestral
phenotype. Moreover, a genetic manipulation
intended to mimic the molecular mechanism that
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historically led to the derived phenotype is likely
to have different effects in different genetic back-
grounds. That is, a molecular developmental
mechanism that can give rise to an innovation
should not be expected to cause the derived
phenotype in every genotype representing the
ancestral phenotype.

A further mechanistic consequence of the
topological interpretation of major evolutionary
transitions is that natural selection does not pro-
vide a complete explanation for their occurrence.
Natural selection is a sufficient explanation for
the outcome of an evolutionary process, if the
genetic variation contributing to the derived
phenotype is easily accessible. Whether a transi-
tion occurs, then only depends (to a first approxi-
mation) on the strength and direction of
selection. If major transitions, however, require
specially poised genotypic/developmental realiz-
ations of the ancestral phenotype, then the
transition critically depends on factors not under
the control of selection, since different genetic
realizations of the same ancestral phenotype lie
on a neutral network and are not distinguishable
by selection on phenotypes.

Pre-topological concepts might, in principle,
find an empirical application in connection with
the reconstruction of phenotype spaces or related
constructs, such as a morphospace (Raup &
Michelson, 1965; Raup, 1966; McGhee, 1999;
Eble, 2000). A pre-topological neighborhood sys-
tem can be generated from a so-called sub-basis,
that is, a set of accessibility relations that do not
necessarily fulfill all the axioms of a neighbor-
hood system. A sample of possible relationships
of genetic accessibility among phenotypes could
be obtained from a phylogenetic reconstruction
of character transformations (Donoghue, 1989),
or from morphometric, phenetic and develop-
mental considerations. Of course, the observed
transformations will rarely, if ever, reflect all pos-
sible phenotypic transformations and hence
provide at most a sub-basis for the construction
of the pertinent topology. From a sub-basis,
a neighborhood system can be constructed by
adding those sets that are implied by (N2) and
(N3), Section 4.3. In other words, one adds all the
intersections among sets in the sub-basis, as well
as all their supersets. This embedding process
could be used to construct the coarsest (local)

pre-topology consistent with the empirical data
on accessibility. It does not presuppose a metric,
but it does not exclude one either.
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tion of his 60th birthday, B.M.R.S. is supported by the
Austrian Fonds zur Forderung der Wissenschaftlichen
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the Santa Fe Institute was supported by the Keck
Foundation and by core grants from the John D. and
Catherine T. MacArthur Foundation, the National
Science Foundation, and the U.S. Department of
Energy. W.F. and his research program are supported
by Michael A. Grantham.
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APPENDIX A: Pre-topological Spaces

A.1. PRE-UNIFORMIZATION

This lemma states that every pre-topological
space has a pre-uniformization.
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Lemma A.1. The neighborhood structure Ny, in-
duced by the pre-uniformization %, of N~ coincides
with N,

Proof. Since U’ = {(x, y)|x€ X,y e N,} € %, for
any choice N, € ./"(x), we obtain every neighbor-
hood N, in the form N, = {(x,y)|yeN,}[x] =
U’'[x]. By construction, each set Ue%, is
a superset of a U’, hence U[x] is a superset of
some N, € .A47(x), and therefore a neighborhood
of x. [

A more abstract treatment of the relationships
between pre-topological spaces and various types
of uniform structures can be found in Weil (1937),
Cook & Fischer (1967), Biesterfeldt (1968), Kent
(1968), Keller (1968), Wyler (1974) and Preufl
(1995). In particular, Lemma A.1 is Theorem 8 by
Biesterfeldt (1968).

A.2. CONDITION (UB) AND OPEN SETS

We rephrase (UB), Section 4.5, by projecting
down to neighborhoods (the pre-topology in-
duced by %) according to eqn (3): For each
Ulx]e[x] (= A (x)), there is a V[x] e % [x]
such that (VeV)[x] < U[x]. The definition
of concatenation (5) implies that V< VoV
and hence V[x]<c(VeV)[x]< U[x]. More
explicitly:

(VeV)[x]={y|dzeV[x] and ye V [z]}

= U Viz].

zeV[x]

(A.1)

Write N =U[x], N'=V[x], N"=(Ve°V)[x].
By eqn (A.1), N” is the union of neighborhoods of
the elements in N'. Since N” contains a neighbor-
hood of each ye N’, it constitutes by (N3),
a neighborhood for each ye N’, that is, N" e
N (y). We also have N” = N, hence N € ./(y) for
all y e N'. Thus, (UB) has the following implica-
tion for neighborhoods:

(N4) For each N € A"(x), there is an N' € A" (x)
such that N € A"(y) for all ye N'.

Further material on the relation between
(quasi-)uniformities and neighborhood axioms
can be found in Pervin (1962a,b).

A.3. PRE-UNIFORMITIES AND CONTINUITY

Let f:X —» Y and U < X x X. With the nota-
tion

(fxNU) ={(f(x)fW)I(x, ) e U} (A2)

we define uniform continuity in the following
way:

Definition. Let f:(X, %) — (Y, V"), where % and
" are pre-uniformities on X and Y, respectively.
Then f'is uniformly continuous if
VVey: :AUeu:(fxHHU)<V. (A3
Theorem A.l. If (X, %) — (Y, V") is uniformly
continuous, then f: (X, Ay) — (Y, M, ) is continu-

ous with respect to the induced pre-topologies on
X and Y.

Proof. Recall that N, € .4;,(x) if and only if there
is U € % such that U[x] < N,. Thus, fis continu-
ous with respect to A, and .#,, if foreach V e ¥~
there is a U € % such that f(U[x]) = V[ f(x)].
Assume that f is uniformly continuous, that is,
for each Ve v, there is a U e % such that
(fxf)U) < V. Hence,

(XS] = {(fx) SO (x, y) e UFLf(x)]
={/WI(x,y)eU}
= {/WIyeULx]} =f(U[x])
s V)]

and the theorem follows. []

A4. THE EQUIVALENCE OF AXIOMS (R0) AND ()

Theorem A.2. If (X, V") is a pre-topological space
then L L

(RO) x € {y} implies y € {x} for all x,y € X.

(S') x e N A"(y) implies y € (N (x).

are equivalent.
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Proof. We first observe
{y} ={zIVNeV(2):{y} AN # 0}

={z|VNe N (z):ye N}

={z|yen A(2)}.

Therefore, x em is equivalent to ye NA"(x),
and the theorem follows immediately. []

A.5. AXIOM SYSTEMS FOR PRE-TOPOLOGICAL SPACES

Pre-topological spaces can be defined in a var-
iety of seemingly unrelated, yet equivalent ways.
In the main text, we have focussed on neighbor-
hood as the basic concept. The neighborhood
operator .4 assigns the collection A4 (x) < P(X)
to each point x € X. Alternative constructions
make use of Closure, Interior, and Boundary op-
erators which assign to each set 4 < X its closure
A, its interior A°, and its boundary 04, respec-
tively. These operators are related with one

another in a fairly simple way, summarized in
Table Al.

The closure, interior and boundary construc-
tions can be used to uniquely specify a pre-
topological space if and only if the axioms (1)—(3)
in Table A2 are satisfied. In each case, the fourth
axiom (T) is a necessary and sufficient condition
for the pre-topology to be a topology.

A.6. INTERSECTION AND UNION OF FILTERS

Filters are sets that can be intersected and
united in the usual way. Owing to the filter axiom
(F3), the intersection of two filters can be ex-
pressed as the union of their elements. The union
of two filters, however, is not the intersection of
their elements—it is in general, not even a filter.
Yet, the intersection of the elements of two filters
does form a filter which we denote by 7 v¥
(# Z u%). The following should help in making
this clear.

Let & and ¥ be filters.

Lemma A.l. 7 0% ={FUG|FeZ,Ge Y}

Proof. i) FUG e # Nn%, because F € & implies
FuGe% (since FUG is a superset of F) and
similarly, G € 4 implies GUF € 4.

TaBLE Al
Alternatives to neighborhood

Neighborhood Closure Interior Boundary
N(x) = {A|x¢ X \A4} = {AlxeA"} = {A|xe A\0A4}
a = (X|VYNe AN (x):AnN #0 X\(X\A) =  AudA
A° = {x|INe N (x):N = A} =  X\X\4 = A\OA
04 = {x|VNeN(x): = AnX\A = X\(A°U(X\A))
ANN #0,(X\A)AN # 0}
TABLE A2
Axiom systems for neighborhood alternatives
Neighborhoods Closure Interior Boundary
1 VNe N (x):xeN =0 0°=0 N=0
Ne NV (x),NcN =N'e N (x) AcA A° < A 04 = 3(X\A)
3 N,N' e /(x)=NnN'e N (x) AnB=ANB (AnB)’ = A°nB° ANBNId(ANB) =
. ANnBN(0AUIB)
T Ne /' (x) =IN e N (x): A=A (4°)° = 4A° 004 < 04

VyeN':IN,e /(y):N, & N

y
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(i) f He # n¥%,then H e # and H € 4. Thus, Observe that FNnG < F,G implies F,Ge
H can trivially be written in the form H = FUG % v%forall Fe # and G € 9, provided & and
with F=HeZ and G=He¥9. [] % are not disjoint. Thus, F VY = F v ¥.

However, since nothing ensures that the
intersection FNG of some Fe % and Ge¥
is an element of # or ¥, & L% is typically not

FNYG={FAG|FeF,Ge9), a filter. # v % is the coarsest ﬁl.ter that is finer

than both # and ¥, because if there was an

provided the intersections F NG are non-empty Fe % and a G € ¢4 such that FNG¢.Z# v ¥, the

for all Fe # and G e %. Otherwise, # v¥% =( intersection axiom (F2) for filters would be
and we call # and ¢ disjoint. violated.

Let us write # v % for the object obtained
from intersecting the elements of & and ¥,



	1. Introduction
	2. Accessibility Structures in Biology
	FIGURE 1
	FIGURE 2

	3. Evolutionary Patterns and Phenotypic Accessibility
	4. Pre-topological Nearness and Neighborhood
	FIGURE 3
	FIGURE 4
	FIGURE 5

	5. Pre-topologies and the Genotype-Phenotype Map
	FIGURE 6

	6. Continuity of Evolutionary Trajectories
	FIGURE 7
	FIGURE 8

	7. Product Spaces and the Notion of Character
	FIGURE 9
	FIGURE 10

	8. Discussion
	REFERENCES
	APPENDIX A: Pre-topological Spaces
	TABLE A1
	TABLE A2


