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We study networks that are a generalization of replicator (or Lotka—Volterra) equations. They model the dynamics of a

population of object types whose binary interactions determine the specific type of interaction product. Such a system
always reduces its dimension to a subset that contains production pathways for all of its members. The network equation
can be be rewritten at a level of collectives in terms of two basic interaction patterns: replicator sets and cyclic
transformation pathways among sets. Although the system contains well-known cases that exhibit very complicated
dynamics, the generic behavior of randomly generated systems is found (numerically) to be extremely robust: convergence
to a globally stable rest point. It is easy to tailor networks that display replicator interactions where the replicators are
entire self-sustaining subsystems, rather than structureless units. A numerical scan of random systems highlights the special
properties of elementary replicators: they reduce the effective interconnectedness of the system, resulting in enhanced

competition, and strong correlations between the concentrations.

1. Introduction

Replicators are entities that are copied during
interactions with other entities. Replicator equa-
tions, or Lotka—Volterra equations, are com-
monly used to describe the population dynamics
of replicators [24,20]. In these models, re-
plicators are usually assumed to be objects with-
out internal structure, and the copying process is
subsumed into a single reaction event.

A variety of systems from computer science,
chemistry, biology, ecology and economics, deal
with objects that are not replicators themselves,
but rather interact with other objects to produce
further objects not necessarily of the same type.
Here, we focus on such reaction networks in

'Author for correspondence.

which the products can be viewed as being a
function of both interacting objects.

An example of the types of reaction networks
considered here comes from chemistry, where
two molecules react to produce new molecules
whose nature is typically not determined by
chance, but by the reactive properties of the
educts. As a corollary, a system could be a
replicator as a whole without any individual ob-
ject of the system being a replicator. This re-
quires that every object has some production
pathway involving only objects of the same sys-
tem. Such a scenario may have occurred in an
early phase of prebiotic molecular evolution,
preceding the emergence of individual re-
plicators [12]. Models of such an autocatalysis at
the level of collectives of biopolymers have been
proposed [5,2].

The production of specific objects involves the
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specification of a mapping that allows one to
determine the product given the interaction part-
ners. This mapping can be encoded in the inter-
action partners themselves, as in chemistry, or it
can be specified by a look-up table. The former
case allows the study of systems with a potential
infinity of types, at the expense of a stochastic
dynamics [7] or a so-called meta-dynamics [5].
The latter case, in contrast, can be cast in terms
of ordinary differential equations (ODE), with
the interaction matrix serving as the look-up
table. Such matrices may be either structured or
random.

In this paper we analyze the system using the
ODE approach. This approach allows us to form
a simple specification of the system. Using this
specification, we are able to address the issue of
the generic behavior present in an ensemble of
randomly generated systems. Moreover, by bias-
ing the generation of interaction matrices, we
can investigate the transition of the system to
special cases like replicator dynamics, as well as
the organizational stability of the system with
respect to interaction modifications. Our ap-
proach is related to studies of replicator systems
with mutation. In such systems a replicator is not
always copied correctly, but gives rise to a var-
iant type [25]. Such work uses a perturbation
approach in which the reference state is given by
the replicator equation and the mutation field is
treated as a perturbation.

In section 2 we define our reaction network
equation — a simple generalization of replicator
equations. Section 3 surveys some of the special
cases contained in the equation. The network
equation is analytically difficult to work with;
this is in part due to the equation’s generality. In
section 4 we present a few rigorous results.
Section 5 addresses the problem of finding struc-
ture in network systems by grouping together
individual objects into sets, and rephrasing the
equations at the level of these collectives. Sec-
tion 6 summarizes the numerical integration of a
large number of both random and non-random
networks.

2. The reaction network

We consider a system S of n types of objects,
where two objects i and j interact to produce one
or more types of objects k;,..., k,. The re-
action products are assumed to be again in S,
and the interaction partners i and j are retained.
Hence i and j play the role of catalysts. Any
material needed to build the produéts is buf-
fered, and therefore does not explicitly enter the
kinetic equations. Furthermore, the system is
placed into a continuously stirred tank reactor
with an unspecific dilution flux, ®(¢), that keeps
the total number of particles constant. In the
following we switch to relative concentrations,
0=x,()=1,i=1,...,n. The state space of our
model is the concentration n-simplex. The rate
equations arise through mass action kinetics, and
in the deterministic setting considered here they
become:

n n
= 2, af.‘jxixj - x,P(t),
1j=1

i=

k=1,...,n, 8
with second order rate constants aﬂ; for the
reaction i + j— i + j + k and with &(¢) such that
L, x.(t) = 1. Throughout the paper we will refer
to equation (1) as the “catalytic network equa-
tion.” In the next section we will show that this
equation contains many of the well known mod-
els of prebiotic evolution and population genetics
as special cases.

There is a natural way of splitting the n’

coefficients, af‘j, into rate constants, a;, and
transmission coefficients, tf, by defining
n
_ k
ay=3 ak, @)
k=1
k __ k
ag=a;-t;. 3)

The a,; give the fraction of reactive collisions
between i and j, and tfj denotes the relative

frequency of the reaction product k. Lj_, t¥
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equal to 1 for any reactive pair (i, j), and is equatl
to O for those pairs that do not interact at all. To
keep the sum of all concentrations at unity, the
dilution flux &(¢) equals the total production rate
of the system:

()= 2 a'xx,= 2 a.xx,. 4)

r,s,t=1 r,s=1

In population genetics, the use of difference
equations is more common than the use of dif-
ferential equations. The most general second
order model is

] - k
X == 2 WX X; (5)
U o=t

where x, denotes the relative abundance of a
haplotype k in the population, w;, is the fitness of
a diploid genotype composed of the haplotypes i
and j, tf.‘]. is the probability that a gamete pro-
duced by a parent with genotype (i,j) has hap-
lotype k, and u is a normalization factor that
keeps the variables x, normalized [1]. Eq. (5) is
precisely the discrete time analogue of our cata-
lytic network equation. Population geneticists
restrict the transmission coefficients, tfj, to reflect
the genetic setting. Here, we do not consider
such restrictions.

3. Special cases

The catalytic network equation has a variety of
important special cases that arise by imposing
constraints on the transmission coefficients. Such
cases have been widely analyzed. In this section
we briefly make these connections.

3.1. Replicator equation

When the interaction between i and j yields a
copy of i or j, then we obtain the second order
replicator equation in n species on the simplex
[11], which has been shown to be topologically

equivalent to the (n —1)-dimensional Lotka—
Volterra equation on R% " {10].

The special choice of transmission coefficients,
t;=0if i # k v j # k, and the abbreviation b,; =
tﬁja Kt t';kaj,c yields the replicator equation

X, = xk<21 byx; — x, .21 b,.,.x,-xj> . (6)
7= L=

The replicator equation (6) has further interest-
ing special cases, some of which are: (i) Fisher’s
selection equation [6] with b, =b,, (ii)
Schloegl’s model of independent replication with
b;=c,+8; and (iii) the hypercycle [4], where
b;=c;-8,;_, (indices modulo n).

3.2. Complementary replication

In complementary replication the interaction
between i and j is still a copying process, but the
product is the complementary template of i or j,
as, for example, occurs in RNA replication. Let
k* denote the complement of k, with b,; as
before, the network equation becomes:

n

Xpe =X, 2 biX; = X E byxx; . (7
. ;

j=1

This system of equations has recently been
studied by Stadler [26].

3.3. Mutation replication equation

The template directed replication of i, cata-
lyzed by j, may have a limited accuracy. In this
case a particular product mutant k will be pro-
duced with a probability expressed by the trans-
mission coefficients tfj In the usual template
directed DNA or RNA replication this probabili-
ty only depends on the template to be copied,
but not on the catalyst. The rate constants a,’.‘].
factorize accordingly into the replication rate,
a;, and the mutant frequencies, Q,; = tfj for all j.
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n

X, = > Quayxx; — x, D(1) ,

i=1j=1
k=1,...,n. (8)

This equation has the same form as our network
equation. The product k, however, is generated
by noise, rather than by a specific action involv-
ing both i and j. This is expressed by the fact that
the transmission coefficient Q,; does not depend
on j. Eq. (8) has been recently investigated [28].

Fertility selection and selection-recombination
equations [11] are further special cases of the
network equation (1).

3.4. Turing gas

A recent model [7,8] considers a system in
which objects encode symbolic transformations
that operate on other such objects yielding new
objects representing further transformations.
The universe of objects and their transforma-
tions is given by the axioms of a calculus known
as the A-calculus (e.g. see ref. [21]), in which
there is no syntactical distinction between a func-
tion and its arguments.

The dynamical system results when such ob-
jects “react” according to mass action kinetics.
Upon collision one object acts as a function that
is applied to the other object as argument, re-
sulting in a new object (the value). In the Turing
gas model the overall dynamics follows the net-
work equation (1), but is implemented as a
stochastic process, because the system need not
be closed with respect to the applicative behavior
of its component objects: new types of objects
may appear as a result of interactions occurring
within the system. To model instances of the
Turing gas with a deterministic set of equations
we require that the system be closed with respect
to the interactions occurring in it.

Because the application, o, of a map to an
argument yields a unique value, the transmission
coefficients are now given by

t,,:{l ifh=fog,
¢f |0 otherwise,

)

with, for example, the a;=1,Vi, j. Additional
constraints on the interactions may be intro-
duced by setting particular a,; to zero.

Section 5 and some numerical experiments
reported in section 6 refer to the Turing gas case.

4. Properties

First we observe that the network equation is
invariant to a symmetric or asymmetric choice of
the rate coefficients a,'.;. For any given k consider
the n X n matrices A® = (afj.), whose nonzero
entries are those interactions that result in k. Let
A® = (A% + A(")T)/ 2 be the symmetrized ver-
sion of A%, Rewriting the catalytic network
equation in terms of quadratic forms in A® gives

% = (xAx) = x, 2, (xAVx)
t
= (xA®x) — x, 2, (xA¥x) . (10)
t

Next we note that the x,(f) remain nonnegative
for all >0, provided all symmetrized coeffic-
ients a 5 are nonnegative for k # i and k # j. This
means that if degradation reactions for k are to
be considered, they have to involve k as a reac-
tant. In the following we will not consider degra-
dation reactions at all. The total concentration is
only constrained by the unspecific dilution flux
d(1).

Nothing is changed by adding constant and
linear terms to the network equation. They can
always be absorbed into the second order terms.

By a straightforward application of Hofbauer’s
transformation [10], eq. (1) can be shown to be
topologically equivalent on the simplex (except
for the face {x,=0}) with the following n —1
dimensional system of equations on R ':

n—1 n—1
Vo= wp+ 2 Byy; + ) yf-‘,-y,-y,-—yk-@(y),
/=1 et (11)

with coefficients (1 =i, j,k=n-1):
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k

_ k _ k kK _k_
wk_ann!Bkj-anj+ajn’ Yi T %y

n—1 n-1
O(y)=a,, + ;(a:j+a?n)yj+ . a;'yiyj'
" (12)

j=

A suitable choice of the above coefficients yields
the direct Lotka—Volterra analogue of our cata-
lytic network equation:

V=25~ de e (13)
L]

where the d, are species specific degradation
rates.

Let S={1,2,...,n} denote the set of object
types in the system. A closed set A is defined to
be a set of types such that no interaction of types
in A produces types in S\A, that is Vi, jE
A,kES\A, a:j. =(. Clearly, the subsimplex
spanned by A is invariant. If § contains no closed
subsets, then the system is permanent [11} - no
type disappears (by definition) — and hence there
is at least one interior rest point.

We refer to a system as active if
lim inf,_,,@(¢) >0 for all initial conditions in the
interior of the simplex. An active system always
reduces its dimensions until it reaches a support
in which all types have some production path-
way. This is expressed in the following proposi-
tion, whose (trivial) proof we omit.

Proposition. (a) Any type m that is not produced
disappears as t— . (b) In an active system, k
disappears if all types that produce it disappear.

5. Decomposition

5.1. A dynamical system on an algebraic
structure

In this section we consider the case where the
action of a particle of type j on a particle of type
i results in a unique product k. This occurs in
models like the Turing gas (section 3.4). More

generally, we consider an algebraic structure,
given by a finite set S of discrete objects together
with a law of composition, °: § X §— §. Finite-
ness is required for an ODE treatment to be
sensible.

Consider a population P on S, and denote by
x, the relative abundance of & in the population.
The dynamics on P shall be governed by the
network equation (1), with

alb>0>k=joi. (14)

The afj express constraints in the form of rate
constants. For each j € § there are two sets I( j)
and K(j) such that af; >0 iff i€ I(j) and k€
K(j). The object j then corresponds to a map
from its domain I(j) C S into its range K(j)C S.
In particular, when some a,’.;. are zero, then the
domain of j is a proper subset of S. We also say
that this map “is the action of j on §.”

Clearly, the case of a stochastic dynamics on
an infinite set S allows the study of the interplay
between organization emerging on the “‘semantic
level,” that is, the action of the maps on the
current population, and organization at the syn-
tactic level, that is, the regularities emerging
simultaneously in the syntax of the objects [8].

To keep things simple we do not use any
particular algebraic structure, but rather gener-
ate the af.‘j at random. In some cases, we tran-
scribe organizations obtained by runs with the
Turing gas model into a set of afj and obtain
systems with interesting population dynamics
that would otherwise have an extremely low
probability of being generated at random. This is
the case in section 6.2.2 where we consider a
“life-cycle” type of organization.

A vast number of numerical experiments (sec-
tion 6.1) shows that the generic behavior of the
network equation for randomly generated sys-
tems, is extremely robust and consists of only
fixed points. In most cases these fixed points
seem to be unique and globally stable. We will,
however, explicitly engineer systems with more
complicated dynamics (section 6.2).
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In the following we show that the objects can
always be grouped into sets such that at the set
level the network equation for each set has
either the form of a replicator equation or of a
cyclic transformation among the sets. This resuit
is more conceptually rather than analytically use-
ful. In fact, in most cases a random network is a
highly interconnected single replicator, albeit
with a complicated internal structure. The de-
composition does not tell us anything about the
internal dynamics of the replicators. Neverthe-
less, it does suggest the possibility of coupling
several random networks in a hypercyclic fashion
(section 6.2.1).

5.2. Decomposition of the network equation

Definition. Let P be a partition of S such that
each set kK € # is invariant under the action of
each element z € S, namely

VzE€S: zeK={zex|x€KNI(z)}CK.

(15)

Lemma. There is a unique partition % such that
no K € 2 can be further decomposed into action
invariant subsets.

Proof. Let , N @, be the collection of all pair-
wise intersections K,NK;, K,€P?,, K € P,.
Clearly, z°(K; N K;) C (K; N K;). The partitions
fulfilling (15) form a partially ordered set with
respect to the relation =, where ?, = 2, if every
set KE P, is contained in some set L € %,.
Since S is finite this poset is also finite. The
partition 2 = N P, is the unique least element of
the poset.

In the following we will always refer to this
finest partition 2. The above states that every set
K& P can be considered as behaving like a
replicator, and that there is a unique decomposi-
tion into ‘“smallest” replicator units. If # is
nontrivial, that is & # {S}, then the network

equation is termed replicator decomposable. In
fact, on the level of sets it can be rewritten in the
form of a replicator equation. Let x,., denote
the concentration of the species k in set K. The
network equation gives

Xrex = 2 Z Za;eK,eszer,eJ X P(t) -

i€K Je® je (16)

Let xp =% cx Xrep a0d Yycp = Xpeg/Xg. At the

set level our model becomes
Xg = xK(; Sy () x; — @(t)) ) (17)

with the coupling coefficients between the Tre-
plicator sets given by

Ay (t) = 2 2 2 azEK]EJyxeKy]EJ (18)

ieK jeJ kekK

The coupling coefficients depend on time as well
as on the initial conditions, and are bound by

keK
]En}llréK kz alEEK JET= = oy,(t)

kEK
= max 2 Aiek,jel -
JEJIEK ek

(19)

Now consider a set K€ %?. K may be further
partitioned into a collection of subsets 2(K) =
{L,,...,L,} such that

VzeS: zoL CL,. (20)
With the same argument as above there is a
unique minimal partition with respect to the
order relation < on the poset of partitions fulfil-
ling (20).

It is convenient to depict the relations between
the sets of 2 as a directed graph I'. Since KE 2
the graph is connected, and each vertex has at
most one outgoing edge. It follows that I’ con-
tains either one circuit C=L,—>L,— - -—
L,— L, or one endpoint L, € 2.
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At the level of sets, the equations for the
members of 2(K) becomes

xLi - x(_’Li) (; ﬂ(“)Li)Lj(t) xL/- - (p(t)) s (21)
¥

where (— L,) denotes the (possibly empty) par-
ent set of L, according to (20). L, or C may have
incident trees of sets, but the proposition of the
previous section implies that only the types in C
or L, survive for t— o,

One can thus uniquely decompose any S into a
collection of replicator sets which in turn may be
decomposed into a collection of sets reproducing
themselves in a transitive cyclic fashion.

5.3. A cluster problem

Rarely does a randomly generated system de-
compose into distinct interacting replicator sets
or into several sets that are transformed cyclical-
ly into each other. Nevertheless, the previous
section suggests that grouping together several
object types may result in a higher level descrip-
tion in terms of (possibly) fewer clusters at the
expense of time dependent coefficients. Such a
clustering could reveal a “natural” order not
visible at the level of individuals. The problem is
to find, according to some predefined criterion, a
partition ? ={K,, ..., K,} of the set of object
types & such that

Vk,i#jK,NK; =9 A K,oK,C K, (22)

holds, where the action of a set A on a set B is
defined as

AeB={x|x=i°j, (i, )EAXB)}. (23)

Both trivial partitions, K, = {i},i=1,...,n as
well as K, = §, comply with (22), but there is in
general no unique partition in between. A sens-
ible clustering criterion would, for instance, try
to minimize connectivity of the interaction graph
between clusters, and maximize it within clus-
ters. A replicator-set by definition does not en-

tertain transformation pathways to other sets.
The decomposition into replicators is therefore
optimal. In most cases, however, one is further
interested in the internal structure of a replicator
(which might be fairly complicated).

6. Numerical experiments

In this section we investigate numerically the
effects of interconnectedness on the behavior of
the network equation (1). Recall that this equa-
tion is not a Lotka—Volterra (or replicator) equa-
tion, but rather contains the latter as a special
case. The study of random systems of the Lotka-
Volterra type has received considerable attention
in the past twenty years [9,13-15,18,19,22,27].

6.1. Random networks

At the level of individual object types, we can
separate out the replicator part of the network
equation:

X = Ry(x) + $. (%),

R (x) = xk(z:l (a:j + a’;k)xj
-

n
_ ‘21 (a;j + a'ji)x,-x/) ,
ij=

S ()= > aﬁxix]- — X, > > alxx, . (24)
k

i,j#* t r,s¥t

In the following experiments we begin by
generating matrices at random that do not con-
tain copying reactions thus %®,(x)=0 for all k.
For the sake of simplicity we consider the case
where every interaction has a unique product (as
in section 3.4, for instance). Next we lessen the
connectivity of the reaction graph by setting
randomly chosen rate constants to zero with
probability p,,. The zeros in the interaction ma-
trix represent “‘elastic” interactions. In addition,
after generating an interaction matrix with a



P.F. Stadler et al. /| Random catalytic reaction networks 385

given p,,, we randomly introduce copy (replica-
tion) interactions, with probability p.., among
the nonzero entries. If an interaction between i
and j has been determined to be a copy action,
then the product is chosen to be either i or j with
equal probability. The relative magnitude of the
replicator field &, (x) is controlled by p;.

For a system of n types we have n’® entries of
the interaction matrix, afj, and we only need to
determine the (unique) product k for the n’
entries corresponding to all pairs (i,); all other
entries are zero. For the transmission coefficients
tf.‘,. we have for every pair (i,j) and for any k:

1
;= 1 with probability ——— (1~ pe)(1 = Perr)
fork#i,j,

1
tf.‘j = ( with probability ~ Pa>

ti. = 1 with probability % (1= po)Peeit

fork=iorj. (25)
The rate constants are given by a,'.; =a;- tf.‘/., with
the a, drawn uniformly on (0,1). In some in-
stances we simply fixed a, = 1. We refer to this
latter case as the “0/1-model.”

In almost all of several hundred numerical
integrations with p,, = p; =0 for n between 5
and 20 the system converged to a globally stable
fixed point in the interior of the simplex. This
behavior is reminiscent of a much more compli-
cated model that studies a similar problem cast
in terms of catalyzed ligation and cleavage re-
actions among polymers {2]. In a few cases our
system reduced its dimension until it reached a
set of types with no closed subsets. In all these
cases the entire surviving network was a single
replicator.

One is tempted to conjecture that the network
equation (1) with no closed subsets has one
globally stable rest point x > 0. Unfortunately, a
counterexample is given by the life-cycle system
of section 6.2.2. This system contains no closed
subsets, yet produces a limit cycle. This example

is rather contrived and is very unlikely to occur
by chance. Moreover, it has a very sparse inter-
action matrix that requires p,>0. Also note
that the addition of only one single arc at an
appropriate place collapses its limit cycle into a
rest point. At small p,,, however, the system is
exceedingly likely to contain no closed subsets
(therefore becoming permanent), as well as
being highly interconnected. As long as p ;<1
the field .#,(x) acts strongly like a mutation field
[28], resulting in a flow that points into the
interior of the simplex everywhere. This leads to
attractors located near the center (1/m,...,
1/n).

The productivity, @ (see eq. (4)), is a global
quantity that reflects the behavior of the system
as long as we are dealing with stable rest points.
In fig. 1a we show the dependency on p, and
D.r Of the average equilibrium productivity
(@()) for 10-dimensional systems. At each grid
point we average over 20 interaction matrices
chosen at random according to (25). In view of
the results of many preliminary integrations, we
tested only one initial condition chosen randomly
for each instance. Fig. 1b plots the average
dimension of the support at equilibrium — the
number of surviving types — under the same con-
ditions as fig. la. Figs. 1c and 1d show the
corresponding data for the 0/1-model.

Since we only know a few rigorous results
about the network equation, it is rather difficult
to unravel the effect of variations in p,, and p,;
on the network’s dynamical behavior. Thus, a
more phenomenological approach may help.

z<2a;q> 21 :1 (x,x,), (26)
z<"pq><t2q>'”2'm

~ (a,, ) (1, ) (n°X] + R), (27)
=a-(1—py)-(1+R). . (28)
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Fig. 1. (a) The equilibrium productivity &() is shown as a function of the density of elastic interactions (zero entries), p,, and of
the density of individual replicators, p,.,, in a 10-dimensional system. Each grid point is an average over 20 random interaction
matrices. The transmission coefficients were chosen randomly according to equation (25), the rate constants g, are uniform in
(0, 1). (b) As in (a), but the property shown is the dimension of the support at equilibrium. (c) As in (a), but rate constants are all
degenerate, a, =1 (0/1-model). (d) As in (b), but rate constants are all degenerate, a,, = 1. (e) The correlation, R, in equation
(28) is determined from the measured average @ of (a), and plotted as a function of p,, and p,.
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Brackets denote ensemble averages, bars are
system averages. Eq. (26) is a mean field approx-
imation for highly interconnected systems. Next
we replace ensemble averages by system aver-
ages, and extract the correlation between con-
centrations, R, from the second moments. Be-
cause attractors are located near the center we
set x,=1/n. Where n is the dimension of the
system at equilibrium, and q is 1/2 for uniformly
distributed rates and 1 for the 0/1-model. The
(1 —p,) term results from averaging the trans-
mission coefficients in eq. (25).

When all self-replicators are suppressed,
Pseit = 0, we observe a linear dependence of @(«)
on p,,. This is what one would expect from (28)
if there were no correlations, R. This leads to the
assumption that correlations are introduced
mostly by switching on replication interactions.
Indeed, aplotof R=(®)/[a-(1- p,)] -1 (fig.
le) confirms that at low p_,, the correlations, R,
are almost independent of p,,. As p,,,; increases,
however, low connectivity enhances the correla-
tions introduced by individual replicators. In
view of the brutal assumptions underlying (26)-
(28) we are surprised to observed that the linear
dependence @ = a - (1 - p,,) holds even for very
sparse systems produced at high p,,.

In fig. 1b the average number of surviving
types is seen to remain at or close to the intial
dimension of the system, n =10, until around
P = 0.6 where the equilibrium dimension begins
to drop quickly. The equilibrium set of types is
not likely to contain closed subsets. (Equilibrium
states with closed subsets can be found, at very
low probabilities, for example, in replicator
equations.) We will refer to the interaction graph
as the directed graph with the set of types S =
{1,2,...,n} asits vertex set, and with edge set
E = {i— k|a; >0 for some j}. The interaction
graph is a representation of the transformation
pathways. The decomposition of section 5.2 cor-
responds to the decomposition of the interaction
graph into connected components.

A set of types that contains no closed subsets
implies that the corresponding interaction graph

is strongly connected. Strong connectivity, how-
ever, does not imply that the set of vertices
contains no closed subsets. Nevertheless, it
seems that randomly generated directed graphs
that are strongly connected are also unlikely to
contain closed subsets. In fact, for p.,; =0 the
curve reflects the changes in the connectivity of
the system. At p_, <1 the graph contains O(n’)
directed edges. From the theory of random
graphs [3] we know that if the number of edges
reaches the threshold of @(n log n) an undirected
graph is connected with probability one as
n— . We suspect something similar holds for
strong connectedness in directed graphs.

The transition to dimension reducing behavior
becomes sharper as the system size increases (not
shown), as expected from random graph theory.
This transition is not reflected in &.

On the other extreme, when p,, is fixed at 0,
increasing p,. gradually turns off the field %,(x)
in (24) and switches on %,(x): the network
equation increasingly resembles a replicator
equation. Since replicator equations have a vari-
ety of different dynamical behaviors [11] we
stopped our statistics at p ., =0.95. When re-
action rates were chosen to be all degenerate at
unity, we frequently hit fixed-point manifolds at
Dserr = 0.8, while random reaction rates produced
basins of attraction for a variety of locally stable
rest points. This explains the difference in figs.
1b and d at high values of p,,,; and low values of
Do~ Again, as p,, increases, the connectivity of
the system decreases, the system contains more
closed subsets that compete with each other
according to replicator dynamics, and dimension
reducing behavior suddenly occurs in a fashion
similar to the dependency on p,, along the p_; =
0 cut. The overall shape of the surface in fig. 1b
indicates that the effect of p_, is similar to that
of p., with respect to connectivity.

Fig. 1a shows that a higher frequency of re-
plicators tends to increase the overall productivi-
ty @ at equilibrium. According to (28) the in-
crease in ¢ at constant p,; is attributed to the
introduction of positive correlations among the
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types as p., is increased and interactions be-
come predominantly replications. The decrease
of ¢ with increasing p,,, ‘at constant Dierps 15
expected from (28), and due to the decrease in
connectivity. At higher p,. the linear depen-
dence of the flow on connectivity breaks down,
pointing to an additional dependence of the con-

centrations on the system’s connectivity (see also
fig. 1e).

6.2. Special systems

In this section we briefly discuss a few systems
with internal structures that do not usually arise
in random matrices. According to the decompo-
sition in section 5.2 we may build network equa-
tions with a set level structure given by well-
known systems, for example, hypercycles. While
typical hypercycle models operate with re-
plicators that have no further internal structure,
we may now couple entire networks.

6.2.1. Hypercyclically coupled networks

Fig. 2 shows the form of the interaction ma-
trix. Each diagonal block is a randomly gener-
ated network that behaves like a single re-

Fig. 2. The interaction matrix of a system consisting of five
self-maintaining networks (dark diagonal blocks) coupled in a
hypercyclic fashion. Types interacting within each diagonal
block i as well as in conjunction with types of block i—
1mod n (light off-diagonal blocks) produce types in block i.
No single interaction is a copying process (p,,,; =0).

plicator. The object types of block i interact
additionally with those of block i + 1 (mod n) to
produce types in block i +1 (mod n), thus pro-
viding an overall hypercyclic coupling between
networks.

Fig. 3 shows a projection of the limit cycle
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Fig. 3. The plot shows the relaxation oscillation of a 25-dimensional system consisting of five 5-dimensional self-maintaining
random networks coupled as a hypercycle. The form of the interaction matrix is shown in fig. 2. The coordinates are relative

concentrations of two types in different networks.
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obtained for five randomly generated networks,
each of which has dimension five. The limit cycle
is a relaxation oscillation very similar to those
present in simple replicator hypercycles [17]. The
trajectory spends a long time near corners. One
network therefore dominates the entire system
for a certain period of time until its concen-
trations drops to almost zero, and the next net-
work takes over.

It is interesting to note that the relative con-
centrations of the members within a block are
now entrained in small oscillations (not shown),
while as an isolated system each block exhibits a
stable rest point.

The effect of varying the number of blocks in
the system is essentially the same as varying the
dimension of the hypercycle equation: stable rest
points occur when the number of blocks is less
than or equal to four, and limit cycles result for
systems with more blocks. Varying the internal
coupling within each block relative to the cou-
pling among the blocks results in the same be-
havior as for the hypercycle case: increasing the
internal coupling beyond a threshold lets the
trajectory converge toward a heteroclinic orbit as
in the May-Leonhard model [16].

For networks coupled in a replicator fashion,
eq. (17), we may expect chaotic behavior as
observed in simple replicator equations [23].

Uncoupled networks mimic yet another special
case of the replicator equation known as the
Schlogl model. Competing independent self-
replicators lead to the survival of one single type,
depending on the initial condition. This *“‘once
for ever selection” is observed at the set level as
well.

6.2.2. Life cycles

As opposed to a system of interacting re-
plicators we now consider an organization that
bears some resemblance to a biological life cycle.
Objects of type k interact only with objects of
the same type to produce objects of type kK + 1,
and type n objects interact with each other to
yield objects of type 1, thus closing the cycle.

For simplicity we assume equal rate constants:
. 2
X =Xp_, —x,D(1) . . (29)

It is easily seen that there is no rest point on the
boundary, and that for any interior rest point the
relation x, = (1/&®)x._, must hold. Iterating we
obtain x, = x2"/®*" 7!, that is @ = x, for any k.
Thus £=(1/n, ..., 1/n) is the unique rest point
of the system.

Theorem. The rest point £ is asymptotically sta-
ble for eq. (29) if n =4, and unstable otherwise.

Proof. The Jacobian at x is given by

X
Ju(x) = 'ﬁ =2X3 1041, = 0P —2x.x, . (30)

1

At the rest point £ this reduces to

. 1 2
Ju(X) = n <26k—1,l =8~ ;) ’ (31)

which is a circulant and therefore has eigen-
values

2 2 pmikin 1 '
)\k=—;6k0+;ez kl —;, (32)
Ao = —1/n corresponds to the unphysical direc-

tion. Thus x is stable when
cos(2m/n) < % . (33)

Inequality (33) holds for n <6, for n = 6 the rest
point is nonhyperbolic, and for n>6 it has
eigenvalues with positive real part. This behavior
is reminiscent of the hypercycle, with the excep-
tion that in the latter the transition from globally

stable behavior to oscillatory behavior occurs at
n=4.

Fig. 4 shows a projection of the limit cycle of
eq. (29) for n =10. The trajectory is not of the
relaxation oscillation type seen in the hypercycle
case. The flow @(¢), for example, remains (al-
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Fig. 4. The plot shows the limit cycle obtained from a 10-dimensional instance of the “life-cycle” equation (29).

most) constant along the trajectory. Our numeri-
cal experiments support the conjecture that eq.
(21) has a globally stable rest point for n <35 and
a globally stable limit cycle for n=7 at the set
level as well.

As mentioned previously, the behavior of the
life-cycle equation is rather fragile with respect
to the introduction of additional interactions.
For instance, in the 10-dimensional example
shown in fig. 4 it suffices to set ai?s =1, that is,
to have type 5 producing 10 by acting on 4, and
the system converges to a stable rest point. On
the other hand, less strategically placed interac-
tions, do not harm the limit cycle. A superposed
counterrotating cycle with ai,k +1 =1 (hyper-
cycle) or aj., ;=1 (no replicators) preserves
the limit cycle. These structural perturbations,
however, still have a purely cyclic organization.

7. Conclusions

In section 5.1 we alluded to a system of ob-
jects together with a law of composition that
determines how two objects map into a third.
Such algebraic structures may be viewed to some
extent as abstractions of naturally occurring sys-

tems, as for instance chemistry. It is interesting
to ask what happens if one defines a dynamical
system on top of such an algebraic structure. A
simple example has objects interacting with each
other according to mass action kinetics, and
thereby producing new objects in accordance
with a law of composition [7]. In this paper we
address the simplest instance of such a situation.
The algebraic structure is defined here to be a
finite look-up table. This look-up table may be
generated at random or it may contain some
prescribed structure. Mass action kinetics in a
population constrained to a constant size in a
continuously stirred tank reactor leads to .a
straightforward generalizations of replicator
equations, cf. (1).

To generalize this system we developed the
catalytic network equation. Our research indi-
cates that the typical behavior of random net-
works is extremely robust. It consists of a global-
ly stable rest point in the interior of the state
space. Clearly, this is not the only behavior that
can be found, since the network equation con-
tains many systems known to exhibit complicated
dynamics as special cases [25]. All these cases,
however, are distinguished by some particular
underlying algebraic structure, as, for instance,
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hypercycles. In fact, we have coupled entire
subsystems in a hypercyclic fashion. The result-
ing global behavior is very similar to the elemen-
tary hypercycle, but the internal dynamics of the
subsystems changed from rest points to oscilla-
tory behavior. More generally, the networks
allow us to study replicator dynamics of re-
plicators endowed with some complex internal
structure.

We looked at the average behavior of the
equilibrium productivity @ as well as at the
dimension of the support at equilibrium for a
large number of randomly chosen interaction
matrices. The averages were studied as a func-
tion of the density of elastic interactions and of
the density of copy interactions. The former
controls the sparseness of the interaction matrix,

while the latter tunes the transition to pure

replicator dynamics. We argue from these data
that the main effect of individual replicators is to
introduce strong positive correlations among the
concentrations.

We showed that the systems always reduce
their dimension to a self-maintaining subset of
types. It is difficult to detect structure at the level
of individuals in networks made up of a very
large number of different object types. One may
therefore group individuals to sets, and investi-
gate the behavior of the system at the set level.
We showed that a partition into replicator sets as
well as sets transforming into each other in a
cyclic fashion can always be made uniquely.
However, in most randomly generated cases, the
interconnections of production pathways are so
dense that the entire system is just one single
replicator. These replicators usually have an in-

" ternal structure, whose decomposition into sets is
no longer unique. This leads to an interesting
clustering problem that deserves future at-
tention.

A further line of inquiry seeks to understand
how robust a particilar interaction structure is
with respect to modifications. We found a simple
example for a cyclic interaction pattern of a
non-replicator kind exhibiting limit cycles that

can be destroyed by introducing a single addi-
tional interaction. All object types survive at the
new rest point. At the same time there are
several ways to structurally perturb the system
by adding many interactions without affecting
the limit cycle behavior. Hypercycles, in con-
trast, react quite differently to such modifica-
tions. Usually a short cut in a large hypercycle
will lead to the extinction of some species, while
preserving limit cycle behavior in the reduced
system. Our simple system can be used to study
issues of organizational stability that go beyond
the mere addition of new interactions, but also
include the addition of new types (that is, dimen-
sions) and their interactions as well.
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