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Nonequilibrium phase transitions in biomolecular signal transduction
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We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable
states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the
phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly
stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative
system described by a master equation. We use operator and functional integral methods from reaction-diffusion
theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class
of minimal models of switches, showing how all critical properties for switch behavior can be computed within
a unified framework.
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I. INTRODUCTION

A. Emergence of devices from biomolecular systems

Two related questions define a fundamental role for sta-
tistical physics in systems biology. (1) How do biomolecular
systems achieve reliable “device-level” behavior when they
consist of highly stochastic componentry [1], in particular
molecular complexes held together by low-energy hydrogen
or Van der Waals bonds? (2) Are such systems structured in a
modular fashion [2], that is, can complex molecular networks
decompose into quasi-autonomous functional units perform-
ing identifiable tasks which are robust against many physical
parameter changes and are recombinable in evolution?

The device logic of biomolecular systems employs many of
the same abstractions as electronic engineering [3], including
amplification, filtering, and switching. Switches (which use
elements of amplification and filtering) are used wherever a
discrete sequence of events is required, enabling committed
threshold response to environmental cues during development
[4,5], establishing “checkpoints” for intermediate states, in
processes like cell division that require strict sequencing of
events [6], or programming the complex progressions of cell-
type differentiation [2].

Two classes of biomolecular processes in which modular
switching is widely recognized are gene expression and
signal transduction. In gene expression, the switch states
are associated with patterns of genes activated for protein
production, and a stochastic component is introduced in the
system by the small number of weakly bound transcription
factors [7]. In signal transduction, the states of the switch
are frequently determined by the number of phosphate or
methyl groups covalently attached to specific target amino acid
residues on one or more dedicated proteins [8]. Stochasticity
in this system can again be caused by the small number
of proteins or the complexes these proteins form with the
catalysts which promote the attachment or detachment of the
phosphate or methyl groups. Gene expression changes cell
type on slower time scales (minutes to hours) than signal
transduction (seconds), but since many cell-type changes occur
in response to external signals [4,5], or rely on the amplification

and stabilization of internal signals [6], switching behavior is
often produced by both systems acting together.

In this paper we consider the problems of the mechanism
for the emergence of robust switching in stochastic molecular
systems, and of the quantitative estimation of the noise and
stability properties of switches. We consider switching in
signal transduction via the mechanism of phosphorylation (the
addition of phosphate groups via the action of a kinase) and
dephosphorylation (the removal of phosphate groups by the
action of a phosphatase) since these are a common motif
found in most if not all signaling networks. In addition, the
relative simplicity of phosphorylation transitions lends itself
to the abstraction of many real transduction cascades in terms
of a few processes, allowing us to isolate the problems of
formation, control, and robustness of the switch. We observe
that the most fundamental unit in signal-transduction cascades
is a single type of target protein with multiple phosphorylation
states (called phosphoepitopes), among which transitions are
naturally modeled as a reaction-diffusion process. The network
properties necessary for switching, which may be distributed
in real systems among several proteins in a signal-transduction
cascade, or between the cascade and the genetic transcription
factors for the target proteins, are readily lumped together
and assigned to a single species to produce minimal models.
This coarse-graining reduces network complexity while still
keeping its essential regulatory features. We are able to write
down exact master equations for such ideal models, and to
solve them systematically with field-theoretic methods from
reaction-diffusion theory.

B. Senses of “switching,” their uses, and how
they are achieved robustly

Switching in biomolecular systems, at the least, refers to the
sigmoidal response to input signals, termed “ultrasensitivity”
[9]. Such a response implies a sharp sigmoidal but continuous
response in the concentration of a molecule over a narrow
range of a (stationary) signal. In contrast, bistability [10] is
a form of switching made possible when two stable states,
S1 and S2, coexist over a signal range. As a consequence,
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FIG. 1. The catalytic topology of the MAPK cascades (from
Ref. [9], with the dashed positive feedback arrow representing the
polyadenylation that inhibits the degradation of the top protein).
Each level in the diagram represents the phosphorylation states of
a single protein, with the phosphorylation and dephosphorylation
transitions represented by arrows. Exogenous and internal catal-
ysis are represented by (other) arrows pointing to the transition
arrows.

bistable systems exhibit two distinct thresholds as the signal
is varied, one at which a transition occurs from S1 to S2
and another at which the system switches back from S2 to
S1. The separation of thresholds leads to path dependence or
hysteresis, and makes a switched state more impervious to
stochastic fluctuations of the signal around the transition point
than in the ultrasensitive case. Hysteresis may be obtained by
adding positive feedback to a sigmoidal response [11]. Weak
hysteresis may be used to stabilize input signals, equivalent
to signal “debouncing” in engineering, while strong hysteresis
leads to bistability, toggling, and long-term memory [12,13].
We will look specifically at toggling because this subsumes all
the other phenomena of interest.

The molecular mechanisms used repeatedly in signal trans-
duction for amplification, threshold sensitivity, and switching,
are shown in Fig. 1 as they are instantiated in the mitogen-
activated protein kinase (MAPK) family of transduction
cascades. This widely duplicated and diversified homologue
family is used throughout the eukaryote kingdom [14], mostly
to regulate gene expression in response to cell-membrane
received signals. MAPK cascades employ three proteins,
each with an unphosphorylated state, and, respectively one,
two, and two phosphorylated states. The phosphorylation
and dephosphorylation of each protein are catalyzed by
exogenous kinases and phosphatases, and, in addition the fully
phosphorylated states of the first two proteins, act as kinases
(phosphorylation catalysts) on the proteins following them in
the cascade. The cascade is thus an actively driven, dissipative
system, maintained away from equilibrium by the supply
of activated (high-energy) phosphate donors. When used for
switching, MAPK cascades may have positive feedback from
the output to the highest-level protein, either through gene
expression or through the inhibition of the degradation of the
active state [9].

W W*

E1 E1

E2 E2

WE1

W*E2

FIG. 2. The Goldbeter-Koshland minimal phosphorylation cou-
ple. A single protein species has an unphosphorylated state W and a
singly phosphorylated state W ∗. The authors of Ref. [8] chained such
couples to model intermolecular phosphorylation, in combination
with exogenous catalysts that are often present for both transitions as
well.

The structure of MAPK and other cascades was abstracted
by Goldbeter and Koshland [8] to the minimal system shown
in Fig. 2, which they proposed as the signaling counterpart
to the transistor (a better analogy would be to the bistable
flip-flop, as they used it). A single protein species has a single
phosphorylation site. Phosphorylation and dephosphorylation
occur via the action of catalysts or enzymes with which the
protein can form enzyme-substrate complexes. Depending
on the rate of these reactions, the steady-state fractions of
the phosphorylated (or unphosphorylated) protein can vary
abruptly as a function of these rates. This analogy has been
extended to an elaborate analysis of the properties [12] and
combinatorial logic [3] of such switches. In particular, the
authors of Ref. [12] considered the case where the the phos-
phorylated epitope acts as an intermolecular autocatalyst on
phosphorylation transitions of any unphosphorylated proteins
in the population, and showed that this leads to bistability.
However, autocatalytic feedback only creates a bistable switch
if the response of the underlying phosphorylation chain is
sigmoidal [11], which in this model requires the saturation
of the exogenous phosphatase rate via the formation of
catalyst-substrate complexes as an intermediate step be-
tween the unphosphorylated and phosphorylated states of
the protein.

We note, however, that kinetic control through saturated
complex formation is not the only way to obtain sigmoidal
response because with two or more phosphorylation sites
per protein, the concentration of the fully phosphorylated
state is a sigmoidal function of the ratio of exogenous
kinase to phosphatase, even when all catalysts act in the
linear proportional regime (in other words, when catalyst-
substrate complexes act to catalyze transitions effectively
instantaneously, and are limited only by their frequency of
formation through binary encounters). This occurs as long as
the catalytic activity is distributive—that is, if at most one
modification (phosphorylation or dephosphorylation) takes
place at each enzyme-substrate encounter [15]—and ordered
(if successive phosphorylations take place at different residues,
an ordered mechanism implies that dephosphorylation takes
place in strictly the inverse order) [16].

Two of the MAPK proteins have this structure, and
more significantly, the intermolecular catalysis within the
cascade is nonspecific to phosphorylation reactions on a
given protein, though each transition is catalyzed through an
independent event [9]. We show below that, combining this
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form of sigmoidality with positive feedback, it is possible to
obtain bistability through a nonequilibrium phase transition
in which the individual events of catalysis lead to a polarized
distribution of the phosphorylation states of the target protein.
Such population-level cooperative effects (proposed also in
the context of genetic switches in Ref. [7]), bestow the
stability of macroscopic (thermodynamic) systems on the
otherwise highly stochastic events of phosphorylation and
dephosphorylation. We suggest that the properties of phase-
transition-mediated switching are one source of adaptive
preference for multiple phosphorylation sites and nonspe-
cific catalysis, which one encounters repeatedly (histidine
kinase cascades may have as many as 26 phosphorylation
sites [17]).

Previous studies have also shown that multisite phospho-
rylation with saturation kinetics at each modification step can
lead to bistability even in the absence of feedback [18,19].
Hence both kinetic control and population-level polarization
can lead robustly to bistability in some parameter domains.
However, the two mechanisms are distinguished by their
responses to mutations and by their control parameters. Single-
molecule control causes switching properties to change if rate
kinetics change in a way that population polarization does
not, while the role of nonspecific catalysis in models with
population-level cooperative effects (at least in the form we
will consider) creates a different kind of sensitivity. An impor-
tant constraint on the evolutionary innovation, preservation,
and diversification of phenotype (any expressed functionality)
is the shape of its neutral network [20,21] (the degenerate
space in the genotype or phenotype map with regard to that
functionality). The phenotype of phase-transition-mediated
switching is more nearly controlled by the topology of the
catalytic network than by its kinetics, an idea that has been
proposed as a source of robustness in the segment-polarity
network [2], and theoretically grounded in the case of general
enzyme-driven reaction networks in Ref. [19].

Note that we do not study spatiotemporal correlations in-
duced by the diffusion of enzymes and/or enzyme inactivation.
A recent study [22] showed that even with the enzymes acting
according to a distributive mechanism, rapid rebindings of the
enzyme molecules to the substrate molecules can lead to a
loss of ultrasensitivity and bistability. We do not consider the
effect of protein degradation either. Our model is, however,
a theoretical fully stochastic study of the MAPK cascade,
modeled earlier, only via rate equations [9,16,18,23,24] or
stochastic simulations [25,26].

In this context, we study quantitatively the three critical
properties of a phase-transition mediated switch: the condi-
tions for the existence of bistability, the noise characteristics
of those fluctuations that preserve the domain in the bistable
phase, and the large excursions that limit the memory or
reliability of the switch, and which near the threshold for
bistability, can lead to finite-particle number corrections to
that threshold. These have only been considered intermittenly
before in other models, with the conditions for bistability
treated in the infinite-particle (deterministic) limit [10,27],
the noise from internal and external sources related through
ad hoc response functions [28], and stability treated at the level
of bounds on scaling, for systems already assumed reduced to
one relevant dimension [13].

C. Reducing to appropriate models

Most biological literature on this subject focused on the
phenomenological modeling of (usually mean-field behavior
in) observed or designed systems [2,4– 6,9,10,18,27]. We are,
however, more interested in the possibility of statistically mo-
tivated, universality classification of strategies for switching,
which might explain the evolutionary regularities in cascades.
Therefore, in addition to idealizing the molecular mechanisms
responsible for sigmoidal response and positive feedback as
properties of single protein species, to make the polarization-
based equivalent of the flip-flop from adding feedback to our
Fig. 2 (equivalent to Fig. 12 of Ref. [3]), we advisedly exploit
symmetry, of either the catalytic topology or the parameters,
to make the analysis tractable. This approach also aids in
decomposing effects responsible for switching, and relating
these to other equilibrium or nonequilibrium phase transitions.
Thus our minimal models deliberately differ from the familiar
cascade families in areas not directly related to the production
of switching [29]. The model of Markevich et al. [18] is also in
this category in demonstrating bistability (via kinetic control)
at the level of a single stage of the MAPK cascade.

The model we propose for a cooperative-phosphorylation
switch is shown in Fig. 3. Each of the N molecules of a
single type of protein has J phosphorylation sites indexed

.......0 1 2 J-1 J

.......0 1 2 J-1 J

(a)                                                    (b)

(c)                                                    (d)
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FIG. 3. (Color online) Multisite phosphorylation and feedback
structure. (a) This panel depicts the basic phosphorylation chain
without feedback in which a target protein with J sites is phospho-
rylated by a kinase I and dephosphorylated by a phosphatase P . The
ordered succession of phosphorylations yields J + 1 modification
states, labeled 0,1, . . . ,J . (b) The fully phosphorylated target protein
relays a signal into pathways that eventually feed back on the
phosphorylation chain. (c) Simplification of (b) in which the fully
phosphorylated target protein acquires kinase activity and directly
feeds back on the chain. We refer to this network configuration as
the asymmetric circuit. (d) Schematic of the network with symmetric
feedback in which the substrate protein is bifunctional, whereby the
fully (de)phosphorylated form catalyzes (de)phosphorylation of its
own precursors.
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j ∈ 1, . . . ,J , which we suppose for simplicity to be phos-
phorylated and dephosphorylated in a definite order. All
phosphorylations are catalyzed by exogenous kinases, and
all dephosphorylations by exogenous phosphatases. Because
the enzymes are assumed to operate in the linear regime
where complex formation is not rate limiting, the catalytic
rate per reaction is proportional to the numbers I and P
of the kinase and phosphatase particles, respectively (we set
the constant of proportionality equal to 1 by choice of the
units of time). The site modifications occur in a specific order,
thus sidestepping combinatorial complexity. Furthermore, the
phosphorylation and dephosphorylation of substrate proteins is
assumed to follow a distributive mechanism, whereby a kinase
(phosphatase) enzyme dissociates from its substrate between
subsequent modification events [30,31]. Hence the substrate
has J + 1 states.

We obtain positive feedback from intermolecular autocatal-
ysis; specifically, proteins in the j = J state are kinases that act
interchangeably with the exogenous kinases (unequal catalytic
power between j = J and exogenous kinases can easily be
added, at the cost of another parameter). The phosphorylation
chain with feedback is shown in the bottom half of Fig. 3.
Figure 3(c) depicts an asymmetric topology in which the fully
phosphorylated substrate catalyzes its own phosphorylation,
while Fig. 3(d) shows the symmetric version in which a
substrate molecule is bifunctional, acting as both a kinase and
phosphatase depending on its modification state. Kinase I and
phosphatase P are exogenous forces on the modification of
the substrate, but the feedback is an endogenous force whose
strength is proportional to the occupancy of the end states of
the chain. This occupancy is subject to intrinsic fluctuations
and depends on the total number of substrate molecules.

The assumption of intermolecular autocatalysis is standard
[12], and we consider below the self-consistent backgrounds
with kinase-only autocatalysis as the nearest equivalent to
the kinetically controlled switch [8]. To analyze the model
beyond mean-field theory (using field theoretic techniques)
we go further in the interest of simplicity, and symmetrize
the topology as in Fig. 3(d), by making the unphosphorylated
state (indexed j = 0) a phosphatase, interchangeable with the
exogenous phosphatases.

The feedback topology of the model caricatures a few
elements present in biological systems. One such element
is the competition between antagonistic pathways that may
underlie cellular decision processes (for example, Ref. [32]).
A multisite phosphorylation chain of the type considered here
could function as an evaluation point between competing
and antagonistic pathways influenced by different active
phosphoforms of the chain, provided these pathways feed back
to the chain. In a less extreme case, the fully phosphorylated
form activates another kinase which then interacts with the
chain. In these scenarios, feedback is mediated by a series of
intervening processes, which may well affect the propagation
of fluctuations. Yet if delays are not too large, the collapsed
scheme of Fig. 3(c) could be a reasonable proxy with the added
benefit of mathematical tractability.

A scenario corresponding more literally to our model
involves a bifunctional substrate capable of both kinase
and phosphatase activity, depending on the substrate’s
modification state. One example is the HPr kinase/P-Ser-

HPr phosphatase (HPrK/P) protein, which operates in the
phosphoenolpyruvate:carbohydrate phosphotransferase sys-
tem of gram-positive bacteria. Upon stimulation by fructose-
1,6-bisphosphate, HPrK/P catalyzes the phosphorylation of
HPr at a seryl residue, while inorganic phosphate stimu-
lates the opposing activity of dephosphorylating the seryl-
phosphorylated HPr (P-Ser-HPr) [33]. Another example of a
bifunctional kinase or phosphatase is the nitrogen regulator
II (NRII) protein. It phosphorylates and dephosphorylates
nitrogen regulator I (NRI). NRI and NRII constitute a bacterial
two-component signaling system in which NRII is the “trans-
mitter” and NRI the “receiver” that controls gene expression.
NRII autophosphorylates at a histidine residue and transfers
that phosphoryl group to NRI. The phosphatase activity of
NRII is stimulated by the signal-transduction phosphatase
protein PII (which also inhibits the kinase activity). Several
other transmitters in bacterial two-component systems seem
to possess bifunctional kinase or phosphatase activity [34].

Both the network with asymmetric topology [autokinase
only, Fig. 3(c)] and the network with symmetric topology
[Fig. 3(d)] but asymmetric catalytic concentrations I ̸= P
undergo formally first-order phase transitions so that the
regions of bistability are always metastable at finite N .
However, in the topologically symmetric case, these continue
smoothly through a second-order transition at I = P , in which
the symmetry of both the topology and parameters ensures
exact bistability with finite residence time in domains, at all N
where the phase transitions exist. This simplification permits
us to estimate the residence times with an expansion in the
semiclassical stationary points of an effective action, without
encountering the complexities of path integrals for metastable
processes [35], though numerically we expect this also to be
a good approximation to residence times in metastable states
with similar “barrier heights” in the first-order case. Symmetry
also permits the closed-form computation of the noise kernel
about the monostable phase with a unique equilibrium, which
generates a natural measure for the “weakness” or “strongness”
of the first-order transitions at nearby values of I/P as a
function of N . We therefore perform a thorough analysis of
the second-order transition to establish methods and provide a
reference solution to qualitatively understand the mechanisms
of bistability and metastability in the more general cases with
a similar stochastic structure.

D. Methods of treatment for the stochastic problem

While differential equations for mean chemical concen-
trations (the current standard method of analysis) can give
good estimates of the existence of hysteresis and bistability
when approximating systems with as few as tens to hundreds
of molecules, they, of course, preclude the treatment of noise,
fluctuation-induced corrections to mean-field behavior at small
particle number or near critical points, and large excursions
such as domain flips (when the system switches from one
bistable state to another). Pure mass-action models also ignore
spatial constraints such as scaffolding by the cytoskeleton or
the proteins themselves and the dimensionality of physical
diffusion in the cytosol or membranes.

A better approximation is given by the master equation
for the probability of instantaneous particle distributions in
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models like that of Fig. 3, which, in principle, captures all
orders of stochastic processes, though such simple models
still omit spatial effects. The general properties of the master
equation (in the diffusion, or “Fokker-Planck” approximation)
for a one-dimensional switch have been used to obtain scaling
relations and loose bounds on the stability achievable from
such a switch as a function of the number of molecules it
employs [13].

Operator methods, analogous to Hamiltonian methods in
quantum mechanics, have been developed in reaction-diffusion
theory (see Ref. [36] for a review) to efficiently handle
the collective excitations that diagonalize general master
equations without time-reversal symmetry. These have been
used in the context of gene expression [7] to estimate the
number of stable cell types made possible by many randomly
combined transcription factors, making use of the similarities
to the ground states of random-bond Ising models.

From the operator-valued evolution kernel, one can obtain
an equivalent path-integral representation by expanding at each
time in a basis of coherent states [37,38]. Stationary-field ex-
pansion in the path integral generalizes the classical differential
equation for concentrations to consistently incorporate fluctu-
ation effects (by means of a perturbatively corrected effective
action [39]), and the sum over the “approximate stationary
points” of locally least action identify the typical configuration
histories associated with domain flips. More sophisticated
approaches, similar to those used here, have also been used to
incorporate fluctuation effects into efficient lumped-parameter
expansions for networks with multiple time scales [40].

Master equations can also be solved numerically by the
Gillespie algorithm [41], or simulated directly, and we use
such simulations to validate our analytic results below. The
lack of convenient symmetries in real biomolecular systems
promises to make analysis intractable for most quantitative
phenomenology, and a recourse to numerics is likely to be the
only general-purpose solution. However, the path integral’s
separation of moments in a natural small-parameter expansion,
and of perturbative noise from formally nonperturbative large
excursions, provides an intuitive decomposition of the mecha-
nisms fundamental to switching and stability. At the mean-field
approximation, we find surprising similarities of the phase
transition in this driven system to the magnetization transition
in the discrete, equilibrium, mean-field Ising ferromagnet, and
a transition between this classical critical behavior at finite
J and a condensation effect more similar to Bose-Einstein
condensation at J → ∞. The algebraic distinction between
self-consistent backgrounds, perturbative fluctuations, and
no-perturbative domain flips, elementary in the analysis, is
also a subtle distinction, difficult to make without systematic
measurement biases, in the numerics.

E. Main results from the analytical treatment

The mean-field results, which are reported in detail in Ref.
[29], and which can also be recovered from our effective-action
treatment in this paper, reproduce the standard differential
equations for mass action. The stationary states arise from
the conditions of detailed balance between phosphorylation
and dephosphorylation; self-consistent with the concentrations
they produce of autocatalytic phosphoepitopes in relation to

exogenous catalysts. Specifically, we show how both symmet-
ric and asymmetric topologies create domains of monostability
and bistability in the parameter space (I/N,P/N ), and how
the population asymmetry in the self-consistent state depends
on the coupling g ≡N/

√
IP and exogenous asymmetry I/P .

The perturbative expansion in Gaussian fluctuations about
the self-consistent background provides a systematic construc-
tion of the noise spectrum of the phosphorylation chain. At
lowest order it predicts a cusp ∼1/|g − gc| in the variance of
the order parameter, equivalent to the Curie-Weiss prediction
for the spin-1/2 mean-field ferromagnet. More surprising, we
find that the entire perturbative approximation to the noise
spectrum on all sites is generated from a single bare mode,
effectively coupled to a single Langevin field. This result
replaces the ad hoc noise kernels one must entertain in the
absence of a first-principles treatment [28,42].

The nonperturbative expansion in semiclassical configu-
rations of locally least action predicts the leading large-N
dependence of the domain residence time in the bistable regime
as a function of the dimensionless rates of the problem I/P

and
√

IP /N (though here we solve only for the symmetric
case I/P = 1, where bistability remains exact at finite particle
numbers). These configurations, the dissipative equivalent to
the instantons of Euclidean equilibrium field theory [35], solve
two problems. First, from the high-dimensional configuration
space of the N -particle (J + 1)-site chain, they extract the one-
dimensional contour of most likely configurations to mediate
domain flips, assumed as given in Ref. [13]. Second, the action
along this trajectory, ∝N at fixed (I/N,P/N ), is the leading
exponential in the residence time, for which the authors of
Ref. [13] correctly predicted the scaling, but gave no algorithm
to compute the coefficient (known in large-deviations literature
as the rate function [43]).

Similar leading-exponential dependencies have been com-
puted by the authors of Refs. [42,44]. For reference to this
work, we note that the passage to the diffusion limit or
Fokker-Planck equation in Ref. [13], and the closely related
use of the Gaussian approximation for the fluctuations in
Ref. [42],1 are formally uncontrolled approximations, whose
limitations and ranges of validity are pointed out by the authors
of Ref. [44]. One purpose for our paper is to present the larger
systematic analysis within which such approximations arise.

F. Layout of the paper

Section II introduces the master equation for the model class
of Figs. 3(c) and 3(d), and derives the phase diagram for steady
states from the conditions of the detailed balance of the mean
particle numbers. Section III converts the master equation, first
into the equivalent representation in terms of a state in a Hilbert
space, and then into the equivalent path-integral representation
through an expansion in intermediate Poisson distributions.
Section IV derives the perturbative expansion in fluctuations
about the mean fields of the path integral, including the equiv-
alent representation in terms of a Langevin equation, and the
leading-order perturbative approximation to the fluctuations
in the order parameter. Section V then considers the enlarged

1This form is originally due to Onsager and Machlup [45].
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expansion in the approximate stationary points needed to
derive the trajectories and rate of domain flips. Finally, Sec. VI
summarizes the consequences of these technical results for the
conceptual understanding of biomolecular signal transduction
and switching.

II. MASTER EQUATION AND MEAN-FIELD
BACKGROUNDS

An instantaneous configuration of N proteins on the J + 1
sites of Fig. 3 defines a vector n ≡(n0,n1, . . . ,nJ ), where nj

is the number on site j . A fixed particle number implies that n

lives on the integer lattice in the J -simplex
∑J

j=0 nj ≡N . We
denote a (generally time-dependent) probability distribution
on configurations P (n), and suppress the time index t in the
notation.

A stochastic process for particle hopping is completely
defined by the master equation for P (n), which is the
“probability inheritance” equation induced by the transition
probabilities on the simplex. For Fig. 3 with catalytic rates
proportional to the number of catalytic particles, this is

∂

∂t
P (n) =

J−1∑

j=0

[(I + nJ − δJ,j+1)(nj + 1)

×P (n + 1j − 1j+1) − (I + nJ )njP (n)

+ (P + n0 − δ0,j )(nj+1 + 1)

×P (n − 1j + 1j+1) − (P + n0)nj+1P (n)], (1)

where 1j denotes the vector with the j th component equal to
1 and all other components zero.

Our assumption that phosphorylation and dephosphory-
lation happen in a definite sequence makes transition rates
from site j proportional to nj and the catalyst concentration,
without additional combinatorial factors. For the asymmetric
(autokinase only) topology, the factors n0 and δ0,j in the second
line of Eq. (1) are absent, and dephosphorylation depends only
on the nj and the exogenous phosphatase number P .

Time-dependent average particle numbers on each site are
defined as

⟨nj ⟩ ≡
∑

n

P (n)nj , (2)

and it is easy to see from Eq. (1) that
∑J

j=0 d⟨nj ⟩/dt ≡0.
It is also useful to write the equation for the center of mass

of the system defined as C ≡
∑

n,j jnjP (n). This becomes

∂

∂t
C = N (I − P ) + [P ⟨n0⟩ − I ⟨nJ ⟩]

+N [⟨nJ ⟩ − ⟨n0⟩] +
[〈
n2

0

〉
−

〈
n2

J

〉]
. (3)

As we will see later, this exact equation can be used to estimate
the fluctuations of the order parameter for large J .

In what follows, we first look at the mean-field approx-
imation already elaborated on in Ref. [29]. The mean-field
approximation for the evolution of ⟨nj ⟩ under Eq. (1) replaces
all joint expectations with products of marginals: ⟨njnJ ⟩ ≈
⟨nj ⟩⟨nJ ⟩, and so on.

A. Detailed balance: symmetric topology

Under the mean-field approximation, the system of N
interacting particles essentially decouples into a system of
N independent particles executing a random walk on the
lattice of J + 1 sites. Within this approximation, the detailed
balance of phosphorylation and dephosphorylation between
adjacent sites in the chain holds, and depends on a catalytic
ratio which we will denote x. For the symmetric topology,
x ≡(I + ⟨nJ ⟩)/(P + ⟨n0⟩), and we recognize two convenient
nondimensional parameters

I

P
≡eλ, (4)

and
N√
IP

≡g. (5)

As autocatalysis, scaled by N , induces bistable order (i.e.,
it favors configurations in which most particles are piled up
toward one or the other end of the chain), and exogenous
catalysis, scaled by I and P , induces homogeneity (config-
urations in which particles are uniformly spread out on the
chain), g is the coupling strength of the model, with strong
coupling favoring broken symmetry. I/P is then the measure
of exogenous asymmetry.

In terms of these and the fractional occupations ⟨nj ⟩/N ,
the catalytic ratio may be written

x ≡ eλ/2 + g ⟨nJ ⟩ /N

e−λ/2 + g ⟨n0⟩ /N
≡eξ . (6)

By induction on j , time-independent solutions satisfy

⟨nj ⟩ = xj ⟨n0⟩, 0 ! j ! J, (7)

and the normalization

N =
J∑

j=0

⟨nj ⟩ = ⟨n0⟩
1 − xJ+1

1 − x
. (8)

From Eqs. (6) and (7) we can evaluate

g

N
⟨nJ − n0⟩ =

2 sinh
(

ξ−λ
2

)
sinh

(
J
2 ξ

)

sinh
(

J−1
2 ξ

) , (9)

and we can rewrite Eq. (8) as

⟨nJ − n0⟩
N

=
2 sinh

(
ξ
2

)
sinh

(
J
2 ξ

)

sinh
(

J+1
2 ξ

) . (10)

When Eqs. (9) and (10) are nonzero, they have the ratio

g =
sinh

(
ξ−λ

2

)
sinh

(
J+1

2 ξ
)

sinh
(

ξ
2

)
sinh

(
J−1

2 ξ
) . (11)

For I ̸= P , Eq. (11) always holds (though it may be negative
or singular), while for I = P we have the possibility of the
degenerate case where ⟨nJ − n0⟩ = 0 and g is unconstrained.
For g < gC(λ = 0) (a second-order critical point) this is the
stable asymptotic distribution, while for g > gC(λ = 0) it is
unstable. The graph of g versus ξ for a few (nonpositive) values
of λ at J = 2 is shown in Fig. 4. (Positive λ generate curves
reflected through ξ = 0.) The graph defines a pseudo-inverse
ξ(g), which gives the stationary solutions within the mean-field
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FIG. 4. g(ξ ) from Eq. (11) along the contours of constant λ, for
which the two branches proceed outward from the ξ = 0 line in order
of increasing |λ| (different λ values are depicted by different line
styles). The branches with the lowest and largest values of λ are
marked on the figure. The other λ values can be read on the left from
the intersection with the abscissa where ξ = λ. Where g(ξ ) has a
single-valued inverse, that function ξ (g) defines the unique steady-
state distributions. Where the inverse is triple-valued, the largest |ξ |
are stable solutions, and the central branch is unstable.

approximation. Where ξ is triple-valued (not a well-defined
inverse), the central branch is in all cases unstable, and the two
outer branches are stable.

The character of the curves in Fig. 4 is preserved for all
J > 2, though the derivative of the stable curve for I = P
above its critical point becomes discontinuous at ξ = 0 for
J → ∞. This discontinuity is related to the transition from the
Curie-Weiss-like to Bose-Einstein-like behavior of the order
parameter, discussed below. The curves corresponding to all λ
have regular limits at large J .

We can identify a set of gC(λ) as the local minima in Fig. 4
above which the ξ (g) graph becomes triple valued. The λ → 0
limit of these minima smoothly converges on the second-order
critical coupling

gC(λ = 0) ≡ J + 1
J − 1

. (12)

Converting the pair [λ,gC(λ)] to (I/N,P/N ) values yields
the phase diagram shown in Fig. 5 for a range of J values. The
interior region I ∼ P and sufficiently small

√
IP /N ≡1/g

is bistable, and outside this region the sign of ξ = ln x equals
that of λ ≡ln I/P . As we demonstrated in Ref. [29], these
theoretical estimates match very well with data from Monte
carlo simulations.

B. Detailed balance: asymmetric topology

In the autokinase-only asymmetric model, positive λ
(I > P ) is never bistable because the particles are already
biased toward nJ , the only site with positive feedback.
Therefore we graph only λ ! 0, though the algebraic solutions
are valid everywhere.
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FIG. 5. Phase diagram for the symmetric topology, from the
minima gC(λ) of Fig. 4, and their equivalents for a range of J . The
regions inside the chevrons are bistable; those outside are monostable
with the inequalities indicated in the labels. Three contours of fixed
I/P are shown. The contour through the apices of the chevrons
produces second-order transitions; other contours produce first-order
transitions with one metastable and one asymptotically stable state in
the bistable region.

Instead of Eq. (6), the catalytic ratio is x ≡(I + ⟨nJ ⟩)/P ,
which reduces in nondimensional parameters to

x ≡ eλ/2 + g ⟨nJ ⟩ /N

e−λ/2
≡eξ . (13)

Equations (7) and (8) still hold, but instead of Eq. (9) we
choose the reduction

g
⟨n0⟩
N

=
2 sinh

(
ξ−λ

2

)

exp
[(

J − 1
2

)
ξ
] . (14)

The appropriate reduction of Eq. (8), counterpart to Eq. (10),
is now

⟨n0⟩
N

=
sinh

(
ξ
2

)

exp
(

J
2 ξ

)
sinh

(
J+1

2 ξ
) . (15)

Equations (14) and (15) are regular at all ξ , so we always have
a defined function g(ξ ), of the form

g =
2 sinh

(
ξ−λ

2

)
sinh

(
J+1

2 ξ
)

sinh
(

ξ
2

)
exp

(
J−1

2 ξ
) . (16)

A graph at J = 2, which is the asymmetric-topology
counterpart to Fig. 4, is shown in Fig. 6. In the bistable phase,
there are still three branches for ξ at given g, with the outer two
stable and the central one unstable. The obvious differences
are that now there is a maximal λ for bistability, and that the
leftmost stable branch at any λ moves positively in ξ as g
increases because of the asymmetric topology, whereas in the
symmetric topology it moved negatively in ξ .

At any λ below a (negative) J -dependent threshold, we can
extract the minimal and maximal g values for bistability [below
the minimum, ξ follows λ ≡ln(I/P ) qualitatively; above the
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FIG. 6. g(ξ ) along contours of constant λ for the asymmetric
topology, J = 2 and the same λ values as in Fig. 4. The maximal λ

for bistability generates the curve whose minimum derivative is zero.

maximum, only the largest-ξ branch is stable because of too-
strong positive feedback]. Inverting gmin(λ) and gmax(λ) to
(I/N,P/N ), we obtain the phase diagram for bistability shown
in Fig. 7.

The upper boundary of each bistable region, defined by
gmin(λ), is a distorted counterpart to the upper gC(λ) branch in
Fig. 5, and the two converge to the same limit as J → ∞
(where feedback from n0 becomes irrelevant). The lower
boundary, defined by gmax(λ), replaces the reflected lower
gC(λ) branch in Fig. 5, and converges to the diagonal I = P
at J → ∞.

Thus we see that classically, the first-order phase transitions
are similar for symmetric and asymmetric feedback topology,
one being deformable into the other in the (I/N,P/N )
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FIG. 7. The phase diagram for autokinase feedback only. The
domains of bistability are somewhat smaller than in Fig. 5, and are
shifted toward smaller I/P , but otherwise the characteristics are
qualitatively and even quantitatively similar.

parameter space. (We could have performed this continuation
smoothly by weighing the n0 catalytic strength with a param-
eter ε ∈ [0,1].) Further, the first-order transition in g along
any I/P ray in the symmetric topology continues smoothly
through the second-order transition at I/P = 1, at the apex of
the domain of bistability. Whether the first-order transitions
in the neighborhood of I/P = 1 are strong or weak depends
on the ξ support of the stationary solution for P (n) (a function
of N ), in relation to the difference between the stable mean
values at gC(λ).

C. Phase transition and order parameter versus J

We now restrict attention to the case of symmetric
topology and exogenous catalysis setting I = P ≡q, and
consider the behavior of the natural mean-field order parameter
|⟨nJ − n0⟩| /N as a function of J . Expanding Eq. (10) in small
ξ , and inverting Eq. (11) relative to gc ≡gC(λ = 0) in Eq. (12),
we find the mean-field critical scaling of the discrete Ising
ferromagnet, up to a J -dependent prefactor

|⟨nJ − n0⟩|
N

≈
√

6J

J + 1

(
g

gc

− 1
)1/2

. (17)

The small-ξ approximation is valid for g − gc " gc − 1,
above which the order parameter saturates to a J -independent
envelope value

|⟨nJ − n0⟩|
N

→ 1 − 1
g

. (18)

The exact mean-field prediction for |⟨nJ − n0⟩|/N versus
g from Eqs. (10) and (11) is compared to the numerical
simulations for J + 1 = [5,10,100], in Fig. 8.

Since gc − 1 → 2/J for large J , Eq. (18) also gives the be-
havior in the formal J → ∞ limit. The derivative of the order
parameter converges to 1 in arbitrarily small neighborhoods of
the critical point, rather than to ∞ as in the Curie-Weiss regime;
thus J → ∞ defines a different universality class than any

g

<n
J 

- 
n 0

> 
/ N

0. 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 8. Order parameter |⟨nJ − n0⟩|/N for the symmetric phos-
phorylation chain: mean-field theory (lines) and simulations (sym-
bols). J + 1 = [5,10,100] corresponds to [dot,dash,solid] for lines
and [+,o,×] for symbols. Particle numbers used in the simulations
are, respectively, N = [4000,2000,400].
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finite J . Qualitatively, the distinction between small and large-
J is determined by whether one or both reflecting boundaries
are sensed by the near-critical symmetry-broken state. The
large-J transition resembles Bose-Einstein condensation in
the sense that either n0 or nJ accounts for a finite fraction
of the particles, with the remainder “thermalized” with an
exponential distribution in j into the interior, at “temperature”
self-consistently determined by q/N = 1/g. To understand
the nature of these transitions beyond mean-field theory we
introduce the operator and path-integral representations of the
master equation and its solutions.

III. OPERATOR, STATE, AND PATH INTEGRAL
REPRESENTATIONS

A. Operators, states, and time evolution

The operator representation of master equations from
reaction-diffusion theory [36,38] begins by introducing raising
and lowering operators a

†
j , aj for each site on the lattice, with

the commutation relations of orthogonal quantum harmonic
oscillators [aj,a

†
j

′ ] ≡δj,j
′ . These define a Hilbert space

through their action on a “vacuum” state aj |0) ≡0,∀j , and
its conjugate (0|a†

j ≡0,∀j .
Number states indexed by the vector n are defined through

the action of the raising operators

|n) ≡
J∏

j=0

(a†
j )

nj |0), (19)

and differ from quantum-mechanical number states in being
normalized with respect to a universal Glauber state [36,38]

(0|e
∑

j aj |n) = 1, ∀n. (20)

The number operator for each j is defined as n̂j ≡a
†
jaj , and

extracts the appropriate coefficient from n in the Glauber norm

(0| exp

(
∑

j ′

aj ′

)

n̂j |n) = nj . (21)

A classical distribution P (n) has the state representation in
the n basis

|ψ) ≡
∑

n

P (n) |n) . (22)

|ψ) is equivalent to a generating function f (z) of a (J + 1)-
component complex vector z, under the association a

†
j ↔

zj , aj ↔ ∂/∂zj . Glauber normalization is equivalent to a
prescription for shifting zj → zj + 1, and evaluating the
resulting function at zj = 0,∀j . A thorough treatment of these
methods for handling generating functions and functionals is
provided in Ref. [46] in the context of the analysis of master
equations for evolutionary games. However, for the treatment
that follows below, we need only the definitions provided
above to proceed.

The master equation (1) corresponds to the state evolution
equation known as the Liouville equation

d

dt
|ψ) = −' |ψ) , (23)

in which the nonlinear, diffusive Liouville operator that
evolves the state in time is given by

' = q

J−1∑

j=0

(a†
j+1 − a

†
j )

[(
1 + n̂0

q

)
aj+1 −

(
1 + n̂J

q

)
aj

]
.

(24)

Here I = P ≡q as mentioned earlier. The differential equa-
tion (23) is formally reduced to quadrature to give the time-
dependent state relation

|ψt ) ≡e−'t |ψ0) . (25)

The normalization of P (n) and the number states |n) implies
(0| exp(

∑
j aj )|ψt ) = 1,∀t . We further recognize the exoge-

nous catalytic strength q ≡1/τ as defining a natural time
scale, and the natural coupling g ≡N/q in Eq. (24), as before.

B. Coherent-state expansion and path integral

At weak nonlinearity (small g), it is both intuitive and
computationally efficient to expand solutions to Eq. (25) in
eigenvectors of the annihilation operators aj [38], which are
the Poisson distributions in nj . We start with a normalized
initial state arbitrarily parametrized by the mean occupation
numbers

|ψ0) = exp

⎛

⎝
∑

j

n̄j (a†
j − 1)

⎞

⎠ |0), (26)

in which the judicious choice of the n̄j cancels the surface
terms associated with transients. (The self-consistency of these
parameters with stationarity under ' may be used from the
operator representation to obtain moments of P (n), as was
done in Ref. [7], though we will proceed directly to the time-
dependent field action here.) To form a basis for coherent-state
expansion (again, see Ref. [38] for details of this procedure)
at increments of time, we introduce a complex-valued vector
field φt ≡(φ0,φ1, . . . ,φJ )Tt , and its adjoint φ

†
t . At a set of

t
′ = k*t , we insert the representation of identity
∫

dφ
†
t
′ dφt

′

π
e
−φ

†
t
′ ·φt

′
ea†·φ

t
′ |0) (0| eφ

†
t
′ ·a=

∑

n

|n) (n| = I

(27)

into (0| exp(
∑

j aj )|ψt ), expressed through Eqs. (25) and (26)

as (0| exp(
∑

j aj )e−'t exp(
∑

j n̄j (a†
j − 1))|0). Though the co-

herent states are overcomplete, phase cancellations in Eq. (27)
leave the proper complete number basis at each t

′
.

By now-standard procedures [36,38] we recognize that
the fields φ and φ† have somewhat different roles, with
fluctuations in φ about its mean value corresponding roughly
to fluctuations in number, and those in φ† sampling moments
of the generating functional |ψ). Thus we expand the complex-
conjugate coefficients φ∗

j of the (row) vector φ† at each time as

φ∗
j ≡φ̃j + 1 at each t , with shorthand φ

†
t ≡φ̃t + 1, leaving

φ to be determined physically. The resulting normalized
generating functional has the path-integral representation

(0| exp

(
∑

j

aj

)

|ψt ) =
∫

Dφ̃ Dφe−
∫

dtLeφ̃0·(n̄−φ0), (28)
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in which the diffusive “Lagrangian” is

L(φ̃,φ) = φ̃ · ∂φ

∂t
+ '(φ̃ + 1,φ). (29)

The Liouville operator (24) has induced a complex-valued
function of fields '(φ̃ + 1,φ) through the substitution a

†
j →

φ̃j + 1, aj → φj . We will see that, up to care with the signs
and contours of integration that depend on what we wish to
extract from this function, it behaves as the equivalent of a
Hamiltonian for an equilibrium system, with a few structural
differences characteristic of stochastic processes (elaborated
on also in Ref. [46]). The measureDφ̃ Dφ in Eq. (28) is defined
formally by the skeletonization procedure for the insertion of
the coherent states, but in practice is usually defined implicitly
by perturbation theory in the diffusive Green’s function.2

The linearization of ' in either Eq. (23) or Eq. (28)
(i.e., keeping only the terms linear in φ̃) provides the natural
expansion in independent collective fluctuations of the master
equation and gives results for the expectation values which are
identical with the mean-field results presented earlier. In the
field form (29) it further provides a convenient and intuitive
background-field expansion, in which the backgrounds repre-
sent locally best-fit Poisson distributions with a mean number
equal to φ∗

j φj for each component j .

C. Structure of reaction-diffusion Lagrangians

To make use of the form of ' we introduce two pro-
jection matrices onto the catalytic sites j = 0,J , P± with
components (P+)jj ′ ≡δj,J δj

′
,J , and (P−)jj ′ ≡δj,0δj

′
,0, and

linear-diffusion matrices

D+ ≡

⎡

⎢⎢⎢⎢⎣

1

−1
. . .
. . . 1

−1 0

⎤

⎥⎥⎥⎥⎦
, (30)

D− ≡

⎡

⎢⎢⎢⎢⎣

0 −1

1
. . .
. . . −1

1

⎤

⎥⎥⎥⎥⎦
, (31)

corresponding to the phosphorylation and dephosphorylation
transitions, respectively.

Noting that for 1T the row vector of all 1’s, 1T D± ≡0, we
can use φ† or φ̃ as it is convenient, to write

1
q

'(φ†,φ) =
(

1 + 1
q

φ†P−φ

)
φ†D−φ

+
(

1 + 1
q

φ†P+φ

)
φ†D+φ. (32)

2See Ref. [47] for a thorough development of the fluctuations in both
Doi-Peliti formulation of stochastic processes, and two-field methods
more generally including the Keldysh [48] and Martin-Siggia-Rose
methods [49]. In these theories, Green’s functions describe the
response of either the observable or moment-sampling fields (φ or φ†)
to point sources. They are the basis for Langevin and other expansions
for the treatment of noise.

We extract the overall N dependence of the action in the
path integral by descaling time with the definition dz ≡dtq ≡
dt/τ , and rescaling the Lagrangian to a Lagrangian density per
particle, to write

e−
∫

dtL = e−N
∫

dzL̂, (33)

with L̂ ≡L/qN . If we similarly descale the field φ → φ̂ ≡
φ/N , and the Liouvillian ' → '̂ ≡'/qN , we have the
Lagrangian density in terms of the natural coupling g = N/q

L̂ = φ̃ ∂zφ̂ + '̂(φ†,φ̂), (34)

where

'̂(φ†,φ̂) = (1+gφ†P−φ̂)φ†D−φ̂ + (1 + gφ†P+φ̂)φ†D+φ̂.

(35)

Note that the natural fields define the relative number operator
φ
†
j φ̂j = nj/N ≡νj , satisfying ⟨

∑J
j=0 νj ⟩ ≡1. Now not only

are the fields φ† and φ̂ expanded about different backgrounds,
comparable fluctuations of φ̃ and φ̂ correspond to fluctuations
of φ† and φ on scales differing by N , with large N defining
the domain of perturbation theory.

To expand the functional integral (28) in Gaussian fluctu-
ations, we further separate out mean values from the fields,
introducing the notation φ̃ ≡ ¯̃φ + ϕ (so putting φ̄† = ¯̃φ + 1T

and φ† = φ̄† + ϕ). Using a compact notation '̂i
j for the

tensor of the i φ† derivatives and j φ̂ derivatives of '̂, the
second-order Taylor expansion in ϕ is exact

L̂ = ¯̃φ · ∂zφ̂ + '̂(φ̄†,φ̂)

+ϕ · [∂zφ̂ + '̂1(φ̄†,φ̂)] + 1
2ϕ2 : '̂2(φ̂), (36)

and '̂2 is independent of φ̄†.
The background ¯̃φ ≡0 makes the first line of Eq. (36)

vanish for general φ̂, and for more general ¯̃φ we can expand
φ̂ in a classical background and perturbations, in which the
linear order vanishes at that ¯̃φ. The ϕ-linear term in the second
line of Eq. (36) enforces a δ functional if ϕ is rotated to an
imaginary integration contour, and negative eigenvalues of
'̂2(φ̂) only soften the δ functional for their corresponding ϕ
eigenvectors with a convergent Gaussian envelope. We handle
these eigenvalues in perturbation theory with a Hubbard-
Stratonovich transformation [50] and a Langevin (auxiliary)
field [38]. We see below that in phases with no symmetry
breaking, the eigenvalues of '̂2(φ̂) are all zero or negative.3

Positive eigenvalues of '̂2(φ̂), of which one appears in
the phase of symmetry breaking in this problem, require
different treatment. They produce a divergent envelope for
the δ-functional integral if ϕ is integrated along an imaginary
contour, while a real contour for a ϕ eigenvector does not
enforce the expected δ functional for the corresponding

3Negative eigenvalues of this Hessian matrix correspond to de-
caying modes in the usual sense. The apparent divergence caused
by the negative sign with which the Liouville operator L appears
is canceled when the complex conjugate fields φ∗

j (considered as
independent variables of integration from φj ) are rotated to an
imaginary integration contour.
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component of the diffusion equation. We expect, from ex-
perience with Euclidean field theories for reversible systems,
that these eigenvectors signal the existence of a continuous
class of “approximate” stationary points generally termed
instantons [35]. ϕ diverges initially along a real contour, but
for the appropriate joint background of φ̂, nonlinearities in
the equations of motion extend the divergence into a bounded
trajectory of locally least

∫
dzL̂, representing domain flips (a

fluctuation that takes the system from one of the bistable phases
to the other) in the symmetry-broken phase. The integration
over the unstable fluctuations of ϕ are not handled in Gaussian
perturbation theory about the static background, but replaced
(with a proper measure term) with the integral over all time
translates of the approximate stationary solutions.

D. Symmetries and conservations

Foregoing the formal treatment of the convergence of
Langevin perturbation theory and its regulation by approxi-
mate stationary points [51], we observe two important global
symmetries of the theory which hold as field identities and
also order by order in a large-N expansion. These are useful
in numerically solving for approximate stationary points in
low-dimensional examples.

The classical equations of motion following from Eq. (36)
and its equivalent expansion for φ̂ = ¯̂φ + φ̂

′
are

∂z
¯̂φ + '̂1(φ̄†, ¯̂φ) = 0, (37)

−∂zφ̄† + '̂1(φ̄†, ¯̂φ) = 0. (38)

Both are O(N0), as L̂ is defined in terms only of z, g, and
descaled fields. The equivalent equations in terms of φ† and
φ, resulting from shifts of the fields in the measure, generate
Ward identities of the theory to all orders in N .

The transformation φ† → e.φ†, φ̂ → e−.φ̂ at constant
. is a symmetry of L̂ at general φ†,φ̂, whose associated
Noether charge is number: ∂z(φ† · φ̂) = 0 as a field equation.
Time translation is also a symmetry of L̂ whose Noether
charge is the potential: ∂z('̂) = 0. Both of these follow
immediately as properties of the classical solutions of Eqs. (37)
and (38). About backgrounds that are, or converge to, ¯̃φ ≡0,
the constraints φ̄† · ¯̂φ = 1 and '̂(φ̄†, ¯̂φ) = 0 specify a 2J -
dimensional subspace of field configurations in which all
classical trajectories must lie.

We further note that, due to the quartic form (35),

¯̃φ · ∂z
¯̂φ = − ¯̃φ · '̂1(φ̄†, ¯̂φ)

= −'̂(φ̄†, ¯̂φ) − 1
2

¯̃φ
2

: '̂2( ¯̂φ). (39)

The classical action over any stationary trajectory is then

L̂(φ̄†, ¯̂φ) = − 1
2

¯̃φ
2

: '̂2( ¯̂φ)

= −g( ¯̃φP−
¯̂φ)( ¯̃φD−

¯̂φ) − g( ¯̃φP+
¯̂φ)( ¯̃φD+

¯̂φ.). (40)

The positive eigenvalues of '̂2( ¯̂φ), which create divergent
ϕ fluctuations if we include them in the expansion of Eq. (36),
correspond to trajectories that take L̂ below the value (L̂ = 0)
of all classical (true) stationary points. However, we will
see that the nonclassical “approximate” stationary points
of Eqs. (37) and (38) produce strictly positive L̂, so that

the domain flips are suppressed relative to the persistence
amplitude within domains in the symmetry-broken phase. This
will be more transparent with the representation in terms of
the action-angle variables introduced in Sec. V.

E. Background-field expansion to recover mean-field theory

The relation (28) between the state and path-integral
representations of the master equation gives the expected first
moment of the field

⟨φj t ⟩ = (0| exp

⎛

⎝
∑

j

aj

⎞

⎠ n̂j |ψt ) = ⟨nj t ⟩, (41)

where the second angle bracket in Eq. (41) denotes the
expectation in the probability Pt(n). While not a field equation
(remember that φ∗

j φj is the combination extracted by n̂j ),
this relates the classical mean-field solutions to the stationary
points of L̂. The classical solutions correspond to the subset
of stationary points [36,37]

∂L

∂φ̃

∣∣∣∣
φ̃≡0

= 0, (42)

which solve Eq. (37) at φ̄† ≡1. These need not be time
independent, and include the full suite of classical diffusion
trajectories. However, if the n̄j in the initial condition (26)
are set to the steady-state values, they satisfy detailed balance
under the ratio of catalytic rates corresponding to Eq. (6) (at
λ = 0 in this case)

x ≡eξ = 1 + g ¯̂φJ

1 + g ¯̂φ0

. (43)

The fields themselves satisfy

φ̄j = xj φ̄0, 0 ! j ! J, (44)

per Eq. (7), and the remaining solutions for the coupling
follow.

IV. FLUCTUATIONS ABOUT STATIC MEAN FIELDS

Figure 9 shows the general character of time series for the
population as represented by the number nJ , in a phase with
relatively strong symmetry breaking (g = 4.08 for J = 2; as
a reference the phase transition occurs at g = 3). A time series
is characterized by dense fluctuations about the mean value,
in which nJ remains near the mean-field value, punctuated
by occasional large excursions that shift the mean. In this
section we will consider the Gaussian-order approximation to
the dense fluctuations about the mean. In Sec. V we return to
qualitatively different methods to handle the rare events which
change the mean population state.

A. Diffusion eigenvalues and eigenvectors

We compute the noise spectrum by further expanding
Eq. (36) about ¯̃φ ≡0, defining φ̂ ≡ ¯̂φ + φ̂

′
and letting ¯̂φ be

a constant solution to Eq. (42), so that the linear term in
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FIG. 9. Simulation results for a population history, represented by
nJ (number of full-phosphorylated particles). We have used a system
of 100 particles and a g value of 4.08.

ϕ vanishes. Using L̂(0, ¯̂φ) = 0, the second-order expansion
defines the Gaussian kernel, with the form

L̂ = ϕD0φ̂
′ + ϕD2ϕ

T + h.o. (45)

and higher-order terms (h.o.) are left for perturbative expan-
sion. The diffusion kernel governing φ̂

′
in Eq. (45) is

D0 = ∂z + (1 + g ¯̂φ0)D− + (1 + g ¯̂φJ )D+

+ g(D−
¯̂φ1T P− + D+

¯̂φ1T P+), (46)

while the kernel controlling the constraint field ϕ is

D2 = g

2
{(D−

¯̂φ ¯̂φ
T
P− + D+

¯̂φ ¯̂φ
T
P+) + transpose}. (47)

Remarkably, about general normalized solutions to Eq. (7),
the kernel (47) has only two nonzero eigenvalues λ± , with
eigenvectors v±

D2v± = g

2
λ± v± . (48)

We construct v± from convenient, orthonormal “center” and
“edge” components,

(vc)j =

√
sinh(ξ )

sinh[(J − 1)ξ ]
(xj−J/2), 1 ! j ! J − 1, (49)

and zero otherwise, and

(ve)j=(J/2± J/2) = ± x± ( J−1
2 ξ)

√
2 cosh [(J − 1) ξ ]

(50)

and zero otherwise.
A term that appears in the solution for the eigenvalues is

abbreviated

R(ξ ) ≡
√

1 + tanh[(J − 1)ξ ] tanh
( 1

2ξ
)
, (51)

in terms of which

λ± = 2 {± R (ξ ) − 1} cosh [(J − 1) ξ ]
(

sinh
( 1

2ξ
)

sinh
(

J+1
2 ξ

)
)2

,

(52)

and the orthonormal eigenvectors

v± = 1√
2R (ξ )

{vc

√
R (ξ ) ± 1 ∓ve

√
R (ξ ) ∓1}. (53)

For g ! gc, only ξ = 0 is consistent, and we get λ+ ≡0,

λ− = −
(

2
J + 1

)2

, (54)

with eigenvector v− = ve. This algebraic result emphasizes
the efficiency of expanding about Poisson backgrounds for
weakly perturbed stochastic processes. The only deviation
from Poisson which must be handled perturbatively comes
from a single mode of ϕ whose fluctuations represent the
exchanges between n0 and nj by Eq. (50). These are, of
course, the noise in the catalytic rates that feeds back into
the distribution as a whole.

B. Hubbard-Stratonovitch transformation
about the symmetric phase

Rather than complete the square in Eq. (45) (ála Onsager
and Machlup [45]), which is cumbersome for one eigenvector,
we introduce into Eq. (28) an auxiliary-field representation of
unity at each time

1 = N
∫

Dζ̃e− N
2g

∫
dzζ̃ 2

, (55)

in which N is a time-independent and field-independent
normalization. Shifting the auxiliary field ζ̃ (a symmetry of
the measure), we introduce the physical Langevin field ζ as

ζ̃ ≡ζ − g
√

−λ− (ϕ · v−) . (56)

The net effect on L̂ is the shift

L̂ → 1
2g

ζ̃ 2 + L̂

≈ 1
2g

ζ 2 + ϕ(D0φ̂
′ −

√
−λ−v−ζ ) + g

2
λ+(ϕ · v+)2.

(57)

ζ is δ correlated in z with weight g/N ,

⟨ζzζz′ ⟩ = g

N
δ(z − z′), (58)

and drives the field φ̂
′

through the inverse of D0, acting on
v−. In the symmetric phase λ+ = 0 and this is all there is to
the bare noise kernel; in the symmetry-broken phase we must
still handle (by other means) the term ϕ · v+, which, however,
remains orthogonal to the v− in the Langevin term. Integration
over ϕ in the symmetric phase produces

φ̂
′

z =
√

−λ−

∫ z

0
dz′G0(z,z′)v−ζz′ (59)

as a field equation to Gaussian order, in which G0(z,z
′
) is

defined in terms of Eq. (46) by

D0 G0(z,z′) ≡δ(z − z′). (60)

Note that from Eq. (59) we see that ⟨φ̂ ′

z⟩ = 0, which implies
that there are no corrections to the mean-field result for the
expectation value in the symmetric phase.
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C. Fluctuations about the symmetric order parameter

As an example, we compute to lowest order the fluctuations
in the order parameter about the symmetric phase, where the
diffusive Green’s function is easy to compute in a closed form.
The application of the number operators first to the basis |n)
and then to the coherent-states in Eq. (28) yields the connected
component of the variance (expressed in descaled fields)

⟨(nJ − n0)2⟩ − ⟨nJ − n0⟩2

2N/(J + 1)
= 1 + N (J + 1)

〈(
φ̂

′

J − φ̂
′

0√
2

)2

z

〉
.

(61)

From the field equation (59) and the correlator (58) we obtain
the φ̂

′
noise

〈(
φ

′

J − φ
′

0√
2

)2

z

〉

= −λ−
g

N

∫ z

0
dz′

(
[ −1 0 · · · 0 1 ]

√
2

· G0(z,z′) · v−

)2

,

(62)

and it remains only to compute the mode expansion of the
diffusion kernel in D0 from Eq. (46) in the uniform background
¯̂φ = 1/ (J + 1).

The symmetric-phase D0 contains a symmetric linear
diffusion matrix with endpoint corrections, so its eigenvectors
vk have components (vk)j = Nk cos [θk + κk (j − J/2)], with
Nk a normalization. The eigenvalues are immediate on the
interior sites,

λk = 4
(

1 + g

J + 1

)
sin2 κk

2
, (63)

and the consistency of the interior with the endpoint correc-
tions then determines κk and θk .

Either sin (J + 1) κk/2 = 0 ⇒ κk = πk/ (J + 1), k even,
and θk = 0, or cos θk = 0 ⇒ θk = π/2 and κk solves the
matching equation

tan
κk

2
= g

J + 1 + 2g
tan

J + 1
2

κk. (64)

Equation (64) is regular for k # 3 odd, and creates only
a small wave-number shift from the free diffusion solution,
leaving κk ≈ πk/ (J + 1). The important mode for critical
behavior is k = 1 as g → gc, where κ1 → 0 as

κ2
1

6
→ 1

(J + 1)2

(
1
g

− 1
gc

)
. (65)

In terms of these, the modal expansion of the free Green’s
function is

G0(z,z′) = 2(z − z′)
J+1∑

k=1

e−λk (z−z′)vkv
T
k . (66)

Only odd-k modes from G0 couple to v− in Eq. (62), by
symmetry, and the wave-number sums from k # 3 are easily
approximated with a two-dimensional k integral. We note that
for all these modes N 2

k ≈ 2/ (J + 1), and the only values that
contribute to the inner product come from j = ± J/2, giving
sin2(κkJ/2) ≈ 1. Thus the nonsingular modes in the diffusion

kernel provide a smooth background approximately linear
in g.

The leading contribution from the k = 1 mode occurs when
it is present in both factors of G0. For small g − gc this mode is
almost linear in j , with normalizationN−2

1 → κ2
1

∑J/2
j=−J/2 j 2.

Evaluating this singular term separately, with Eq. (63) for the
eigenvalue and Eq. (65) for the limiting value of the wave
number, and then combining with the background from the
regular modes, we obtain the approximation

⟨(nJ − n0)2⟩ − ⟨nJ − n0⟩2

2N/ (J + 1)
≈ 1 + 8g

π

ln (J + 1)
(J + 1)

+ C
6

J + 1
g2

(
1 + g

J+1

)
|g − gc|

.

(67)

It is convenient to separate the constant

C = (J + 1)3

J 2 (J − 1)

⎛

⎝12
J

J/2∑

j=−J/2

(
j

J

)2
⎞

⎠
−2

(68)

from the discrete sum for the k = 1 norm because C → 1 at
large J , but differs somewhat at the smaller J of more likely
biological interest.

The approximation (67) to the closed-form mode expansion
for the variance of the order parameter is compared to
the numerical simulations in Fig. 10. We have continued
the analytic expression through the critical point to show the
peak, though the character of the modes rapidly changes as the
distribution becomes skewed in the symmetry-broken phase.
A similar mode expansion exists in this phase, but requires
the relaxation eigenvectors and eigenvalues for asymmetric
diffusion. We have not computed these in a closed form, and do

FIG. 10. Fluctuations in the order parameter scaled for g above
and below critical. var(n′) stands for the variance ⟨(n0 − nJ )2⟩ −
⟨n0 − nJ ⟩2. Lines are leading-order expansion of Eq. (67) in fluctua-
tions about the symmetric mean-field solution, continued through gc;
symbols from simulation, J + 1 values and markers as in Fig. 8. The
large panel shows the convergence of var(n′) to N/g at all J . The
inset shows the convergence of var(n′) to Poisson result 2N/(J + 1)
as g → 0.
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not pursue them numerically because in the symmetry-broken
phase fluctuations quickly come to be dominated by the
center-of-mass behavior we derive below in Eq. (70).

Three main observations are important. First, the singularity
in the variance has the leading-order approximation

⟨(nJ − n0)2⟩ − ⟨nJ − n0⟩2

2N/ (J + 1)
≈ const ∼ 1

(J + 1) |g − gc|
, (69)

comparable to that of the mean-field Ising ferromagnet, like
the scaling of the order parameter. The variance has weight
1/(J + 1) because the lowest diffusive mode, corresponding
to the average magnetization, is the only collective fluctuation
participating in the phase transition near the critical point.

Second, we see that the weak-coupling scaling of
⟨(nJ − n0)2⟩ − ⟨n0 − nJ ⟩2 is that of Poisson noise for an
average of N/(J + 1) particles per site. (This is shown in
the inset of Fig. 10.)

Third, and the reason we do not pursue the low-order
expansion for the symmetry-broken-phase two-point function,
we see that for g ≫ gc the variance ⟨(nJ − n0)2⟩ − ⟨n0 − nJ ⟩2

goes to a universal form N/g for any J . The independence of
this scaling regime from J indicates that the particles interact
with one end of the chain and the exogenous catalysis only,
suggesting a strong-coupling limit.

In addition, for large J , the center-of-mass equation (3)
predicts (for I = P ), in the steady state for the symmetry-
broken phase, that the variance will equal

⟨ne⟩ N

[
1 − 1

g
−

⟨ne⟩
N

]
, (70)

where ne signifies whichever of the end sites 0 or J is occupied
(which depends on which of the two bistable states is chosen).
In Fig. 11 we plot the simulation data for the variance for
J + 1 = 100 against the estimate from Eq. (70). For the value
of ⟨ne⟩, we simply take the value of the order parameter at the
corresponding value of g. As we see, this explains the form
of the fluctuation spectrum for large J very well. The fact that
we are able to replace the order parameter |⟨nJ − n0⟩| by ne

demonstrates that this scaling regime is independent of J as
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FIG. 11. The variance of (nJ − n0) /N for J + 1 = 100 and N =
400 is plotted against the fit predicted by Eq. (70).

well and the particles only interact with one end of the chain
all through the symmetry-broken phase.

V. LARGE EXCURSIONS

From the 1/g scaling of the Lagrangian term for the
Langevin field in Eq. (57) and the presence of unstable
eigenvalues in the fluctuation kernel (45) about static stationary
backgrounds, we anticipate that perturbation theory containing
fluctuations associated with domain flips will not converge
[51], and that the rates for these large excursions will be
computed as an essential singularity with respect to the pertur-
bation expansion. The remarkable similarity to Hamiltonian
dynamical systems created by this method for treating gener-
ating functions reduces the problem of estimating both escape
trajectories and first passage times to that of identifying the het-
eroclinic network [52,53] in the associated dynamical system.

We construct the expansion appropriate to the second-order
transitions, beginning with the analysis of the exact stationary
points corresponding to solutions of the classical diffusion
equation from arbitrary initial conditions. From the structure
of these solutions, we identify the “approximate stationary
points” associated with domain flips, and compute the trajec-
tory and action for a low-dimensional example numerically.
Comparisons to the simulation suggest that this calculation
correctly predicts the leading exponential dependence on
particle number of the residence time in domains in the
symmetry-broken phase.

A. Expansion in semiclassical stationary points

We define the stationary-point expansion of the path
integral (28) implicitly by the requirement that the residual
perturbation theory converge. In principle, we must include
not only the (generally unique) exact stationary point spec-
ified by the initial state |ψ0), but also a sufficient set of
“approximate” stationary points associated with states that
converge exponentially fast toward |ψ0), with respect to
prediction of late-time observables. In this representation using
generating functionals for probability distributions over spaces
of histories, a “stationary point” refers to any full path ( ¯̃φ, ¯̂φ)
satisfying the classical condition that the linear variations of
L (including time-derivative terms) vanish

∂L

∂φ̃
= 0;

∂L

∂φ
= 0. (71)

If φ̃ = 0, the solution of Eq. (42) solves the above to recover the
mean-field solutions; in this section we relax the requirement
φ̃ = 0 to uncover a larger set of solutions which result in a
nonzero value for L.

Formally then, the removal of the stationary-point contri-
bution leads to the functional form

(0| exp

⎛

⎝
∑

j

aj )|ψt

⎞

⎠

=
∑

¯̃φ, ¯̂φ

e−N
∫

dz ¯̂L
∫

Dϕ Dφ̂
′
e−N

∫
dz(L̂− ¯̂L)eφ̃0·(n̄−φ0), (72)
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where ¯̂L denotes L̂( ¯̃φ, ¯̂φ). As perturbative corrections scale as
powers of 1/N , by Eq. (62), to leading order we will treat
L̂ − ¯̂L as a quadratic form in ϕ and φ̂

′
, of the form (45), now

about more general time-dependent backgrounds.
The formal sum

∑
¯̃φ, ¯̂φ is properly a discrete sum in the

number n ∈ 0, . . . ,∞ of the domain flips, of a time-ordered
integral over their positions {z1, . . . ,zn}. The integral is
necessary [35] because as the domain flips converge toward
true stationary points, the fluctuation generated by the time
translation of any solution becomes a null eigenvector of the
functional determinant about that solution. (This is a variant on
Goldstone’s theorem [50], associated with the time-translation
symmetry spontaneously hidden by the instanton [46].) This
eigenvector is replaced by the integral (with a Jacobean), and
the remaining functional determinant is a product of positive
eigenvalues, by construction.

We will check that the transition times of the instantons
are finite and that they converge exponentially to the static
backgrounds so that when they are improbable the dilute-gas
sum is well defined. As we verify below, the classical solutions
all have ¯̃φ ≡0 and zero action, and we denote by S0 the
action N

∫
dz ¯̂L associated with a single instanton. Letting

1/ζ0 denote the Jacobean relating the null eigenvalue to the
measure for the z translation of the instanton, we recast the
sum in Eq. (72) as

(0| exp

⎛

⎝
∑

j

aj

⎞

⎠ |ψt ) =
∞∑

n=0

e−nS0

n!
T

∫
dz1

ζ0
, . . . ,

∫
dzn

ζ0

×
∫

Dϕ Dφ̂
′
e−N

∫
dz(L̂− ¯̂L)eφ̃0·(n̄−φ0),

(73)

in which T denotes time-ordering in z of the positions of the
instantons. The presence of n factors of 1/ζ0 in the n-instanton
determinant follows from the product structure of functional
determinants and the wide separation of finite supports in z
where the background differs from that of a steady state [35].

Like the computation of the energy shift in the equilibrium
double-well problem, we see that observables relating to
persistence within a domain will receive contributions from
the even terms in the sum over n, while those relating to
domain flips will receive contributions from the odd terms.
The likelihood of persistence decays exponentially in z at early
times with the rate

rflip = 1
ζ0

e−S0 . (74)

The computation of the instanton action S0, which is re-
sponsible for the leading exponential dependence of rflip is
most easily carried out within the complete analysis of the
semiclassical stationary points, beginning with the classical
diffusion solutions.

B. Action-angle variables and the structure of the Hamiltonian

The equations of motion (37) and (38) in ¯̃φ and ¯̂φ do not
directly give the evolution of the physical particle numbers, or
efficiently use the symmetries of Sec. III D. To do both, it is
convenient to transform the background fields as φ̄†

j ≡eσj ,

and ¯̂φj ≡νj e
−σj . νj is then the semiclassical approximation

to the relative number ⟨nj ⟩/N . This change of variables
is equivalent to an action-angle transformation in classical
mechanics [54], and we checked in Ref. [46] that as well as
producing a more convenient form for the action, it leads to the
correct measure for fluctuations. The Lagrangian (34) retains
a simple kinetic term, up to a total derivative

¯̂L = σ · ∂zν + '̂ (σ,ν) , (75)

and the equations of motion in the new variables become,
respectively,

∂zνj = − ∂'̂

∂σj

, (76)

and

∂zσj = ∂'̂

∂νj

. (77)

With the interpretation of the number field ν as a position,
and σ its canonically conjugate momentum, −'̂ becomes
the correctly signed Hamiltonian for classical solutions. The
conservation law d'̂/dz = 0 is mathematically a conservation
of energy, but the particular value '̂ ≡0 associated with
all stationary points initiated by classical distributions is a
distinctive feature of this stochastic-process application of
Hilbert-space methods.

The global symmetry whose Noether charge is total number
becomes immediate in action-angle variables. Defining

σ̄ ≡ 1
J + 1

J∑

j=0

σj , (78)

the Lagrangian becomes

L̂ = σ̄ ∂z

⎛

⎝
J∑

j=0

νj

⎞

⎠ +
J∑

j=0

(σj − σ̄ )∂zνj + '̂(σ,ν), (79)

in which σ̄ multiples the z derivative of the conserved total
number in the first line, and only differences σi − σj appear in
either the kinetic term or the '̂ of the second line.

To expose the structure of the associated dynamical system,
and to make the terms in it readily visualizable from the mean-
field diffusive solutions, we perform a final transformation by
introducing the log ratio of particle fluxes between sites j and
j + 1,

rj+1,j ≡ 1
2

ln
[

(1 + gνJ ) νj

(1 + gν0) νj+1

]
. (80)

In terms of these the σ dependence of '̂ may be simplified to
read

'̂(σ,ν) = 2
√

(1 + gν0)(1 + gνJ )
J−1∑

j=0

{√νj+1νj [cosh(rj+1,j )

− cosh(σj − σj+1 − rj+1,j )]}. (81)

The one-dimensional geometry we have assumed for the
graph of phosphorylation and dephosphorylation transitions
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makes possible the definition of a function σ(ν) at each number
configuration, satisfying

σj+1(ν) − σj (ν) = −rj+1,j (82)

(up to a convention for specifying σ̄ at each ν, which we
may take to be arbitrary). σ (ν) is a reference point for the
canonical momentum coordinate σ , and σ − σ (ν) functions
as the kinematic momentum for this system.

We may see this by introducing the Hamiltonian potential
function

V(ν)=2
√

(1+gν0)(1+gνJ )
J−1∑

j=0

√
νj+1νj [cosh(rj+1,j )−1],

(83)

in terms of which

−'̂(σ,ν) = 2
√

(1 + gν0)(1 + gνJ )
J−1∑

j=0

√
νj+1νj

× {cosh[[σ−σ(ν])j−[σ−σ(ν)]j+1]−1}−V(ν).

(84)

To leading order the explicit cosh in Eq. (84) is simply a
quadratic form in σ − σ (ν), with a matrix of inverse masses
defined by the remaining square-root terms. When σ − σ (ν) =
0, Eq. (76) shows that ∂zν = 0, verifying the interpretation of
σ − σ (ν) as the kinematic momentum. Furthermore, if this
kinematic momentum vanishes at any local minimum of V (ν),
Eq. (77) shows that ∂zσ = 0, hence ∂z [σ − σ (ν)] = 0. The
local minima satisfy V (ν) = 0 and are attained only when each
rj+1,j = 0 independently because the cosh terms in Eq. (83)
are never negative. These are, of course, exactly the (stable
and saddle-point) mean-field solutions with particle exchange
between adjacent sites obeying detailed balance. We identify
them in the graphs below as the fixed points of the classical
diffusion equation.

It can be shown [46] that, as long as the quadratic expansion
in σ is a good approximation, and as long as the effective mass
terms implicit in Eq. (84) are not a strong function of ν (which
we will verify), all stationary points of the action closely
approximate ordinary mechanical trajectories in the potential
−V (ν), with position coordinate ν and kinematic momentum
σ − σ (ν). For the classical solutions σ ≡0, shown in Fig. 12,
the unbounded trajectories are those that originate in nonequi-
librium initial conditions and converge exponentially slowly
on the saddle or stable fixed points. The two bounded trajec-
tories, between the saddle and either stable fixed point, travel
along the saddle path of the potential, −V (ν), which is bounded
above by 0 and unbounded below, and make up part of the het-
eroclinic network [52,53] of the associated hyperbolic system.

For ordinary mechanical flow, we know that the full
heteroclinic network consists of trajectories running both ways
between the stable and saddle fixed points. If this were a
purely mechanical system, the reverse trajectories would be
strict time-reversal images of the bounded classical diffusion
trajectories. [Note that an exact reversal (σj − σj+1) →
2rj+1,j − (σj − σj+1) would also leave '̂ = 0.] Here, a small
ν dependence of the effective mass terms causes them to differ
slightly from each other and from the saddle path over −V (ν).

-1 -0.5 0 0.5 1
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

horizontal displacement on the unit simplex

ve
rt

ic
al

 d
is

pl
ac

em
en

t o
n 

th
e 

un
it 

si
m

pl
ex

FIG. 12. Classical flowfield of the particle numbers νj for J = 2,
shown on the simplex

∑2
j=0 νj ≡1. The upper left corner is n0 =

1, upper right corner is n2 = 1, and bottom is n1 = 1. Dots are a
selection of initial conditions, and classical diffusion solutions are the
flowlines emanating from them. The uniform distribution νj = 1/3
(open circle) is the saddle point, and the stable fixed points (heavy
dots) are attractors.

In Fig. 13, we directly compute the trajectory of the reverse
bounded path by integration along the saddle instability of
the equations of motion (76) and (77). The fact that it nearly
retraces the classical diffusive direction of slowest flow checks
the approximation that both trajectories are dominated by the
potential −V (ν) itself.

For an instanton in a classical equilibrium field theory,
the conjugate and the kinematic momentum would be the
same quantity. Both forward and reverse trajectories along
the saddle path in the potential −V (ν) would have locally
minimum but nonzero action, and in that sense both would
be “nonclassical” trajectories [35]. The distinctive feature
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FIG. 13. Flowfield of the instanton solution in J = 2, for values
ξ = 1, so g ≈ 4.0862. The fine lines are classical diffusion solution
from Fig. 12 and the bold line is the instanton.
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FIG. 14. Linear-scale plot of the Lagrangian density per particle
¯̂L of the instanton trajectory. A logarithmic plot of the same quantity
(not shown) demonstrates exponential decay toward zero at early and
late times.

of the path integrals associated with master equations of
the form we have considered here is the offset σ (ν) from
the canonical momentum that appears in the kinetic term
of the Lagrangian (75) to the kinematic momentum. This offset
is responsible for S ≡0 for all diffusion solutions, including
the bounded trajectories from saddle to stable fixed points,
and it approximately doubles the value of the Lagrangian (75)
along the reverse trajectories. The value of this Lagrangian,
along the numerically determined path of Fig. 13, is shown
in Fig. 14. Like the Lagrangian for a classical problem, it
is positive-definite, and approximates the Wentzel-Kramers-
Brillouin (WKB) integral for barrier escape, except with an
extra factor of 2: S ≈ 2N

∫ √
dνT mdν

√
2V (ν), where dν is

a length element on the coordinate ν, and m is the matrix of
effective mass values implied by Eq. (84). This approximate
form follows simply from the nearly time-reverse character of
escapes versus classical paths of slowest diffusion, and may
be derived from the original Gaussian-order approximation to
such escapes by Onsager and Machlup [45]. Readers seeking a
systematic derivation, including the Onsager-Machlup small-
fluctuation approximation, may find these in Refs. [39] or [46].

For the parameter values of Fig. 13, the integral
∫

dz ¯̂L
under the curve of Fig. 14 converges to a value near 0.0206.
Figure 15 compares numerical estimates of the residence time
in this model, inverse to the rate rflip of Eq. (74), to particle
number N . The slope of the logarithm of 1/rflip should be
dS0/dN =

∫
dz ¯̂L, up to the corrections decaying as 1/N , and

we observe quantitative agreement with the numerical estimate
of the instanton to ∼10%.

Although we do not pursue the analytic forms in this paper,
the dependence of the coefficient of N (giving decay times4) on

4In large-deviations terminology, this coefficient is called the rate
function [43].
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FIG. 15. Plot comparing residence times to particle number for
the parameters of Fig. 14. The slope of numerical estimates, which
should correspond to dS0/dN =

∫
dz ¯̂L is best fit by 0.023, while

direct integration under the curve of Fig. 14 yields 0.0206.

the number of sites J and the distance from criticality g − gC

may also be found from simulations. Figure 16 summarizes
these numerical results, showing that the dependence on small-
integer J is roughly linear, and the dependence on g − gC < 1
is weakly nonlinear.

C. Summary of semiclassical results

We have seen that the classical “action” for this reaction-
diffusion theory, once constructed, yields quite nicely the two
extremes of behavior of interest in cooperative intermolecular
phase transitions. The classical stationary points coincide
exactly with the usual mass-action differential equations.
Corrections to these from cubic and higher-order fluctuation
effects are readily incorporated (for an example, see Ref. [46]),
but to the resolution of our simulations we cannot identify a
need for such corrections at these parameter values so we have
not pursued them.

The nonclassical stationary trajectories are the projection
from this (2J + 2)-dimensional configuration space, onto
the one-dimensional path most likely to destabilize the
symmetry-broken phase, which closely approximates the
path of slowest diffusive correction. The methods shown
here therefore provide a compact and convenient way to
estimate the escape trajectories and first-passage times for even
quite richly structured nonlinear diffusion processes of this
kind. These methods, originally developed for applications to
reaction-diffusion theory, are increasingly finding applications
in epigenetics [42,44] and systems biology [40] where particle
numbers may be small, making fluctuation effects important,
while at the same time the structure of the state space remains
complex to describe.

The reduction to a one-dimensional system was assumed
given in the treatment in Ref. [13] of a switching system
comparable to ours; we have shown here a systematic approach
to estimating such escape trajectories. We have also verified
that the action of the instanton, easily numerically integrated
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FIG. 16. (Color online) Plot of expected residence times τ from
simulations in the symmetry-broken state as functions of J , N , and
the distance of the coupling strength from its critical value g − gC .
(a) ln τ vs. N for J ∈ {2, . . . ,5}. In simulations I ≡P , g = N/

√
IP

is held constant, and g − gC is held equal to 1. Second curve from
the bottom, labeled J = 2, g = 4.0862, corresponds to the value
ξ ≡1, which we have computed analytically, corresponding to the
coefficient d ln τ/dN shown in Fig. 15. (b) ln τ vs. g − gC for values
J ∈ {2, . . . ,9} (from bottom to top) at N = 50.

once the trajectory is found, produces both the correct N
scaling, and good quantitative agreement, with the domain
residence times. We expect that, while the treatment of the
functional determinant will be more difficult for metastable
domains in first-order transitions, the classical-level anal-
ysis comparable to ours will be similar, and roughly as
effective.

VI. DISCUSSION AND CONCLUSION

We have tried to idealize in a reasonable way a large class
of biomolecular signal transduction systems, and to apply
the most complete formalism available to decompose and

quantitatively estimate their properties as switches. Our results
thus combine a number of technical advances in recognized
domains, with several conceptual insights relevant to the
robustness and evolution of devices. Of necessity in a short
treatment, our idealizations of feedback and single time scales
for all microscopic motion have abstracted away from some
important problems of connection with phenomenological
models of real regulatory protein systems.

A. Technical advances

The operator treatments of gene-expression switching [7]
extended traditional mass-action models to include perturba-
tive noise from first principles. We have further extended the
operator methods to a path-integral treatment, which adds
an intuitive and computationally tractable approach to large
deviations.

We have demonstrated that the expansion of weakly
nonlinear stochastic processes about Poisson backgrounds
leads to very efficient perturbative schemes for correcting the
full probability distribution (not very surprising in retrospect),
and that in our particular idealized model, the entire noise
spectrum is driven by a single bare Langevin field (perhaps
somewhat more surprising, and not noticed previously).

Finally, we have shown that the nonlinear projection of the
full master equation onto the dominant trajectory participating
in domain flips approximately, but not exactly, reverses the
unique trajectory of slowest diffusive correction in the classical
flow. We have recovered the exponential in N characteristic
of extensive large-deviations scaling [43], and shown how to
estimate the exact coefficient to refine the bounds of order
unity that are conventionally (and usually correctly) assumed
in pure scaling arguments [13].

B. Biological insights

The most concrete of our results for biologists seeking to
understand the function of signal-transduction cascades and
switches is that particle number (N ), as well as exogenous
kinase (I ) and phosphatase (P ) numbers, can be used to control
the onset of switching, and in cases of asymmetric topology,
also the preferred domain of the switch. The control through
N offers a feedback from gene expression into the function
of the cascade, which apparently has not been considered
earlier.

We have demonstrated through the mode expansion in the
neighborhood of the phase transition that only the lowest-
eigenvalue collective fluctuation of the diffusion operator
induces the instability to symmetry breaking, and scales the
divergence in the noise spectrum. For large J , we can also
predict fluctuations in the symmetry-broken phase because of
a simplification induced by the fact that the system senses
only one boundary in the entire symmetry-broken phase. This
enables us to simplify an exact equation for the center of mass
of the system to predict fluctuations.

More abstractly, we have distinguished a mechanism
for switching based purely on population-level polarization
of the protein pool, from mechanisms which depend on
limiting one or more transition rates through restrictions on
catalytic kinetics. Polarization-based mechanisms make the
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function of the switch dependent on its catalytic topology
and concentrations, but not on kinetic factors, a separation
that has been proposed as a route to modularity. We hope
that such distinctions can, at some point, be incorporated in
evolutionary models that make quantitative use of the structure
of phenotypically neutral networks, where we hope they will
explain at least part of the ubiquity of multiple phosphorylation

and nonspecific catalysis in cascades of the type we have
considered.
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