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Compressibility of random walker trajectories on growing networks
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We find that the simple coupling of network growth to the position of a random walker on the network 
generates a traveling wave in the probability distribution of nodes visited by the walker. We argue that 
the entropy of this probability distribution is bounded as the network size tends to infinity. This means 
that the growth of a space coupled to a random walker situated in it constrains its dynamics to a set of 
typical random walker trajectories, and walker trajectories inside the growing space are compressible.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Numerous physical, biological, cognitive, and social processes 
are situated in growing (domain-specific) spaces. Developmental 
processes during embryogenesis and communication networks are 
obvious examples. In many instances, the growth of the space can 
profoundly affect the dynamics of the processes it hosts, as has 
been shown both experimentally and theoretically in the case of 
cell migration and proliferation [1–3]. Conversely, processes can 
shape global characteristics of the space in which they are em-
bedded by determining where growth occurs. For instance, the 
ongoing development of the internet is determined by its usage, 
social networks evolve on the basis of interactions between their 
constituent individuals, and plasticity in the developing brain is 
shaped by firing patterns among communicating neurons [4,5].

The question we pursue here is whether the coupling of a pro-
cess situated inside a growing space, and the indefinite growth 
of that space, can cause the possible process trajectories to con-
dense into a typical set in the sense of Shannon’s source coding 
theorem, the germinal result describing the limits of data com-
pression [6–8]. Such compressibility means that the entropy rate 
of the random walker trajectory on the network is not diver-
gent. The entropy we consider here is the usual Shannon entropy, 
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H(X) = −  
∑n

i=1 pi log pi , where X is a discrete random variable 
taking values in ! = {1, 2, . . . , n} with corresponding probabilities 
pi∈! . That the growth of a state space, typically associated with in-
creasing the uncertainty associated with a process, can also serve 
to constrain the uncertainty associated with that process, is natu-
rally captured by the source coding theorem and its applications 
to data compression.

To address this question we use a simple model of a random 
walker whose position on a network constitutes the attachment 
point for a new node in a growth event. We show that this cou-
pling suffices for the set of walker trajectories to become com-
pressible, which stands in contrast to three other scenarios in 
which network growth is decoupled from the walker’s position. 
Our model is related to an approach by Saramäki and others [9–11]
used in the context of growing scale-free networks, but is a much 
simplified version. We refer to our model as ‘walker-induced net-
work growth’ or WING [12,13].

2. Results

In WING, a random walker situated on a network steps from 
node to node following the edges of the network. At each growth 
event, whose timing is independent of the walker’s motion, one 
new node is connected with a single edge to the location of the 
walker. This means that just after addition to the network, new 
nodes are of degree k = 1. We treat the model as a continuous-
time Markov chain [14] in which the times of occurrence of a 
movement event and of a growth event are exponentially dis-
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tributed with rates rW and rN , respectively. There is no limit to 
the size of the network. In [12] we treated the case of multiple 
self-excluding walkers, but in the present case we will consider 
only a single walker.

The number of nodes in the network at time t is denoted 
with V (t) ∈ N , and the number of edges with E(t) ∈ N . V (t) =
N(t) + N0, where N(t) is the number of growth events that have 
occurred up to time t , and N0 the number of nodes in the seed 
network. Throughout this work we typically use a seed network 
of N0 = 5, with each initial node connected to all the other ini-
tial nodes,1 although this choice does not matter for the results 
we present. Each node i is uniquely labeled at its creation by the 
count of growth events that have occurred up to and including its 
creation. Thus, i ∈ {1, 2, ..., V } with the last node labeled V . In the 
case of an initial seed network of five nodes, these initial nodes 
are simply labeled 1 to 5 in no particular order. The next node 
added to the network would be labeled 6, and so on. The degree 
of a node i is denoted by ki .

We compare the behavior of WING with three distinct net-
work growth mechanisms in which the walker plays no role in 
determining the location at which the network grows. Rather, the 
random walker only serves as a local observer of the network. 
These network growth algorithms, while not the main focus of 
our study, will serve as useful pedagogical tools for contrast with 
the WING model. In ‘uniformly random’ growth (UR), a new node 
of degree k, whose degree is chosen uniformly at random from 
the set {1, 2, . . . , V }, forms one edge to each of k nodes randomly 
picked without replacement from within the current network. In 
‘fully connected’ growth (FC), a new node connects to all nodes in 
the current network, which therefore remains fully connected. In 
the Barabási and Albert growth model (BA), at each growth event 
n, a new node is connected to a single node i in the network with 
a probability pi(n) proportional to its degree ki , pi(n) = ki/[2E(n)]
with n indexing the growth event. This is also known as preferen-
tial attachment. The probability pi(n) is the same as the equilib-
rium probability (rW → ∞) of finding an unbiased random walker 
at a node of degree ki in a non-growing network. The exact degree 
distribution generated by the BA model was derived in [15,16] as 
pB A(k) = 4/[k(k + 1)(k + 2)].

Depending on the values of rW and rN , WING generates dif-
ferent network structures [9,10,12,13,17]. For instance, if rW = 0, 
rN > 0, the random walker will not move from its initial position, 
yielding a network with a ‘star’ structure. As the ratio rW /rN → ∞
in the limit, the probability of finding the walker at node i will 
become the equilibrium distribution for a non-growing network, 
thus yielding a network with the BA degree distribution pB A(k). 
For 0 < rW < ∞, and fixed rN , networks have degree distributions 
in between these extremes. Importantly, the degree distributions 
generated by WING with a single walker become rapidly station-
ary for any fixed values of rW and rN [12]. In UR, FC, and BA, the 
network structure does, by definition, not depend on the motility 
of the walker.

To obtain a sense for the differences in behavior of a random 
walker on networks grown with different network growth algo-
rithms, we collect a sample of R trajectories of the random walker, 
where R is the total number of simulation replicates, for different 
network growth algorithms. Each trajectory τr is a string of node 
labels τr,n , where r indicates the replicate number and n indexes 
the growth event in that replicate. For example, given the rth tra-
jectory is:

τr = (2,3,6, 3 ,4, . . .),

1 In graph theory notation our seed network is the complete graph, K5.

Fig. 1. The frequency of node labels in a trajectory, calculated using (2), depends 
on the network growth mechanism: WING (dashed), BA (open circles), UR (open 
diamonds), and FC (grey filled squares; underneath UR). FC and UR network growth 
appear to generate the same distribution. rW = 1, rN = 1, N0 = 5, N = 1000, V =
1005, averaged over R = 100,000 replicates for each growth mechanism.

τr,4 (indicated by the box), refers to the fourth growth event, 
which occurred when the walker was situated on the node with la-
bel 3, τr,4 = 3. This means the walker was situated at the third old-
est node in the network when the fourth growth event occurred, 
in simulation replicate r. Similarly, τr,5 = 4 means the walker was 
situated at the fourth oldest node in the network when the fifth 
growth event occurred, while τr,1 = 2 means the walker was sit-
uated at the second oldest node in the network when the first 
growth event occurred, and so on. We provide a figure in the Sup-
plementary Material to further demonstrate how the trajectory of 
the random walker is recorded (see Appendix A). The probability 
of the walker being at node labeled i when the nth growth event 
happens, and the probability of the walker being at node i for any 
growth event are therefore respectively:

l(i,n) = 1
R

R∑

r=1

δ(i − τr,n), (1)

l(i) = 1
N

N∑

n=1

l(i,n), (2)

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise.
We begin by comparing the numerically obtained label distribu-

tion l(i), as described by (2), for UR, FC, BA and WING. Intuitively, 
we might expect that the random walker was more likely to be at 
‘older’ during growth events than ‘younger’ nodes, simply because 
many of the younger nodes would not have been part of the net-
work yet. However, Fig. 1 indicates that for WING, the frequency 
of any node label appearing in a trajectory is essentially uniform, 
in marked contrast to the distributions observed for UR, FC, and 
BA. In UR, FC and BA, the age of a node influences its probability 
of appearing in a random in the expected way; older nodes appear 
with higher frequency. The reason for the difference in behavior 
between UR, FC and BA, and WING is that WING establishes a spa-
tial correlation between the random walker and younger nodes, 
favoring their inclusion in the random walker trajectory.

Fig. 2 shows the distribution (1) for WING at progressive times 
network sizes, providing some clues. At any given network size V , 
the mass of the distribution gravitates around the younger nodes. 
This tendency of the random walker to visit younger nodes in the 
network as the network grows, causes a traveling wave in l(i, n).

To examine l(i, n) at different values of the motility rW , it is 
more intuitive to relabel nodes with respect to age; thus, a node 
with growth event label i now becomes a node with age label 
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Fig. 2. The graph shows the distribution l(i, n) described by (1) recorded at different 
growth events or, equivalently, network sizes V . This figure demonstrates that the 
position of the random walker on a network grown with WING can best be thought 
of as a traveling wave. The abscissa is the node label. The wave fronts were recorded 
at the growth event, n, within the same simulation at which l(i, n) was recorded. 
From left to right: n = 1,000 − N0, n = 2,000 − N0, n = 3,000 − N0, n = 4,000 − N0, 
and n = 5,000 − N0. rW = 1, rN = 1, N0 = 5.

a = V − i + 1 (age labels of all nodes change with each growth 
event). This flips each wave front in Fig. 2 from left to right. Fig. 3
shows that the tail of l(a, n) becomes heavier with increasing rW . 
This is to be expected, as increasing rW relative to rN counteracts 
the effect of the spatial correlation between the new node and the 
random walker. Figs. 2 and 3 suggest that the walker’s probability 
of being at a particular node when the next growth event occurs 
depends on the age of that node, and is constant regardless of net-
work size. Fig. 3 further suggests that this property holds for any 
fixed rW and rN , although the exact values of l(a, n) depend on the 
ratio of rW /rN .

We next study the entropy rates associated with the random 
walker trajectories. The entropy rate of a stochastic process is de-
fined as

H(X ) = lim
n→∞

1
n

H(X1, X2, X3, ..., Xn), (3)

when the limit exists [7]. Given the manner in which we gener-
ate l(i, n), we should treat each possible random walker trajectory, 
(X1, X2, X3, . . . , Xn), as a series of dependent random variables be-
ing sampled from a growing probability distribution. Because it is 
not computationally feasible to obtain this distribution, we treat 
each Xi as if it were an independent random variable sampled 
from a growing probability distribution. Assuming independence 
maximizes the entropy rate associated with repeated sampling 
from a random variable [7], yielding an upper bound for the en-
tropy rate of our trajectories as

H(X ) ≤ lim
N→∞

1
N

N∑

n=1

H(Xn). (4)

In (4), each Xn is a discrete random variable with outcomes in 
{1, 2, . . . , V }. The total number of vertices in the network includes 
the size, N0, of the seed network. Thus, X1 is the first growth event 
and so has N0 outcomes, each associated with a probability. Sim-
ilarly, X5 is the fifth growth event and so has N0 + 4 outcomes, 
each associated with a probability.

For FC it is possible to calculate the entropy rate directly with 
certain assumptions. If we treat the position of the random walker 
as effectively in equilibrium over the network, meaning rW ≫ rN , 
we have that pi ≈1/V (t). The trajectory of a random walker on a 
network that grows under FC can be thought of as sampling from 
a fair (N(t) + N0)-sided die. The entropy rate is therefore

lim
N→∞

1
N

log
N!

(N0 − 1)! , (5)

which diverges as N → ∞. A growing fair die can be seen as the 
‘most’ divergent entropy rate for the network growth mechanisms 
we discuss here. Fig. 4 shows that, for WING, finite entropy rates 
appear to exist for all values of rW and are an increasing function 
of rW . In contrast, the entropy rates for BA and FC (and UR) appear 
divergent.

We next aim to determine whether the distribution described 
by (1) for WING converges on a distribution with finite entropy 
in the limit V → ∞. If so, the entropy rate associated with the 
trajectories of the random walker will be well-defined and the 
trajectories compressible. To demonstrate that l(i, n) has finite en-
tropy as V → ∞ in the limit, we proceed in two parts. First, we 
demonstrate that the probability of being at a node of a given age 
when the next growth event occurs is bounded below as V → ∞. 
If this were not the case, the entropy of the distribution would not 
be bounded as with FC. Second, we argue that the tail of l(i, n) de-
cays appropriately so as to admit a finite entropy asymptotically. 
For instance, if the tail decayed with O (a− 1) it would not admit a 
finite entropy.

To approach the first condition, we again recast l(i, n) in terms 
of node age a = V − i + 1, as in Fig. 3, and write ρ(a) for l(a, n) as 
V → ∞. The claim is that

ρ(a) > αa, ∀ a as V → ∞, (6)

where αa is a constant dependent on the age of the node and the 
parameters of the model. In this notation, a = 1 is the last node 
that was added to the network, a = 2 is the second to last node 
added to the network, and so on. Expression (6) states that the 
probability of being at a node of age a when a growth event occurs 
is bounded below in the limit of large network size.

We show first that this is true, in particular, for the probabil-
ity ρ(1) of being at the newest node in the network when the 
next growth event occurs. Let pW (k) denote the probability that 
the walker is situated at a node of degree k when a growth event 
occurs. We define

κ =
∞∑

k=1

pW (k)

k + 1
, (7)

where κ is the probability that if the walker were to move follow-
ing a growth event it would select the new node. The next event 
in the system is either a step by the walker or another growth 
event. The former occurs with probability m = rW /(rW + rN ); the 
latter with probability g = rN/(rW + rN). Thus, the probability that 
the walker is at the node of age 1 when the next growth event oc-
curs is at least the probability of the event sequence ‘one step in 
the right direction, followed by a growth event’:

ρ(1) > mκ g. (8)

It is at least this probability, because there are many, more cir-
cuitous, paths to reach the new node before the next growth event. 
If κ is stationary in the limit, the bound (8) is independent of net-
work size and thus of time. Analogous reasoning leads to

ρ(a) > mκ ga. (9)

The claim (6) is shown if we can ascertain that κ has properties 
that make it a meaningful proxy of local network structure. For ex-
ample, pW (1) has a lower bound greater than zero. In other work 
we showed that this property does indeed hold [12].

Implicit in the above is that all higher order probabilities can 
be bounded below in a similar manner. For instance, if we define 
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Fig. 3. The distribution l(a, n), where a = V − i + 1 is an age label, for different values of rW plotted against node age. (a): rW = 1; (b): rW = 2; (c): rW = 3; (d): rW = 5. In 
all panels, n = 10,000.

Fig. 4. (a): The Shannon entropy −  ∑V
i=1 l(i, n) log l(i, n) of l(i, n) as defined in (1) is graphed against growth n. (b): The evolution of the bound to the entropy rate, as defined 

by (4), of l(i, n). Growth mechanisms: FC (dashed), BA (dotted), and WING (solid) for different values of rW . In both panels, the greater rW , the greater the entropy. Bottom 
to top: rW = 1, 2, 3, 5, 10.

ρ(a, b) as the joint probability that a growth event occurs at a 
node of age b followed by a growth event at a node of age a, then 
for a ≤ b

ρ(a,b) > ρ(b − a + 1)ga− 1 m
b + 1

g. (10)

The right-hand-side of (10) describes a growth event at a node 
of age b − a + 1, followed by a further a − 1 growth events at 
this node. The node the walker is situated on has now age b + 1
and has at most b + 1 neighbors, one of which has age a, and 
so a movement event to the node of age a, followed by a growth 
event, completes (10). Similar bounds exist for joint probabilities 
in which a > b. It follows from these bounds that conditional 
probabilities, such as ρ(a|b), defined as a growth event at the 
node of age a conditioned on the preceding growth event hav-
ing occurred at the node of age b, are also bounded below, since 
ρ(a|b) = ρ(a, b)/ρ(b) and the ratio is bounded.

FC is an example of a growth mechanism for which ρ(a) is not 
bounded below in the limit. Although the new node is always ad-
jacent to the node at which the walker is situated, the probability 
of moving to this new node (or any other neighboring node), given 
a movement event, is 1/(V − 1), which is not bounded below in 
the limit V → ∞. Similarly, for BA network growth, the new node 
is increasingly less likely to be adjacent to the walker as V → ∞, 
and so the distance from the walker to the new node is a function 
of network size.

Continuing with this reasoning, we can calculate the expected 
degree ⟨ki⟩ of a node given its age in the limit V → ∞. Each node 
introduced to the network is of degree k = 1, and has a probability 
ρ(1) of the walker being situated on it at the next growth event 
and so having its degree increased by one; or a probability ρ(2) of 
the walker being situated on it at the following growth event and 
so having its degree increased by one; and so on. Therefore,
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⟨ki⟩ = 1 +
∞∑

j=1

1 · ρ( j) = 2, (11)

asymptotically. The independence of ⟨ki⟩ from age was suggested 
already by Fig. 1.

Finally, we argue that the tail of the probability distribution 
ρ(a) decays in such a way that the entropy is finite as V → ∞. 
After a growth event has occurred at a node of unknown age â
(and no event has occurred since), the random walker must be 
situated on a node that shares an edge with the newest node in 
the network. Hence, the expected distance between the node â at 
which the walker is located and a node of age a is d(â, a; V ) =
d(1, a; V ) − 1 ≈d(1, a; V ). In the Supplemental Material (see Ap-
pendix A) we numerically demonstrate that the expected distance 
between two nodes appears to be a linear function of the dif-
ference in their age (independent of V ). If we assume that the 
expected distance between node 1 and node a grows linearly with 
a, we can think of the problem as diffusion of a random walker 
in one dimension. Therefore, the probability the next growth event 
occurs at a node of age a is bounded above by O (ma) as V → ∞, 
and so ρ(a) would admit a finite entropy. Alternatively, if the ex-
pected distance between nodes in the network does not increase 
as a linear function of age difference (but logarithmically, for in-
stance), it is possible that despite lower bounds, ρ(a) would not 
admit a finite entropy as V → ∞.

It is well understood that compressibility (in practice) takes 
advantage of non-uniformities in the probability distribution be-
ing sampled from [6–8]. We have argued that WING generates a 
nonuniform distribution of the walker’s position that has a finite 
entropy as V → ∞. Therefore, WING asymptotically generates a 
typical set of random walker trajectories with the following prop-
erty

e− N(H(X )+ ϵ) ≤ p(x1, x2, . . . , xN) ≤ e− N(H(X )− ϵ), (12)

where H(X ) is the entropy rate associated with the walker’s posi-
tion for fixed values of 0 < rW < ∞ and 0 < rN < ∞, and so means 
the random walker trajectories are compressible.

3. Conclusion

These results show that growth, typically associated with in-
creasing the number of states accessible to a process, can nonethe-
less also function to constrain its likely outcomes. In WING, the 
coupling between growth and random walker generates a travel-
ing wave that biases the walker towards occupying the youngest 
nodes in the network. We have argued that an asymptotic prop-
erty of this traveling wave—finite entropy—delivers compressibility. 
The cost for the compressibility of WING trajectories is that the 
growth mechanism must know the location of the walker. This is 
not unlike using informed manipulation to control uncertainty in 
variations of Maxwell’s demon [18,19].

It is an open question whether the compressibility of ran-
dom walker trajectories is a common property of network growth 
mechanisms that couple network growth and the position of a 
random walker (or another process situated on the network). How-
ever, the simple setup of our model suggests that the phenomenon 
might be general. It is worth highlighting the effect different types 
of growth may have on compressibility. In this work we have em-
ployed linear network growth, but had we employed exponential 
growth we would not have observed compressibility of WING tra-
jectories, because the effective network growth rate is rN V , and 
the ratio rW /(rN V ) tends to zero as V → ∞ [12]. As a result, the 
local environment of the walker becomes increasingly ‘star-like’, 
and so differs from the situation in which rW = 0, when random 
walker trajectories are trivially compressible.

Finally, the Shannon entropy is the value of the Rényi en-
tropy Hα(X) = 1/(1 − α) log

∑n
i=1 pα

i as α → 1. Other limiting 
values of the Rényi entropy have attracted interest. Specifically, 
H1/2(X) = 2 log

∑n
i=1 p1/2

i has been shown to bear relation, in the 
limit n → ∞, to the average guesswork needed for identifying the 
value of a random variable [20,21]. Following our treatment of en-
tropy rates in WING, H1/2(X) would converge. This means that the 
expected number of guesses to find the walker (using an optimal 
guessing strategy) would remain finite (and bounded) as V → ∞. 
Being able to efficiently find the walker in the network is im-
portant for the practical feasibility of WING and, more generally, 
the feasibility of any network growth mechanism whereby a pro-
cess on the network must be analyzed in some manner before the 
growth event can occur.
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Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .physleta .2019 .03 .036.
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Compressibility of random walker trajectories on growing
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A. How the random walker trajectory, ⌧r, is recorded
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Figure SF1: In this example the network growth algorithm is WING. The position of the

random walker is indicated by the filled node. Our initial seed network is the network

denoted by (a), and so no growth events have occurred yet. In (a) the node labels, 1 to

4, have been randomly assigned to the four initial nodes in the network. In (b), a growth

event has occurred while the random walker is situated at the node labelled 3, which

means we record ⌧r,1 = 3, because the random walker was at the node labelled 3 when the

growth event occurred. In (c), the random walker now occupies the node with label 4. In

(d), a growth event has occurred while the random walker is situated at the node labelled

4, which means we record ⌧r,2 = 4. This process is continued until we reach the desired n
growth events. This us one random walker trajectory ⌧r.
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B. Local and global degree distribution of WING

Let pW (k) denote the probability that the walker is situated at a node of

degree k when a growth event occurs. To obtain pW (k) numerically we record

the trace tr of degrees seen by the walker in a simulation replicate r, collect
the frequency with which the degree is k at growth event n across replicate

traces tr (r indexing the replicate) each comprising N growth events, and

average over n. Denoting the degree the walker observes at event n of trace

tr by tr,n, we have

pW (k, n) =
1

R

RX

r=1

�(k � tr,n)

pW (k) =
1

N

VX

n=1

pW (k, n)

where �(x) = 1 if x = 0 and �(x) = 0 otherwise. The global degree distri-

bution p(k) is computed likewise, but instead of observing a single node at

growth event g, we observe all nodes in the network.
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Figure SF2: Local and global degree distribution. Panel (a): The global degree distribution

p(k) (black open circles) is compared with the degree distribution seen by the walker

pW (k) (black diamonds) after N = 10, 000 growth events. rW = 5, rN = 1. Panel (b):

Convergence of pW (k) to a stationary distribution is rapid. pW (k) is depicted for di↵erent

growth extents: N = 10, 000 (black open circles), N = 20, 000 (open diamonds), and

N = 100, 000 (filled grey squares).
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C. The average distance between two nodes as a function of age

The average distance between two nodes in networks with WING is a

linear function in the di↵erence in their ages and does not depend on the size

of the network. The distance between nodes for networks grown with WING

is maximized between rW = 0.5 and rW = 1. Figure SF3 also evidences that

the age of a node and its degree do not positively correlate in WING.

1 2000 4000 6000 8000 10000
Node age

0

200

400

600

800

Av
er

ag
e 

di
st

an
ce

 b
et

w
ee

n 
no

de
s

1 2000 4000 6000 8000 10000
Node age

0

200

400

600

800

Av
er

ag
e 

di
st

an
ce

 b
et

w
ee

n 
no

de
s

(a) (b)

Figure SF3: Distance between nodes as a function of age. Panel (a): The average distance

between a node of age 4000 and all other nodes in a network generated with WING is

shown as a function of their age di↵erence for di↵erent values of walker motility. rW = 10

(open circles), rW = 5 (short dashed), rW = 2 (long dashed), rW = 1 (solid), rW = 0.5
(dotted) and rW = 0.1 (open squares). Panel (b): As in panel (a), but for node 6000. In

both panels V = 10, 000.

3


	compressibility
	Compressibility of random walker trajectories on growing networks
	1 Introduction
	2 Results
	3 Conclusion
	Acknowledgements
	Appendix A Supplementary material
	References


	compressibility.sm

