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Random walker’s view of networks whose growth it shapes
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We study a simple model in which the growth of a network is determined by the location of one or more
random walkers. Depending on walker motility rate, the model generates a spectrum of structures situated
between well-known limiting cases. We demonstrate that the average degree observed by a walker is a function
of its motility rate. Modulating the extent to which the location of node attachment is determined by the walker
as opposed to random selection is akin to scaling the speed of the walker and generates new limiting behavior.
The model raises questions about energetic and computational resource requirements in a physical instantiation.
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I. INTRODUCTION

A large body of literature is devoted to analyzing systems
that can be modeled as growing networks [1–4]. In many
cases network growth is coupled to a process situated on the
network. Systems of this kind include the developing brain
whose action potentials help shape neuronal architecture [5],
social networks whose evolution is driven by interactions
between the very individuals that constitute these networks,
technological innovation which depends on current technolo-
gies within reach, and the internet whose structure is, among
other things, determined by its usage [6]. Inspired by these
real-world systems, we present a network growth model in
which a local process situated on a network coordinates the
network’s growth. We also examine how coupling a local
process situated on the network and the growth of this network
can constrain the behavior of this local process. Indeed, it
has been recently demonstrated that coupling a local process
to network growth can bound the entropy associated with
processes such as diffusion [7].

We study a simple network growth mechanism that is
driven by a local process situated on the network. Our focus
is to compare and relate the global view of the network with
the local view of the network as accessible to a process
situated on it. Many of the most influential network growth
algorithms operate from a global perspective; that is, the
entire network, or a statistic associated with it, is utilized in
determining a growth event. For instance, the Barabási-Albert
growth algorithm requires knowledge of the global network
structure. Similarly, exponential networks, and other more
realistic models of network growth, sample the location of
a growth event from the entire network [8]. These issues
have been previously noted [9–12], but it remains unclear
when global growth strategies can be implemented by local
processes subject to realistic constraints. Comparing local
and global views will sharpen this question. To this end, we
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extend previous studies by using an exceedingly simplified
local growth model based on a random walker. We focus
on the expected degree of the node at which the walker is
situated when a growth event occurs and demonstrate that
for our local growth model it is a function of the walker
motility rate. This is in contrast to nongrowing networks,
whereby the expected degree observed by a walker does not
depend on the walker motility rate in the long-time limit. This
simple approach allows us to obtain conclusions regarding
the degree distributions that can be generated by this model
and characterize canonical differences between global growth
algorithms and algorithms enacted by local processes situated
on the network.

II. MODEL AND RESULTS

We denote the number of nodes in the network at time
t with V (t ) ∈ N and the number of edges with E (t ) ∈ N.
V (t ) = N (t ) + N0, where N (t ) is the number of growth events
that occurred up to time t and N0 is the number of nodes in
the seed network. Each node i is uniquely and permanently
labeled at its creation by the count of growth events that
have occurred up to and including its creation. Thus, i ∈
{1, 2, . . . ,V (t )}, with the last node labeled V (t ). The degree
of node i is denoted by ki.

In “walker-induced network growth” (WING) a random
walker situated on the network moves with a rate per time
unit, rW . In WING time is evolved continuously, in accor-
dance with the Gillespie algorithm [13], such that random
walker movement and network growth events are modeled
as exponentially distributed “reaction events” in a Markov
chain. We employ a stochastic network growth mechanism in
which the addition of a new (nonoccupied) node occurs with
rate rN per unit time. Network growth is therefore linear. At
each growth event, a single node forms an edge with the node
upon which the random walker is located. This means that
just after addition to the network, new nodes are of degree
k = 1. There is no limit to the number of nodes from which the
network can be composed. We typically start the process with
a fully connected network of N0 nodes and a randomly chosen
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position of the walker (although our results do not hinge on
this choice).

The model can be extended in any number of ways, and we
shall consider two in particular. In one extension, the network
hosts m ! N0 walkers. When m > 1, the walkers exclude each
other in the sense that if a walker attempts to move to an
already occupied node, the movement is aborted. The new
node is connected to all m distinct locations of the walkers
and has therefore degree m. Networks generated with a single
walker are asymptotically trees, whereas networks shaped by
multiple walkers contain cycles. The other extension intro-
duces a parameter α, which modulates the coupling between
walker and growth. With probability α, growth occurs at the
location of the walker as just described, and with probability
1 − α the new node is linked to a random location in the
network.

Given an arbitrary initial network and in the absence of
network growth (rN = 0), it is well known that, in the long-
time limit, the probability pi of finding a random walker
at node i is proportional to its degree ki, pi = ki/

∑
j k j =

ki/(2E ), with E the number of edges in the network. This
result is independent of the walker motility rate in the long-
time limit, so long as the motility rate is greater than zero.
Barabási and Albert (BA) considered a growing network [14],
where growth occurs by repeatedly attaching a new node of
degree 1 to a node i chosen according to pi(g) = ki/[2E (g)]
with g indicating the growth step. This process, known as
preferential attachment, was proposed as a mechanism for
generating scale-free networks characterized by a power-law
degree distribution p(k) ∼ k− γ . It was shown in Refs. [8,15]
that the BA procedure results in pBA(k) = 4/[k(k + 1)(k +
2)]. Preferential attachment hinges on a global view of the
network, because it utilizes knowledge of the entire network
at every step g. This prompted Saramäki and others [9,10] to
propose a model in which random walkers sample the local
connectivity of the growing network and serve as attachment
points for the addition of a new node. The WING model shares
the spirit of this approach but is simpler and designed to study
(1) how coupling an autonomous network growth to one or
more random walkers on the network can yield networks of
different kinds and (2) how a network so constructed might be
described from the walker’s point of view.

A. Single walker, m = 1

As expected, the network structures formed by the WING
model depend on the ratio r = rW /rN (Fig. 1). When rW = 0,
the walker does not move from its initial position on the
network, and each new node therefore links to the same
node, generating a “star” structure [Fig. 1(a)]. In the limit
r = rW /rN → ∞ the probability of finding the random walker
at node i becomes pi(t ) = ki/[2E (t )], that is, determined
solely by the degree of node i, and so results in the BA
case [Fig. 1(d)]. This behavior is reflected in the degree
distributions generated as r sweeps across its range, as shown
in Fig. 2. It can be seen, perhaps surprisingly, that even at
r = 100 the BA degree distribution is already well approx-
imated by WING. In the Supplemental Material [16] we
further examine the discrepancy between these two degree
distributions. The main observations are the following: (1) At

(a) (b)

(c) (d)

FIG. 1. Networks created by WING. The motility rate, rW , of
the only walker differs across panels, while the network growth
rate is constant rN = 1. For the sake of less congestion, simulations
are stopped after t = 50 time units. The seed network is a fully
connected set of N0 = 5 nodes, still recognizable as the only clique.
(a) rW = 0; (b) rW = 0.1; (c) rW = 1; (d) rW = 100.

small r, the degree distribution is closer to an exponential,
p(k) ∼ exp(βk)—we expand on this point in the Supplemen-
tal Material [16]—and approaches the power law of the BA
case, pBA(k), as r grows large. (2) Stationarity, i.e., a degree
distribution independent of network size, is attained relatively
quickly. (3) Figure 3 points to an interesting property of
WING: a linear dependence between the average graph dis-
tance between two nodes i and j and their age difference,
independent of network size. Distance is defined as usual in
terms of the number of edges separating two nodes, while the
age of a node i is its label N (i), a linear function of continuous
time, and the age difference between two nodes i and j is
|N ( j) − N (i)|. The distance between nodes is maximized be-
tween rW = 0.5 and rW = 1. This “big-world” property of the
network is not observed for either the BA model or growing
exponential models [8] and is due to the local implementation
of the WING algorithm. In the Supplemental Material [16]
we present degree distributions generated by WING when the
network is grown by two walkers, m = 2.

Because the walker shapes the growth of the network
on which it moves, it is of interest to describe the network
from the viewpoint of the walker. One way of doing so is to
compute the average degree of the node the walker is situated
at when a growth event occurs, as distinct from the average
degree of a node given the network as a whole. We denote
the walker’s point of view with ⟨kW ⟩ and the global point of
view with ⟨k⟩, where ⟨k⟩ is asymptotically a constant that is
independent of the motility rate of the random walker. We
assume that WING attains a stationary degree distribution
in the N (t ) → ∞ limit. This assumption is justified in the
Supplemental Material [16].

Let pW (k) be the probability that the walker is situated at a
node of degree k when a growth event occurs. To obtain pW (k)
numerically we record the trace (sequence) τr of degrees seen
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FIG. 2. Degree distributions generated by WING. The panels are for different rW values. For all panels rN = 1, m = 1, and averages are
taken over 1000 replicates. (a) rW = 0.01; (b) rW = 1; (c) rW = 10; (d) rW = 100. In panels (a)–(c), simulations were run to t1 = 100 000
(blue circles) and to t2 = 200 000 (red diamonds), indicating stationarity. In panel (d), representing the large-r case, we compare the WING
model (blue circles) with the BA procedure (rW ∼ ∞, green diamonds) at t = 100 000. The red line is pBA(k) = 4/[k(k + 1)(k + 2)] as per
Refs. [8,15].

by the walker in a simulation r, collect the frequency with
which the degree is k at event g across replicate traces τr (r
indexing the replicate) each comprising N growth events, and
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FIG. 3. Distance between nodes as a function of age. The average
distance between a node of age 4000 and all other nodes in a network
generated with WING is shown as a function of their age difference
for different values of walker motility. rW = 10 (blue disks), rW = 5
(green dashed), rW = 2 (blue dot-dashed), rW = 1 (blue solid), rW =
0.5 (red dashed), and rW = 0.1 (red squares). N = 10 000.

average over g. Specifically, denoting the degree the walker
observes at event g of trace τr by τr,g, we have

pW (k, g) = 1
R

R∑

r=1

δ(k − τr,g),

pW (k) = 1
V

V∑

g=1

pW (k, g), (1)

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. The global
degree distribution p(k) is computed likewise, but instead of
observing a single node at growth event g, we observe all
nodes in the network; thus, p(k, g) is the probability of degree
k in a network at growth step g. Figure 4 depicts pW (k) and
p(k) for r = 1. Other values of r generate similar plots (not
shown).

We can express ⟨kW ⟩ as a function of global moments.
Let n(k, g) denote the average number of nodes of degree k
in a network when the gth growth event occurs. If p(k) is
stationary, n(k, g) = g p(k). The change in n(1, g) across a
growth event is given by

n(1, g + 1) − n(1, g) = (g + 1)p(1) − gp(1)

= p(1) = 1 − pW (1), (2)

where the last equation follows because a growth event always
adds one new node of degree 1 and one node of degree 1 is
lost only if the walker is located at a degree-1 node, which
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FIG. 4. The local degree distribution. p(k) (blue disks) is com-
pared with pW (k) (red diamonds) after N = 10 000 growth events.
Convergence of pW (k) to a stationary distribution is fast. rW = 1,
rN = 1.

happens with probability pW (1). Likewise, one node of degree
2 is gained only if the walker is located at a degree-1 node and
lost only if the walker is located at degree-2 node, yielding a
net average change of p(2) = pW (1) − pW (2). In general, we
have the balance equations:

p(k) = pW (k − 1) − pW (k), k > 1. (3)

From (2) and (3) we calculate the expected global degree,
⟨k⟩ = 2. In a similar fashion we obtain ⟨k2⟩ = 2⟨kW ⟩ + 2 and,
thus,

⟨kW ⟩ = 1
2 (⟨k2⟩ − 2). (4)

Equation (4) is similar to a well-known result for nongrowing
networks in which the probability of a walker being at a node
depends only on the node’s degree [17,18]. In contrast, in
WING the probability of a walker being at a node does not
depend solely on its degree, and so ⟨kW ⟩ becomes a function of
the motility rate of the walker (Fig. 5). For the second moment
from the walker’s perspective we obtain in a similar fashion

〈
k2

W

〉
= 1

6

(
2⟨k3⟩ − 3⟨k2⟩ + 2

)
. (5)

In the Supplemental Material [16] we provide the balance
equations for generalizing these results to m self-excluding
walkers:

⟨k⟩ = 2m,

⟨kW ⟩ = 1
2

⟨k2⟩ − m(m + 1) + 2
m

,

〈
k2

W

〉
= 1

3
⟨k3⟩ − m3 − m − 3m⟨kW ⟩

m
, (6)

where we used ⟨kW ⟩ to describe ⟨k2
W ⟩ for brevity. We will

address multiple walkers later in the paper.
Together with Fig. 5, Eqs. (4) and (5) permit a few obser-

vations: (1) ⟨kW ⟩ is finite for 0 < rW < ∞. (2) ⟨kW ⟩ diverges
in both limits rW → ∞ and rW → 0. As rW → ∞ in the limit
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FIG. 5. The view from the walker. The red diamonds show
⟨kW ⟩ obtained directly by simulation, and the blue disks show ⟨kW ⟩
obtained from (4) with ⟨k2⟩ obtained from simulation. The second
moment, ⟨k2

W ⟩, is shown in the Supplemental Material [16]. rN = 1,
N = 10 000, and R = 100 000 replicates.

the probability of the walker being at a node depends solely on
its degree, and so WING approaches the BA procedure, which
yields power law pBA(k) with divergent ⟨k2⟩. In the limit
rW → 0, the walker is pinned and generates a star network
with a single node of divergent degree. (3) Since ⟨kW ⟩ is a
convex function of rW , oscillations could be generated by
a mechanism in which the walker’s motility is a function
of the observed mean degree. Moreover, ⟨kW ⟩ is minimized
when ⟨k2⟩ is minimized. A more sophisticated walker could
achieve this minimization by employing a gradient descent
with respect to its own motility. (4) A given ⟨kW ⟩ can be
attained with a pair of distinct rW values, which, by (4), yield
global p(k) distributions with the same ⟨k2⟩ (and variance,
since ⟨k⟩ = 2 always). Yet these rW values do not yield the
same ⟨k2

W ⟩, as seen in Fig. S1 in the Supplemental Material
[16], and hence the p(k) distributions must differ in the third
moment ⟨k3⟩ by virtue of (5). We finally demonstrate that for
0 ! rW < ∞ the WING model cannot generate a Barabási-
Albert network with stationary degree distribution pBA(k),
as already suggested by Fig. 2. Let w = rW /(rW + rN ) and
g = rN/(rW + rN ) denote the probabilities that the next event
is either a step by the walker or the growth of the network,
respectively. Furthermore, let pN (t ) denote the probability that,
when a growth event occurs, the random walker is located at
the last node added to the network. If the stationary distribu-
tion were pBA(k), pN (t ) would tend to zero in the limit t → ∞
[i.e., N (t ) → ∞], because all nodes in the network must be
visited proportional to their degree. Hence, pN (t ) must vanish.
Yet, for rW < ∞, pN (t ) is bounded below:

pN (t ) >

∞∑

k=1

pW (k) g
w

k + 1
. (7)

The right-hand side represents the network-size independent
probability of just one scenario for the walker to be positioned
on the last node added: the walker is at a node of degree k,
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a growth event occurs, and the walker moves to the added
node. Clearly there are many more ways for the walker to
reach that node before the next growth event occurs. However,
a lower bound for pN (t ) contradicts its vanishing implied by
the assumption that pBA(k) is the global stationary degree
distribution. Hence, pBA(k) cannot be the stationary degree
distribution for WING for any rW < ∞.

B. Variable coupling α

We next refine the WING model by adding a parameter
0 ! α ! 1 that tunes the influence of the walker on network
growth: A growth event links the new node with probability
α to the location of the walker and with probability 1 − α to
a node chosen uniformly at random from the network, which
includes the location of the walker. The case described so far
corresponds to α = 1. Modulating α in this manner allows
us to explore network growth algorithms that contain both
global and local aspects in their computation. It is important
to emphasize here that the manner in which we a select a
node with probability 1 − α is irrelevant, as long as we sample
over all nodes in the network, that is, globally. For instance,
implementing a preferential attachment model instead of this
random attachment model would not qualitatively change the
results we present.

Following the same reasoning of the last section, we com-
pute the first and second moments of the distribution pW (k,α)
observed by the walker as a function of α:

⟨kW (α)⟩ = 1
2α

(⟨k2(α)⟩ + 4α − 6), (8)

〈
k2

W (α)
〉
= 1

3α

[
⟨k3(α)⟩ + 3⟨k2(α)⟩

(
α − 3

2

)
+ 1

]
. (9)

In Fig. 6 we compare (8) for different network sizes V .
The following observations stand out for the modified WING
model: (1) Fig. 6 indicates that convergence for α < 1 at high
walker motility is slow compared to α = 1 or low walker
motility. (2) The dotted line in Fig. 6 is Fig. 5 with the abscissa
scaled by a factor of 2: the average degree seen by the walker
at speed rW when growth always occurs at the location of the
walker is the same as that seen by a walker with half that speed
when growth occurs half the time at the location of the walker
and half the time at a random location. This suggests that

⟨kW (α1 = 1, rW )⟩ = ⟨kW (α2, rW α2)⟩, (10)

where the dependency on rW is made explicit and rN = 1. As
network size V (t ) → ∞ in the limit, the probability that a
growth event occurs at the location of the walker tends to α,
since it becomes increasingly unlikely that any random growth
events, occurring with probability 1 − α, hit the walker’s
location by chance. The walker can therefore be viewed as
having an effective motility or α horizon r̂W = rW /α. We can
rephrase (10) as asserting that the fraction 1 − α of growth
events do not affect, in the large V (t ) limit, the world that the
walker sees within its “α horizon.” (3) It follows that

lim
α→0

⟨kW (α)⟩ → ∞, (11)

which means the effective motility of the walker diverges in
the limit α → 0, yielding the BA procedure with a divergent
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FIG. 6. Tunable walker influence. The graph depicts ⟨kW (α)⟩ as
a function of walker motility rW for different time points (numbers
of growth events or, equivalently, network sizes) N , with rN = 1 and
α = 0.5. Data points are averaged over 10 000 replicates. We obtain
the same graphs using both simulation data and (8) (not shown). Blue
diamonds: N = 10 000, red disks: N = 20 000, orange squares: N =
50 000, brown asterisks: N = 100 000, green triangles: N = 200 000.
The coupling parameter α = 0.5 has here half the value it has in
Fig. 5. The dashed line is the graph shown in Fig. 5 but plotted against
an abscissa scaled by a factor of 1/α = 2.

second global moment and therefore a divergent ⟨kW (α)⟩
as in the case of α = 1 and rW → ∞. (iv) The behavior
as rW → ∞ and the behavior at rW = ∞ differ when α <
1 compared with α = 1. From our treatment of the α = 1
case and observation (3) above, ⟨kW ⟩ diverges for any α as
rW → ∞. However, if we set rW = ∞, the random walk is
theoretically treated as always in equilibrium on the network;
i.e., there is no concept of an α horizon for the walker at any
α < 1, and ⟨kW ⟩ remains finite due to the fraction 1 − α of
random growth events. For α = 1, ⟨kW ⟩ diverges.

C. Two walkers, m = 2

We finally examine ⟨kW ⟩ when there are two walkers on
the network. The behavior in this instance follows naturally
from the m = 1 case; however, we pay special attention to
the way in which the walkers “interfere” with each others
perspective, that is ⟨kW ⟩, of the network. Figure 7 shows that
Eqs. (6) agree extremely well with simulations, which is to be
expected given they are exact. Figure 7 and Eqs. (6) permit
the following observations: (1) The expected degrees of the
nodes at which walker 1 and 2 are located when a growth
event occurs, ⟨k(1)

W ⟩ and ⟨k(2)
W ⟩, respectively, are not the same

as if each walker was on the network alone, or if two nodes
of degree k = 1 were added to the network for each growth
event. It is also apparent from Fig. 7 that ⟨k(1)

W ⟩ and ⟨k(2)
W ⟩

have both the same value twice. (2) When r (1)
W = c, where c

is a constant, and r (2)
W → 0, both ⟨k(1)

W ⟩ and ⟨k(2)
W ⟩ diverge in

the limit. However, if r (1)
W = c and r (2)

W = 0, then only ⟨k(2)
W ⟩

will diverge and ⟨k(1)
W ⟩ remains finite. (3) When r (1)

W = c and
r (2)

W = ∞ (theoretically), both ⟨k(1)
W ⟩ and ⟨k(2)

W ⟩ remain finite.

062306-5



ROSS, STRANDKVIST, AND FONTANA PHYSICAL REVIEW E 99, 062306 (2019)

0 1 2 3 4
7

8

9

10

11

12

13

k W

r(2)
W

5 0 1 2 3 4

8

10

12

14

16

r(2)
W

k
(1

)
W

,
k

(2
)

W

5

(a) (b)

FIG. 7. Multiple walkers. The figure depicts the first moment of the degree distribution observed by two random walkers, 1 and 2, as a
function of the movement rate of walker 2. (a) The red diamonds show ⟨kW ⟩ averaged over both walkers obtained directly by simulation, and
the blue disks show ⟨kW ⟩ according to (6) with m = 2 and α = 1, where ⟨k2⟩ is obtained from simulation. (b) The mean degree seen by each
walker as obtained from simulation directly. In both panels, rN = 1, N = 2 000 000, and R = 100 replicates.

This is also true in the limit when r (1)
W = c and r (2)

W → ∞. (4)
Following a growth event the random walkers will “meet” at
a constant rate in the limit N → ∞. A lower bound for the
probability of this occurring following a growth event can be
written as

gw(1)

[ ∞∑

k=1

p1
W (k)

k + 1

]

w(2)

[ ∞∑

k=1

p2
W (k)

k + 1

]

, (12)

which is independent of N . These observations have obvious
analogues when there are more than two walkers on the
network.

III. DISCUSSION AND CONCLUSION

We have presented a simple network growth mechanism
in which random walkers on a network control where the
network grows and thus determine its structure. Many real-
world networks exhibit structures that are determined, at
least in part, by processes situated on them [6]. Branching
processes such as tree growth, blood vessels, the developing
nervous system, branching polymers, social networks, and
technological structures are all systems that are influenced
by intrinsic processes in their growth. Importantly, they are
also systems that must be flexible in their structure depending
on their particular environment. In the WING model this
sensitivity is captured in the “tuning parameter” r, which
determines the network structure.

We provided a description of WING by taking the perspec-
tive of the walker, expressing the expected degree of the node
the walker is situated at when a growth event occurs, ⟨kW ⟩,
and demonstrating that when 0 < rW < ∞, ⟨kW ⟩ remains
finite. We then extended the model by adding a parameter α
controlling the coupling between network growth and walker
location, and showed that this gives rise to an effective motil-
ity that causes new behavior as α → 0 and rW → ∞. We
finished by addressing the scenario in which there are two
walkers present on the network, paying particular attention to
how one walker could influence the perspective of the other.

It is important to address whether WING could effectively
generate the network constructed by the BA model. That
is, given the requirement for the position of the random
walker to equilibrate over an increasingly large network, is
this energetically feasible? Even though at finite values of
rW the degree distribution associated with the BA model is
approximately achieved, as demonstrated by Fig. 2, it seems
network growth algorithms that are formulated from a global
perspective of the network may require unrealistic behaviors
if they are to be enacted by local processes situated on the
network. The transition between an algorithm based on global
criteria being efficiently implementable by local processes at
small but not at large network sizes might also be of interest
for identifying whether real-world networks are being built
using global knowledge or local processes, or why a network
may appear to grow differently once it has exceeded a certain
size. The modulation of α allowed us to examine network
growth algorithms that utilize both local processes and global
knowledge of the network. In this scenario it is apparent
that both the degree distribution and the observations of the
random walker exhibit prolonged nonequilibrium behavior re-
lated to network size (Fig. 6). This is captured, however, only
when the finite motility of the random walker is taken into
account. A different interpretation would be arrived at if the
walker’s position was treated at equilibrium on the network,
which could be seen to correspond to a global perspective
such as that found in the BA model. This observation serves
to demonstrate that equilibrium assumptions must be made
with caution when applied to local processes known to guide
a network’s growth.

In view of Fig. 5, it would be interesting to determine the
value of rW at which d⟨kW ⟩/drW = 0. This the point at which
the difference between ⟨kW ⟩ and ⟨k⟩ is minimized and appears
numerically close to Euler’s number. More generally, since rW
determines the structure of the network the walker observes,
there may be interesting further work into simple mechanisms
by which the walker can control what it observes, without
resorting to global knowledge. Alternatively, we may ask in
what ways an external force can control the observations of a
random walker situated on a growing network. For instance, if
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α were to be made a function of network size, would a naive
random walker be able to discriminate between a change in
α and a change in its own motility without recourse to an
intrinsic notion of time? Finally, we have studied only how
the position of an unbiased random walker evolves, which
we did for mathematical ease. However, many other pro-
cesses could be studied, such as proliferating random walkers

of different types interacting on the same growing network
[19–21].
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Supplemental Material

A. SECOND MOMENT OF THE LOCAL DEGREE DISTRIBUTION

This Figure accompanies Figure 5 in the main text.
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FIG. S1. Second walker moment. The figure depicts the second moment of the degree distribution observed by the random
walker as a function of its movement rate. The red diamonds show hk2

W i obtained directly by simulation and the blue disks
show hk2

W i obtained from equation (5) in the main text with hk2i and hk3i obtained from simulation. rN = 1, N = 10, 000,
and R = 100, 000 replicates.

B. STATIONARITY OF WING

By a stationary degree distribution p(k) we mean that

lim
N(t)!1

n(k, t)

N(t)
! p(k, t) = p(k) constant in t, (S1)

where n(k, t) is the number of nodes of degree k in a network of N(t) nodes. We have n(k, t) = N(t) p(k, t) and

dn(k, t)/dN(t) = p(k, t) + dp(k, t)/dN(t) = p(k, t) in the large-N(t) limit. The same reasoning that led to equations

(2) and (3) in the main text yields without stationarity assumption

dn(1, t)

dN(t)
= p(1, t) = 1� pW (1, t) (S2)

dn(k, t)

dN(t)
= p(k, t) = pW (k � 1, t)� pW (k, t), k > 1. (S3)

As in the main text, these balance equations express that nodes of degree k are lost by linking to the new node at a

rate pW (k, t), the probability that the walker is at a node of degree k just prior to a growth event. For rW > 0, pW (1, t)
cannot go to zero or no nodes of degree 1 would ever be lost, yielding the star network for which p(1, t) = 1 for all t,
which is attained only when rW = 0. Hence pW (1, t) is bounded below by some c1wg. This entails pW (k, t) > ckwgk,
and by conservation pW (k, t) � pW (k + 1, t). Since by virtue of the lower bounds pW (k, t) ! ↵k as N(t) ! 1, we

have that p(1, t) ! 1� ↵1, p(2, t) ! ↵1 � ↵2, and so on.

C. MULTIPLE WALKERS

Figure S4 indicates that multiple walkers, m > 1, generate stationary degree distributions as in the case of m = 1.

For multiple walkers with variable ↵ the balance equations read:

p(1) = �(1�m)�m(1� ↵)p(1)�m↵pW (1) (S4)

p(k) = �(k �m) +m(1� ↵)[p(k � 1)� p(k)]

+m↵[pW (k � 1)� pW (k)], k > 1. (S5)

The �(k �m) term accounts for the fact that a node of degree m is always added to the network since the incoming

node connects to all m walkers.
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FIG. S2. Degree distribution from multiple walkers. Examples of degree distributions generated by WING dynamics with
m = 2. Panel (a): rW = 0.01. Panel (b): rW = 10. In all panels rN = 1, N = 100, 000 (blue disks), N = 200, 000 (red
diamonds); averages from 1, 000 replicates.

D. DEGREE DISTRIBUTION AT LOW r IS CLOSE TO EXPONENTIAL
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FIG. S3. Degree distributions generated by WING for rN = 1, m = 1, and rW = 0.1. Simulations were run to t1 = 100, 000
(blue circles) and to t2 = 200, 000 (red diamonds). In this instance � ⇡ �0.0315 for this value of r.

E. THE DISCREPANCY BETWEEN THE BA AND WING DEGREE DISTRIBUTIONS FOR r = 100
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FIG. S4. The discrepancy, d = p � pBA, between the BA degree distribution and WING degree distribution for r = 100 and
t = 100, 000. It can be seen that the largest discrepancies exist in nodes of degree 1 and degree 2. Nodes of degree 1 occur
at a slightly highly probability in the WING model with r = 100 (p(1) ⇡ 0.668), as compared to the BA model (p(1) = 0.6̇).
Nodes of degree 2 occur at a slightly lower probability in the WING model with r = 100 (p(2) ⇡ 0.164), as compared to the
BA model (p(1) = 0.16̇).
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