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Abstract
Background: Using a statistical physics approach, we study the stochastic switching behavior of a
model circuit of multisite phosphorylation and dephosphorylation with feedback. The circuit
consists of a kinase and phosphatase acting on multiple sites of a substrate that, contingent on its
modification state, catalyzes its own phosphorylation and, in a symmetric scenario,
dephosphorylation. The symmetric case is viewed as a cartoon of conflicting feedback that could
result from antagonistic pathways impinging on the state of a shared component.

Results: Multisite phosphorylation is sufficient for bistable behavior under feedback even when
catalysis is linear in substrate concentration, which is the case we consider. We compute the phase
diagram, fluctuation spectrum and large-deviation properties related to switch memory within a
statistical mechanics framework. Bistability occurs as either a first-order or second-order non-
equilibrium phase transition, depending on the network symmetries and the ratio of phosphatase
to kinase numbers. In the second-order case, the circuit never leaves the bistable regime upon
increasing the number of substrate molecules at constant kinase to phosphatase ratio.

Conclusion: The number of substrate molecules is a key parameter controlling both the onset of
the bistable regime, fluctuation intensity, and the residence time in a switched state. The relevance
of the concept of memory depends on the degree of switch symmetry, as memory presupposes
information to be remembered, which is highest for equal residence times in the switched states.
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Background
Switching plays an important role in cell cycle progression
[1,2], cellular differentiation [3-5], and neuronal memory
[6]. It is therefore a critical property of molecular signal
transduction and gene expression circuits. Ultrasensitivity
[7,8] underlies one concept of switching defined by a
sharp sigmoidal but continuous response in the concen-
tration of a molecule over a narrow range of a (stationary)
signal. A steep ultrasensitive response, however, leads to
"chatter" when the signal fluctuates across the setpoint
[9]. In contrast, bistability [10] is a form of switching made
possible when two stable states, S1 and S2, co-exist over a
signal range. As a consequence, bistable systems exhibit
two distinct thresholds as the signal is varied, one at
which a transition occurs from S1 to S2 and another at
which the system switches back from S2 to S1. The separa-
tion of thresholds leads to path dependence or hysteresis,
and makes a switched state more impervious to stochastic
fluctuations of the signal around the transition point.
Skipping for the moment past Fig. 1, we utilize Fig. 2 to
illustrate the difference between bistable and ultrasensi-
tive switching. In Fig. 2 the red curves show switching
through bistability and the green curve shows the ultra-
sensitive form of switching.

Stochasticity in biological processes at the molecular scale
has attracted recent attention both experimentally and
theoretically [9,11-15]. In this contribution we present a
stochastic treatment of bistable switching generated by a
reaction network based on a kinase and a phosphatase
that phosphorylate and dephosphorylate, respectively, a
substrate at multiple sites. The bistability arises from sym-
metric or asymmetric autocatalytic feedback whereby the
substrate catalyzes its own phosphorylation and dephos-
phorylation (symmetric case), or it catalyzes one but not
the other process (asymmetric case); see Fig. 1 for a pre-
view. In statistical physics terminology, the bifurcation
from monostable to bistable behavior appears as a non-
equilibrium phase transition. Our first step is to derive
analytical expressions for the phase diagram (the regions
in parameter space where the system exhibits bistable
switching) using a mean-field approximation, in which
the consequences of correlations among fluctuations are
ignored. We then improve on this by taking fluctuations
more accurately into account. A major objective is to
understand how network structure and molecule num-
bers affect the thresholds (critical points) of the switch
and the longevity of its memory through intrinsic fluctua-
tions. Some of the analytical results germane to this objec-

tive are obtained with a field-theoretic approach whose
technical details are laid out in a forthcoming paper [16].
Here we validate these calculations with numerical simu-
lations and discuss their significance.

There are two possible meanings for the term "switching"
in a bistable system. In one usage the circuit abruptly
changes from monostability to bistability (from one to
two possible, long-lived macroscopic phosphorylation
states), or vice versa, in response to the variation of a
parameter. Such a bifurcation in the behavioral repertoire
of a system provides a ratchet-like "checkpoint" [17]. The
other usage of switching refers to the spontaneous fluctu-
ation-induced transition from one macroscopic phospho-
rylation state to the other within the bistable regime. This
corresponds to a cell losing memory of a dynamical state
because of noise intrinsic to cellular processes at low mol-
ecule numbers. In a stochastic setting, the number of sub-
strate molecules affects both the transition from
monostability to bistability and also the residence time in
a macroscopic phosphorylation state. Clarifying the role
played by fluctuations in these two cases of switching will
lead to a better understanding of how reliable, device-like,
macroscopic behavior can emerge from low-level stochas-
tic molecular interactions – a theme dating back at least to
von Neumann [18].

In summary, we consider a highly stylized kinetic mecha-
nism of bistability that permits a fairly detailed analytical
treatment of its stochastic behavior. We use techniques
from non-equilibrium statistical mechanics, which may
seem unfamiliar to biologists. Yet, these methods, in con-
junction with a model emphasizing a pattern more than
biological literalism, convey useful lessons in stochastic
reaction-kinetics of biological systems.

Model and biological context
Molecular signal transduction involves the covalent mod-
ification of proteins, giving rise to chemically distinct pro-
tein states. A widely occuring modification is
phosphorylation, which is the transfer of a phosphate
group from an ATP molecule to a tyrosine, serine or thre-
onine residue (referred to as phosphoacceptors) of a target
protein by means of a kinase. The 1663 proteins docu-
mented in version 3.0 of the Phospho.ELM database [19]
contain between 1 and 26 phosphorylatable sites per pro-
tein. A "serine/arginine repetitive matrix 2" protein
(SwissProt accession Q9UQ35) exhibits 96 sites. A list of
proteins with 10 phosphorylatable sites includes, for
example, a glutamate-gated ion channel, lamin, glycogen
synthase, DNA topoisomerase 2, insulin receptor, and var-
ious protein kinases.

In the system considered here, the target protein is present
in a fixed number of copies. Both phosphorylation and
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dephosphorylation events are catalyzed concurrently by
kinase and phosphatase enzymes whose numbers are also
fixed at the outset. In current terminology [11,20], we

focus on the intrinsic noise of the reaction system – the
fluctuations in the microscopic phosphorylation states of
proteins due to the probabilistic nature of chemical reca-

Multisite phosphorylation and feedback structureFigure 1
Multisite phosphorylation and feedback structure. (a) This panel depicts the basic phosphorylation chain without feed-
back in which a target protein with J sites is phosphorylated by a kinase I and dephosphorylated by a phosphatase P. The 
ordered succession of phosphorylations yields J + 1 modification states, labelled 0, 1, ..., J. (b) The fully phosphorylated target 
protein relays a signal into pathways that eventually feed back on the phosphorylation chain. (c) Simplification of (b) in which 
the fully phosphorylated target protein acquires kinase activity and directly feeds back on the chain. We refer to this network 
configuration as the asymmetric circuit. (d) Schematic of the network with symmetric feedback in which the substrate protein 
is bifunctional, whereby the fully (de)phosphorylated form catalyzes (de)phosphorylation of its own precursors.
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tions at fixed component numbers – not the additional
(extrinsic) noise caused by fluctuations in the numbers of
target, kinase, and phosphatase molecules.

The fully phosphorylated form of a protein often exhibits
a distinct catalytic activity, possibly of the kinase or phos-

phatase type. For example, at each level of the mitogen-
activated protein kinase (MAPK) cascade, a signaling cir-
cuit widely duplicated and diversified within eukaryotes
[21], the fully phosphorylated form of the target protein
acquires the ability to act as a kinase for the subsequent
level. In this paper we will only study a single level or tar-
get protein with multiple phosphoaccepting sites.

The fully phosphorylated form of a protein may directly
or indirectly promote its own phosphorylation. This is
again the case in the MAP kinase cascade, where such feed-
back reaches across levels. Once fully phosphorylated, the
protein at the third level of the cascade catalyzes the accu-
mulation of the kinase at the first level [4], thereby feeding
back on its own activation. A positive feedback with a suit-
able nonlinearity leads to bistability [4], and the cascade
architecture provides that nonlinearity. Bistability can
also occur with linear feedback, as in a single phosphor-
ylation/dephosphorylation loop, wherein the phosphor-
ylated substrate catalyzes its own phosphorylation,
provided the phosphatase reaction is saturable [6]. If, on
the other hand, all reaction velocities are linear in the sub-
strate, as is the case for large Michaelis constants and small
substrate concentrations, the needed nonlinearity can still
be generated by multisite phosphorylation. This is the
case studied here. We mention for completeness that mul-
tisite phosphorylation with saturation kinetics at each
modification step can lead to bistability even in the
absence of feedback [22,23].

We thus consider a protein with J sites that are phosphor-
ylated by a kinase and dephosphorylated by a phos-
phatase, as illustrated in Fig. 1a. The numbers of kinase
molecules, I, and phosphatase molecules, P, are fixed. The
enzymes are assumed to operate in the linear regime
where complex formation is not rate limiting. The site
modifications occur in a specific order, thus sidestepping
combinatorial complexity. Furthermore, phosphorylation
(dephosphorylation) of substrate proteins is assumed to
follow a distributive mechanism, whereby a kinase (phos-
phatase) enzyme dissociates from its substrate between
subsequent modification events [24,25]. These assump-
tions lead to J + 1 states for the substrate. The phosphor-
ylation chain with feedback is shown in the bottom half
of Fig. 1. Panel (c) depicts an asymmetric topology in
which the fully phosphorylated substrate catalyzes its own
phosphorylation, while panel (d) shows the symmetric
version in which a substrate molecule is bifunctional, act-
ing as both a kinase and phosphatase depending on its
modification state. Kinase I and phosphatase P are exoge-
nous forces on the modification of the substrate, but the
feedback is an endogenous force whose strength is pro-
portional to the occupancy of the end-states of the chain.
This occupancy is subject to intrinsic fluctuations and
depends on the total number of substrate molecules.

Ultrasensitive and bistable behavior in the symmetric feed-back circuit with J = 2Figure 2
Ultrasensitive and bistable behavior in the symmet-
ric feedback circuit with J = 2. The ordinate is the order-
parameter !nJ - n0"/N measuring the macroscopic variable of 
interest. The abscissa measures the relative difference 
between kinase and phosphatase numbers. In this represen-
tation, all kinase to phosphatase proportions are compressed 
symmetrically between -1 and 1. As a result, the hyperbolic 
behavior of a single phosphorylation/dephosphorylation loop 
(J = 1) without feedback is a straight line, the dotted diagonal. 
All other curves are for J = 2, which is the minimal ultrasensi-
tive case capable of bistability. The blue curve shows the 
ultrasensitivity of the chain without feedback. As J → ∞, the 
slope of the sigmoidal approaches 2 at the midpoint I = P (not 
shown). The blue curve already covers nearly 50% of the 
ultrasensitivity attainable at J = ∞. Ultrasensitivity is enhanced 
by feedback (green curve), when approaching the threshold 
for bistability from below. The strength of feedback is 
reported in terms of g = N/ , where N is the number of 
substrate molecules (see text for details). In the case of the 
green curve g = 2.85. The slope at the midpoint is always 8 at 
the critical point for the onset of bistability in the presence of 
feedback. Above the threshold (red curve; g = 5) there is an 
intermediate range of (I - P)/(I + P) with two stable solutions. 
The dots connecting the two branches indicate a sudden 
change in stationary phosphorylation state as one of the 
branches ceases to exist when (I - P)/(I + P) passes outside 
the bistable range. This creates hysteresis.
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Although each modification step is kinetically linear in
both the number of substrate molecules and modification
enzymes, the phosphorylation/dephosphorylation chain
of Fig. 1a (no feedback) responds in a nonlinear fashion
to a change in the ratio of kinase to phosphatase numbers.
Absent feedback, the chain behaves like a random walk
with drift and reflecting barriers in the space of substrate
phosphoforms. The random walker hops to the right
(phosphorylation) with probability I/(I + P) and to the
left (desphosphorylation) with probability P/(I + P). As a
result of drift there is a geometric multiplier x linking the
expected occupancies of phosphoforms. In the absence of

feedback, this multiplier is simply I/P, the ratio of kinase
to phosphatase numbers. For all mean-field treatments,
drift causes the expected occupancy of molecules in adja-
cent phosphorylation states to satisfy

Thus the expected fractions of fully phosphorylated, !nJ"/
N, and unphosphorylated substrate molecules, !n0" /N, are
related as

n

N
x

n

N
j j

=
−1

. (1)

Phase diagramsFigure 3
Phase diagrams. (a) Symmetric feedback circuit as in Fig. 1d. (b) Asymmetric feedback circuit (from the fully phosphorylated 
J-state) as in Fig. 1c. The coupling parameter g = N/ , the exogenous catalytic strength P/I, and the number of phosphoac-
ceptor sites J are being varied. Symbols are simulation results (N = 1000) and solid lines are analytical results from the mean-
field theory for J = 2, 3, 5 (solid, dash, dot). The discrepancies arise from fluctuations, which the mean-field theory ignores. In 
the circuit with symmetric feedback, there is one critical coupling strength gc for each ratio of phosphatase to kinase numbers. 
(The phase diagram for symmetric feedback is itself symmetric about 0 in log (I/P). Only half of the diagram is shown in panel 
(a); the symmetric half is obtained by reflection about the vertical axis.) As g is increased beyond gc, the system exhibits two 
stable distributions of phosphorylation states peaked at the end states of the chain. Below the critical number, the target mol-
ecules are mostly unphosphorylated (P/I > 1) and the system remains in this state as it becomes bistable. Within the bistable 
regime, the system could be prepared in the mostly phosphorylated state, in which it persists as the number of target mole-
cules is increased. Yet, as the number of target molecules is decreased, the mostly phosphorylated state loses stability abruptly 
and the system shifts to the mostly unphosphorylated state. This is a first-order phase transition in statistical mechanics. In con-
trast, for the symmetric feedback circuit and P/I = 1 (the leftmost point on the abscissa in panel a), the transition is second-
order, that is, continuous in the phosphorylation state. This is shown in Fig. 5 below. Panel (a) reveals that, once bistable, the 
symmetric circuit never loses bistability again as N is further increased. In the language of statistical mechanics, only a lower 
critical coupling exists. Notice that for a fixed coupling g and increasing P/I the symmetric system loses bistability again, as illus-
trated in Fig. 2. Unlike the symmetric case, the asymmetric circuit exhibits a window of bistability (lower and upper critical cou-
plings) in N. For a suitable P/I, an increase in the number of target molecules N drives the system through a second threshold at 
which bistability disappears. If the system was mostly unphosphorylated, it now undergoes a (first-order) phase transition to 
the mostly phosphorylated state.

100 1010

5

10

15

20

25

P/ I

g   C

a

100 101
0

5

10

P/ I

15

b

g   C

IP



Biology Direct 2007, 2:13 http://www.biology-direct.com/content/2/1/13

Page 6 of 17
(page number not for citation purposes)

The geometric progression is a conventional result of
detailed balance. Since by construction

, we obtain

As the number of sites J tends to infinity, we observe

When the fully posphorylated end-state feeds back on the
chain, it alters x, affecting end-state occupancy as
described in equation (3). As the end-state occupancy
increases, the efficacy of feedback catalysis in moving
phosphoforms to the right eventually diminishes as the
chain runs out of unphosphorylated substrate. The rele-
vant observation here is that even without the individual
reactions exhibiting saturation kinetics, a multisite phos-
phorylation chain with J ≤ 2 produces sufficient nonline-
arity for feedback to induce bistability. The addition of
feedback changes only the functional form of x in the pre-
ceding equations, as detailed below.
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Order parameter |!nJ - n0"|/N for the case I = P in the symmet-ric circuitFigure 5
Order parameter |! nJ - n0"|/N for the case I = P in the 
symmetric circuit. The modulus |·| folds the two symmet-
ric branches (corresponding to the two stationary state dis-
tributions) into one. The solid curves show the analytical 
results from the mean-field theory and the symbols repre-
sent simulations. J + 1 = [5, 10, 100] is shown in [blue, green, 
red] for the mean-field theory and as [+, o, ×] for simula-
tions. Target molecule numbers used in the simulations are, 
respectively, N = [4000, 2000, 400].
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second-order phase transition (also rendered in Fig. 5, where 
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the x = 1 solution becomes unstable (dotted continuation), 
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of the order parameter (first-order phase transition), which 
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Remarks on realism
We have chosen phosphorylation over other types of post-
translational modification for the sake of concreteness.
The feedback topology of the model caricatures a few ele-
ments present in biological systems. One such element is
the competition between antagonistic pathways that may
underlie cellular decision processes (for example [26]). A
multisite phosphorylation chain of the type considered
here could function as an evaluation point between com-
peting and antagonistic pathways influenced by different
active phosphoforms of the chain, provided these path-
ways feed back to the chain. In a less extreme case, the
fully phosphorylated form activates another kinase which
then interacts with the chain. In these scenarios, feedback
is mediated by a series of intervening processes, which
may well affect the propagation of fluctuations. Yet, if
delays are not too large, the collapsed scheme of Fig. 1c
could be a reasonable proxy with the added benefit of
mathematically tractability.

A scenario corresponding more literally to our model
involves a bifunctional substrate capable of both kinase
and phosphatase activity, depending on the substrate's
modification state. One example is the HPr kinase/P-Ser-
HPr phosphatase (HprK/P) protein, which operates in the
phosphoenolpyruvate:carbohydrate phosphotransferase
system of gram-positive bacteria. Upon stimulation by
fructose-1,6-bisphosphate, HprK/P catalyzes the phos-
phorylation of HPr at a seryl residue, while inorganic
phosphate stimulates the opposing activity of dephos-
phorylating the seryl-phosphorylated HPr (P-Ser-HPr)

[27]. Another example of a bifunctional kinase/phos-
phatase is the NRII (Nitrogen Regulator II) protein. It
phosphorylates and dephosphorylates NRI. NRI and NRII
constitute a bacterial two-component signaling system, in
which NRII is the "transmitter" and NRI the "receiver"
that controls gene expression. NRII autophosphorylates at
a histidine residue and transfers that phosphoryl group to
NRI. The phosphatase activity of NRII is stimulated by the
PII signaling protein (which also inhibits the kinase activ-
ity). Several other transmitters in bacterial two-compo-
nent systems seem to possess bifunctional kinase/
phosphatase activity [28].

This completes the sketch of the feedback circuit. We next
discuss its statistical properties.

Results and discussion
Formal definitions and result overview
The state diagram of the circuit is shown in Fig. 1d. Sites
are indexed by j ∈ 0, ..., J representing phosphoforms of
the target protein. We describe a population of N target
proteins with a vector n = (nj), where component nj is the

number of proteins in phosphorylation state j and

. The distribution of phosphoforms in the

protein population changes in time because independent
phosphorylation and dephosphorylation events cause
individual proteins to hop from a state to a neighboring
one along the state chain. We assume that both kinase and
phosphatase actions occur on a time scale of 1 unit. Phos-
phorylations (hops from state j to j + 1) are catalyzed at
rate I + fJnJ, where I is the number of kinase molecules and

the second term describes the feedback resulting from the
fully phosphorylated state j = J. The intensity of this feed-
back is assumed to be proportional to the instantaneous
occupation nJ. The feedback is therefore a fluctuating var-

iable, whose strength is set implicitly by the total number
of target molecules N. Similarly, dephosphorylation tran-
sitions (backward hops from site j to j - 1) occur at rate P
+ f0n0, where P is the number of phosphatase molecules

and n0 is the number of target proteins in state 0. f0 and fJ
are measures of the feedback strengths of sites 0 and J,
respectively. In all that follows we only deal with the 2
cases f0 = fJ = 1, depicted in Fig. 1d and referred to as sym-

metric topology, and f0 = 0, fJ = 1, depicted in Fig. 1c and

referred to as asymmetric topology. It is straightforward to
generalise the analysis to other cases.

We proceed with an overview of the salient features of this
switch as we vary two kinds of asymmetries: parameter
asymmetry, I/P, and circuit asymmetry. These features are

n Njj
J
=∑ =0

Fluctuations in the order parameterFigure 6
Fluctuations in the order parameter. The fits (solid 
lines) are leading order expansions about the mean-field 
solution obtained through the field-theory formalism (see 
text). The straight line has slope 1/g. Symbols, J + 1 values, 
and colors are as in Fig. 5.
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obtained from the analysis detailed in the next section. In
a deterministic setting, the transition from a single stable
steady-state (monostability) to one with two stable
steady-states (bistability) is a saddle-node bifurcation,
while in statistical mechanics it appears as a non-equilib-
rium phase transition. In both symmetric and asymmetric
circuits such a phase transition occurs when the ratio of
feedback catalysis (the strength of which is set by N) to
exogenous catalysis (set by I and P) is varied. The number
of target molecules N therefore constitutes a degree of
freedom for switch control. Simulations, carried out with
a simple procedure described in the Methods section,
indicate that (for J ~ 9 or greater) N ~ 10 is enough in prac-
tice to start showing a sharp transition in all cases. We find
analytically that bistability occurs for any J ≥ 2, despite the
enzymes' operating in the linear regime.

The case I = P ≡ q for the symmetric circuit has a second-
order phase transition between monostability and bista-
bility as the ratio g ≡ N/q is varied, that is, the transition
occurs at a critical point at which the order parameter |!nJ
- n0"|/N changes continuously, see Fig. 5 (and blue curve
in Fig. 4). However, the phase transition is different for
finite J and for infinite J. We do not know of any other sta-
tistical non-equilibrium model which shows this behav-
ior. The infinite-J case, although not directly relevant as a
biological model, remains important as it constitutes the
asymptotic behavior to which all the finite-J solutions
converge deep within the bistable regime, where the
dynamics of the circuit involves nearly exclusively one
boundary (all phosphorylated or all unphosphorylated),
so that the configuration space is effectively semi-infinite.

Parameter asymmetry, I ≠ P, or circuit asymmetry also
generate transitions from monostability to bistabilty; but
the transition is now first-order (the order parameter
changes discontinuously), see Fig. 3b and Fig. 4.

For the symmetric circuit and I = P, the monostable phase
is one in which all the N target molecules are distributed
homogenously over the phosphorylation states, while the
two degenerate bistable states are those where the popula-
tion is concentrated on either end of the chain. The char-
acter of the monostable state in cases with any type of
asymmetry is different from the symmetric case, in that
the N particles follow a density profile peaked around j =
0 or j = J (depending on the parameters). In Fig. 3 we show
the phase diagram for symmetric and asymmetric circuits
as a function of parameter asymmetry.

We can solve this model not only for the mean behavior,
but also for the fluctuations as well as the residence time
in the bistable regime. The latter is of biological interest
since it addresses the persistence of switched states (mem-
ory) when realized by small numbers of molecules [29].

Theoretical analysis
The system is entirely specified by the probability Pr(n),
where n = (n0, ..., nJ) is the vector of occupancies intro-
duced above. The master equation describing the hopping
process in the space of phosphoforms for the symmetric
circuit (Fig. 1d) is:

Here 1j represents the vector of zeros with a 1 in the jth
position, and δj, j' = 0 if j ≠ j' and δj', j' = 1 (Kronecker delta).
In all that follows, we are interested in the stationary state
where the left-hand-side of Eq. 5 can be set to 0.

Eq. (5) is difficult to solve exactly for J > 1, however it is
amenable to a mean-field approximation. The idea
behind the mean-field theory is to reduce the system of N
target molecules interacting through a fluctuating feed-
back, to N non-interacting particles acted on by an averaged
feedback. In this approximation we replace the modifica-
tion rates P + n0 and I + nJ in (5) by effective rates P + !n0"
and I + !nj", respectively, where the ! " denotes expectation
in the stationary state. This is identical to the spirit of
mean-field theory for Ising spin systems where the fluctu-
ating field felt by a spin (on account of its neighbours) is
replaced by an average field, which is then determined
self-consistently. The reader will find a brief summary of
the mean-field approach in the Methods section.

It is helpful to define a generating function F(z) ≡ F(z0, z1,

z2!, zJ) ≡ , where the sum is over

all configurations {n} that preserve the total number of
target molecules. In the Methods section we solve Eq. (5)
for Pr(n) in the mean-field limit, and obtain the generat-
ing function for N substrate molecules as:

where we define

The expression for x is just a rewrite of x = (I + !nJ")/(P +

!n0") in terms of the coupling strength (control parameter)

g. The definition of the kinase to phosphatase ratio as an
exponential enables convenient use of hyperbolic sines
below. Eq. (6) obeys the constraints F(1, 1, !, 1) = 1

d
dt
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(probability conservation) and

 (article number conser-

vation).

From Eq. 6 one obtains !nj" = x !nj-1" = xj !n0", and N = !n0" (1
- xJ+1)/(1 - x). By defining x = eξ, we find

From !nj" = xj !n0" and the definition of x, we obtain an
expression for g !nJ - n0" /N, which, when combined with
Eq. 8, enables us to write g in terms of the parameter ξ:

In Fig. 4 we invert Eq. 9 to graph ξ = log x as a function of
g, showing the transitions to bistability for the symmetric
circuit at different values of λ.

In all that follows, we consider the simplest case of I = P
(λ = 0). Eq. 9 simplifies to

We can now solve for the order parameter |!nJ - n0"|/N as a
function of the parameter g for any J. When I = P, we find
that for J = 2 there is a critical coupling

gc = (J + 1)/(J - 1), (11)

such that for g ≤ gc the uniform distribution ξ = 0 with nj/
N = 1/(J + 1) for all j is stable, while for g > gc the symmet-
ric distribution is a saddle point and the ξ ≠ 0 solutions
are stable. These results are readily extended to the asym-
metric circuit, yielding the phase diagrams of Fig. 3.

In Fig. 5 the theoretical estimate of the order parameter
from the mean-field approximation is compared against
simulations for different values of J. It is seen that the
mean-field estimate is very accurate for sufficiently large
N. The transition at finite J has the character of a Curie-
Weiss magnetization transition [30], with order parame-
ter scaling as

For any J at g t 1 + 2 (gc - 1), the order parameter saturates
to a J-independent envelope value

Since gc - 1 → 2/J for large J, Eq. (13) also gives the behav-
ior in the formal J → ∞ limit. The derivative of the order
parameter converges to 1 in arbitrarily small neighbor-
hoods of the critical point, rather than to ∞ as in the Curie-
Weiss regime; thus J → ∞ defines a different universality
class than any finite J. Qualitatively, the distinction
between large and small J is determined by whether one
or both reflecting boundaries, respectively, are sensed by
the near-critical symmetry-broken state.

So far we have described the mean behavior of the system.
Eq. 6 also makes predictions for higher moments, in par-
ticular the variance of the end-site occupancies σ2(n') =
!(n0 - nJ)2" - !n0 - nJ"2. It is easy to show that for large g, σ2(n')

~ N/g (or the noise σ2/N2 ~ 1/Ng = /N2). As shown in
Fig. 6, this is a fairly accurate prediction for any J. At large
J, the form (N/g)(1 - g-2.5) represents an excellent numeri-
cal fit for the variance all the way down to the critical gc.

For a given distance not too far from the critical point, the
noise in the order parameter increases with decreasing J.
At large g, far inside the bistable region, the variances for
all J converge as indicated above and shown in Fig. 6.
Interestingly, for large J the noise increases to a maximum
past the critical point (red curve in Fig. 6), while for small
J it decreases. At a phenomenological level, we may distin-
guish between fluctuations and large-deviations. Roughly
speaking, a large-deviation state is one that is very unlikely
to be reached, but once reached, exhibits a certain dura-
tion (residence time). This is the case for the spontaneous
switching between stationary states in the bistable regime.
A fluctuation does not necessarily have such distinct time
scales. At or near criticality, however, there is no clear-cut
separation between fluctuations and large-deviations. We
return to the topic of large-deviations below.

Fig. 6 also demonstrates that the variance diverges at the
critical point. To understand this, we need to go beyond
mean-field theory. We can do this by introducing an oper-
ator algebra on a basis of number states [31,32], as done
for many reaction-diffusion systems in physics, and writ-
ing the master equation in terms of these number opera-
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tors. This technique has been recently applied to models
of simple gene expression circuits [33]. The technical
development of our approach based on the formalism of
field-theory and its application to molecular signal trans-
duction is the main subject of a forthcoming manuscript
[16]. Here we only sketch the spirit of the approach.

In principle, the master equation 5 contains the full con-
tent of the stochastic process description of our system.
The discrete master equation, however, is a function of the
instantaneous occupancies nj for any particular j, and does
not lend itself to study of collective changes of phosphor-
ylation state across the whole range of j values. One pur-
pose for field-theoretic methods is to re-express the
content of the master equation in terms of the elementary
modes of collective state change. Within this formalism,
fluctuations in the phosphorylation state of the circuit can
be expanded in a set of basis functions (modes) of the
reaction-diffusion operator associated with the master
equation. This treatment identifies the lowest mode of the
diffusion equation as the collective fluctuation that
induces the instability as the coupling g approaches the
critical value gc. At the critical point, this mode becomes a
linear function of j, so that its fluctuations describe an
aggregate transformation of the substrate population
upward or downward in phosphorylation state, collec-
tively adding or subtracting a linear term to the phospho-
rylation state distribution. All other modes of diffusion
among phosphorylation states decay through the bistabil-
ity transition, almost as they decay in the monostable
region. This form of understanding the mechanism
underlying instability in a stochastic circuit is more natu-
ral in a field-theoretic representation than in the master
equation 5.

Within the field-theory formalism, a systematic perturba-
tion theory can be developed about the mean-field limit,
yielding expressions for the variance σ2(n') plotted in Fig.
6 (solid lines). This result confirms the similarity of the
finite-J transition to Curie-Weiss ferromagnetism, with a
divergence at the critical point scaling as

We can also compute the large-N dependence of the aver-
age residence time t. This is the average time a state in the
bistable regime will last before spontaneous fluctuations
cause a transition to the other state. The residence time is
related to the memory (stability) of a stochastic switch.
The persistence of a switched state has been recently stud-
ied in other contexts both numerically [34,35] and theo-
retically [29,36,37]. We solve the master equation of the
system, using the field-theoretic formalism described in

[16], and obtain the leading large-N dependence of the
residence time τ as τ ~ eN f(g, J), where the function f(g, J) is
independent of N at fixed g and J. We have numerically
evaluated analytical expressions for N f(g, J), obtained
from first principles at J = 2, and find good agreement
with Monte-Carlo simulations, as shown in Fig. 7.

These simulations were carried out with a rate constant of
1 for each elementary (de)phosphorylation step. To esti-
mate biological time scales, let us assume a catalytic rate
constant of phosphorylation, kcat, of 0.01 s-1 [22] (another
frequently used value is 1.5 s-1 [8,22]). Dephosphoryla-
tion rate constants are roughly an order of magnitude
higher [35]. These rate constants refer to the first-order
conversion of an enzyme-substrate complex into enzyme
and (de)phosphorylated product. Our model, however,
does not include complex formation between enzyme and
substrate, and (de)phosphorylation reactions are second-
order. Because kinase and phosphatase concentrations
remain unchanged at each step, we may absorb them into
a pseudo first-order rate constant. To estimate that rate
constant, we interpret our model as operating in the linear
Michaelis-Menten regime, where the pseudo first-order
rate constant k becomes kcat [I]/Km, with Km the Michaelis
constant of the enzymatic reaction and [I] the concentra-
tion of kinase molecules. Ballpark figures for Km are 50 to
500 nM [22]. 1 nM corresponds to about 0.6 particles per
femtoliter (fl), or roughly 25 particles per yeast cell vol-
ume (42 fl on average). In the simulations and calcula-
tions of Fig. 7a we have I = P = N/g, to keep the coupling
g constant as N changes. The range of the abscissa in Fig.
7a therefore corresponds to kinase concentrations of 0.5
to 2 nM, assuming a yeast cell volume. To roughly esti-
mate spontaneous switching times, consider the symmet-
ric circuit with J = 2, not too far past the critical point, and
N = 50 target particles corresponding to 2 nM, I = P = 12
kinase (phosphatase) particles corresponding to 0.5 nM,
and τ ~ (1/k)e5.2 = 181/k seconds.

Using k = kcat [I]/Km = 0.01·0.5/50 = 10-4 s-1, we obtain an
expected residence time of 21 days in a yeast cell volume.
Mammalian cell sizes range anywhere from twice to sev-
eral hundred times a yeast cell volume, which increases
the residence time of a switched state for the same number
of particles. The main message is that for the type of sym-
metric circuit considered here, the spontaneous switching
times appear to be in the order of weeks to years for rather
moderate numbers of molecules in the minimal circuit.
Longer lasting memory may occur in the case of gene reg-
ulatory networks [29], which typically involve smaller
overall rate constants than post-translational signaling
events.

The spontaneous switching time strongly increases with
the number of phosphoaccepting sites J, as can be seen in

( )

/( )
~

( )

n n n n

N J J g g
J J

c

− − −
+

≈
+ −

0
2

0
2

2 1
1

1
const (14)



Biology Direct 2007, 2:13 http://www.biology-direct.com/content/2/1/13

Page 11 of 17
(page number not for citation purposes)

Fig. 7. Fits to the numerical data of Fig. 7 suggest τ ~ α exp
[N(g - gc)2(β + γJ3/2)], where β < 0 (slightly), γ > 0, and α
> 0 exhibits a weak (N, J)-dependence. It is conceivable
that cellular circuits possess switched states spanning a
wide range of persistence times and that the evolutionary
process acts on the longevity of such states by changing J.

A recent numerical study reports residence times of several
decades for a bistable (auto)phosphorylation circuit
implicated to function in long term potentiation [35]. The
circuit involves calcium/calmodulin-dependent protein
kinase II (CaMKII) with J = 6. Despite an architecture that
differs considerably from the circuit considered here, the
authors also find an exponential N-dependence, predicted
in [29] to be a generic form for domain-switching proc-
esses of this type by arguments similar to ours.

Conclusion
The circuit studied in this contribution represents a situa-
tion in which competing feedbacks (enhancing phospho-
rylation and, simultaneously, dephosphorylation)
impinge on a protein with multiple phosphorylation
sites. The literal reading of the model assumes a bifunc-
tional enzyme, able to switch states (between kinase and

phosphatase activity) according to its degree of phospho-
rylation. On another interpretation the model represents
a contraction of indirect feedbacks that are mediated by
antagonistic pathways regulated by the target substrate of
the circuit. The extent to which this interpretation is
appropriate depends on the sensitivities and delays of the
intervening pathways. The primary value of this contribu-
tion is to present, on a biologically motivated example, a
framework (presented in detail elsewhere [16]) for com-
puting the structure, scaling, and magnitudes of fluctua-
tions and residence times for a class of stochastic
switching circuits, along with analytical results for the
symmetric case.

We show that multisite phosphorylation of a target pro-
tein in the linear operating regime of enzymatic catalysis
generates bistability when combined with positive feed-
back. The change from monostability to bistability upon
variation of the pertinent parameters can be characterized
in terms of statistical mechanics as a non-equilibrium
phase transition. The phase structure of the mean values,
including the transition between monostable and bistable
regions, is well approximated by the classical detailed bal-
ance equations of chemical kinetics. Among the parame-

Residence times t in the switched state as a function of J, N, and the distance from the critical point g - gcFigure 7
Residence times t in the switched state as a function of J, N, and the distance from the critical point g - gc. In all 
cases the circuit has symmetric feedback and I = P. (a): log t vs. N for J = 2, 3, 4, 5 based on Monte-Carlo simulations. To mean-
ingfully compare residence times, the coupling g = N/  is kept constant by varying the external kinase and phosphatase 
numbers appropriately, I = P = N/g. To compare across J, the distance from the critical point, g - gc, is held constant at 1 (recall 

that gc = (J + 1)/(J - 1)). The green curve is for J = 2 and g = 4.0862 (from setting ξ = 1 in Eq. 10). This is the case calculated 
from first principles in [16]. The best fit to the slope of the green simulation data is log t ~ N* 0.023, which is very close to our 
theoretical prediction log τ ~ N* 0.021. (b): log t vs. g - gc for different Js at N = 50. Curves from bottom to top are for J = 2, 3, 
4, 5, 6, 7, 8, 9.
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ters controlling system behavior is the number of target
(substrate) molecules, not just the numbers of kinase and
phosphatase molecules. This is worth emphasizing
because the same number strongly affects the persistence
times of the switch. Thus, in a molecular circuit like the
one considered here, the number of target molecules
influences both the existence of the switch and the likeli-
hood that fluctuations cause spontaneous transitions
between its stationary states.

The analytical framework we constructed for the fully sto-
chastic process correctly predicts the phase diagram, fluc-
tuation spectrum, and large deviation properties for a
wide range of parameters as obtained from simulations.
We summarize a few observations that follow from this
analysis.

1. The behavior of multisite phosphorylation is often
characterized in terms of the stationary fraction of fully
phosphorylated form only. In this order parameter, mult-
isite phosphorylation without feedback (where switching
is of the "ultrasensitive" form) appears worse than hyper-
bolic in switching efficiency for any j > 1, and for j → ∞
the response curve becomes a right-shifted hyperbola [38]
(see also Eq. 4), justifying the label "thresholding device".
In Fig. 2, however, the order parameter is the stationary
difference between the occupancies of the fully phosphor-
ylated and unphosphorylated forms. In this rendition, the
behavior of multisite phosphorylation increases switching
efficiency (as defined in [38]) for any j > 1 (though not
nearly as dramatically as with feedback) and does not
exhibit a threshold. These are not contradictory observa-
tions, but they illustrate the importance of the choice of
observable (order parameter).

2. With the addition of feedback, the stochastic descrip-
tion of the substrate population evidences a non-equilib-
rium phase transition between monostable and bistable
regimes (corresponding to the saddle-node bifurcation in
the deterministic picture). In the symmetric case, as is
intuitively obvious, the monostable regime has all phos-
phoforms represented with equal probability, whereas the
bistable regime has two degenerate distributions peaked
at the fully phosphorylated or fully dephosphorylated
forms. In the fully symmetric case the phase transition is
second-order, as in the Curie model of ferromagnetism.
Interestingly, the ferromagnetic analogy breaks down in
the limit J → ∞. This limit is relevant in that the finite-J
behavior converges to it for increasing feedback at
strengths deep inside the bistable regime. Any form of
asymmetry considered here, circuit-wise or parameter-
wise, leads to a first-order phase transition, as in boiling
water.

3. The types of phase transition are helpful in framing
questions about switch memory, that is, the system's resi-
dence time in the stationary states. Consider the techni-
cally imprecise but nonetheless informative metaphor of
a switch as a double well potential. At the lower critical
point a single well becomes a double well, the minima
representing stationary states. Intrinsic fluctuations can
knock the system from one well into the other, corre-
sponding to a loss of memory. The concept of memory,
however, is meaningful only if both wells have approxi-
mately similar depth, because that is when observing the
system in either well conveys information. This situation
is realized ideally for the symmetric circuit and I = P,
which is the second-order phase transition. If, on the
other hand, the wells are extremely asymmetric, one much
deeper than the other, the shallower well is but a rare and
short-lived excursion from the deep one. There is little
information in observing the system in the deep well,
which is to say that there is (almost) nothing for the sys-
tem to "remember". The only memory that can be lost
(and fast at that) is the occupancy of the shallow well. Our
first-principles calculations from [16], which agree quite
well with simulations (see caption to Fig. 7), apply strictly
only to the second-order case at low J and near the critical
point, but we do not expect them to become meaningless
when the transition is weakly first-order. Between the two
extremes of second-order and strongly first-order there is
an intermediate range for which the mean-field equations
might be used to estimate ratios of spontaneous switching
times from one well to the other in terms of the inverse
ratio of residence times in the respective wells, as required
by detailed balance.

4. The number of substrate molecules plays an important
control role in selecting the monostable or bistable
regimes. We point out that the symmetric circuit has a
bistable regime at constant coupling g as I/P is varied (see
Fig. 2), but it remains forever bistable as N is increased
past gc at constant I/P (see Fig. 3a). Increasing the number
of substrate molecules, increases the strength of feedback
and reaction rates, thereby favoring bistability (and reduc-
ing fluctuations).

5. The magnitude of fluctuations and residence times in a
stationary state as a function of the coupling strength g
strongly depend on the number of phosphoaccepting sites
J. The longevity of state memory could thus be tuned by
evolving the number of modifiable sites in the target pro-
tein of the circuit (in addition to changing rate constants).
The present state of knowledge does not permit to assess
whether the latter, more structural degree of freedom is
actually exploited in the evolutionary tuning of molecular
switch circuitry. One would need to identify proteins that
are involved in switches (i.e. that exhibit bistable phos-
phoform distributions) and relate the longevity of their
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switched state to the number of phosphorylatable sites.
Likewise, we do not know the extent to which cellular
decision processes hinge on a wide spectrum of memory
time scales in post-translational signaling, but such a spec-
trum seems not to be difficult to achieve.

Methods
Monte Carlo simulations
The Monte Carlo simulations are carried out in a simple
manner that follows the process described by the master
equation 5. A lattice of J + 1 sites (representing states or
phosphoforms) is populated with N target molecules
(particles) randomly distributed over the lattice. The par-
ticles are numbered and we keep track of their location. To
simulate the dynamics, particles are moved to adjacent
sites on the lattice at discrete and equally spaced time
steps. At any one step, each particle has a probability (q +
nJ)/(2q + N) of moving to the right and (q + n0)/(2q + N)
of moving to the left, q ≡ I = P. If the particle is located at
the first (or the last) site, it can only move to the right (or
the left) with probability (q + nJ)/(2q + N) (or (q + n0)/(2q
+ N), respectively). The system is evolved until it attains
steady-state, when all the measurements are made. The
normalisation factor 2q + N is an inverse time unit needed
to make the rates in Eq. 5 into probabilities.

The definition of mean-field approximations
The general form of master equations such as Eq. (5) may
be written

In Eq. (15) the discrete argument n has been written as a
subscript denoting a vector index rather than a functional
argument, and the sum over contributing terms is written
as a matrix transformation on the vector with components
Prn. The matrix T is called the transfer matrix of the proba-
bility process under which Prn evolves.

Moments of Pr, such as the mean number, are defined
through expectations

Through the master equation (15) the time evolution of
!n" may be calculated as

The steady-state solution d!n"/dt = 0 may be solved
through Eq. (17) as a balance equation between moments
of Pr expressed on the right-hand side of the equality. In

general, the moment equations are not closed, either for
steady or non-steady states. The time dependence or
steady-state condition for !n" is a function of quadratic
moments in n, whose time dependence or steady state
conditions are in turn functions of higher-order
moments.

The mean-field approximation truncates this hierarchy of
dependencies into a closed system of equations for the
expectations !n". In particular, because the steady-state
solution to Eq. (17), for the master equation 5 involves
only quadratic moments, the relation can be closed by
replacing I + nJ by !I + nJ" and P + n0 by !P + n0" in Eq. 5 and
then evaluating the relation (17) at d!n"/dt = 0. The net
result is to replace terms such as !(I + nJ) nj" by the approx-
imations !I + nJ" !nj". The resulting feedback operates only
through its mean strength !I + nJ" = I + !nJ", which motivates
the term "mean field approximation".

The mean-field approximation of Eq. (5) leads to the clas-
sical equations of detailed balance with hopping rates
expressed in terms of mean occupation numbers. Thus,
the mean particle numbers in adjacent phosphorylation
states satisfy the relation

!nj+1" = x!nj", (18)

with the geometric factor

by the definitions, Eq. (7), in the main text.

The generating function for the steady-state master 
equation
To derive the equilibrium solution for the generating
function from the master equation (5), first recall the def-

inition . By multiplying Eq.

(5) by  and summing over {n}, we obtain the

equivalent time-evolution equation for the generating
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Because {n} is now a variable of summation, it can be
shifted in the first term of each line of Eq. (20), to obtain
an equation without offsets in the indices,

Since , and likewise for j + 1,

we may further condense Eq. (21) into

The mean-field approximation consists in replacing the
terms P + n0 and I + nJ by their average values in the con-

figurations – self-consistently determined – which domi-
nate the sum (22). These are denoted P + !n0" and I + !nJ".
Note that with this approximation, the terms involving z
and ∂/∂z are separated from the index sum over

, which may be performed to recover a dif-

ferential equation for the scalar function F(z). Using the
definitions from Eq. (7) in the main text, and removing an
overall scale for time to the front, we then recast Eq. (22)
as

The negative sign reflects the convergence of a finite
Markov process to its stationary distribution.

The polynomials (zj+1 - zj) in Eq. (23) are not needed to
identify a solution to dF/dt = 0, as any power of the varia-
ble

is annihilated by the derivative terms in parentheses in Eq.
(23), independently at each j. The particular combination

satisfies the normalization condition F1(z ≡ 1) = 1 for a

generating function, but its first-derivative satisfies

, identifying F1 as the generating

function for a single particle. For N particles, the generat-

ing function F(z) = , which is a general relation for the

non-interacting particles described by the mean-field
approximation, and which recovers Eq. (6) in the main
text.

Authors' contributions
S.K. and E.S. contributed equally to this work and are joint
first authors. S.K and E.S developed the field-theoretic for-
malism and carried out the analytical and numerical cal-
culations. W.F. and D.K. suggested the problem,
interpreted results in a biological light and, jointly with
S.K and E.S., wrote the manuscript.

Reviewers' comments
Reviewer's report 1
Ned Wingreen, Department of Molecular Biology, Princeton 
University
This paper reports a careful mathematical analysis of a
model biochemical circuit with feedback. The model con-
sists of a protein with multiple phosphorylation sites,
which can feed back to positively affect its own phospho-
rylation or dephosphorylation rates, but only when fully
phosphorylated or dephosphorylated, respectively. An
asymmetric model containing only phosphorylation feed-
back is also considered. The authors show that these sim-
ple models display non-equilibrium phase transitions
between a monostable and a bistable regime, and show
that there is good agreement between mean-field theory
results and exact simulations. Importantly, the rates of
phosphorylation and dephosphorylation are taken to be
linear functions of enzyme density. The bistability
emerges instead from the assumption that full phosphor-
ylation (or dephosphorylation) of multiple sites is
required for feed back.

Overall, the paper makes the case that even very simple
biochemical circuits can display bistability, with poten-
tially very slow switching between distinct states. An
important point raised in the paper is that the concentra-
tion of proteins is an essential parameter in determining
the regime of behavior. With increasing protein concen-
tration, the relative strength of feedback becomes
stronger, and the system is driven into the regime of bist-
ability. This could be important in biological systems
where protein concentrations can be actively controlled,
e.g. by transcriptional regulation or by regulated protein
degradation.

In the model section, the distinction between "ultrasensi-
tive" and "threshold-like" behavior is not immediately
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obvious. I recommend a figure showing showing exam-
ples of these two types of behavior.

Author response: We have added what is now Figure 2 to
illustrate both forms of switching, but also to convey a wealth of
further information to which we refer at various points in the
manuscript.

From a biological point of view, it would be helpful to
relate the switching time estimate to real biological
parameters. Even a simple example that ends up with a
estimated switching time would be helpful.

Author response:We have added an extensive paragraph dis-
cussing and estimating switching times.

Reviewer's report 2
Sergei Maslov, Brookhaven National Laboratories
The manuscript contains an exhaustive analytical and
numerical study of the stochastic dynamics of a multistep
phosphorylation/dephosphorylation of a single substrate
in the presence of a positive feedback. From the mathe-
matical standpoint the results are as complete as they
could ever be: even the multi-variable generating function
was computed (albeit in the mean-field limit). Expect-
edly, under favorable conditions the positive feedback
generates bistability which is also analyzed by the authors
in great detail.

However, in my opinion authors should make a better
case for the biological meaningfulness of these results.

Is there any evidence that the (possibly indirect) feedback
in real-life systems of this type has a positive sign? Could
authors name at least one concrete example where bista-
bility of phosphorylation/dephosphorylation of a single
substrate is at least suspected?

Author response:We have added a further example of a pro-
tein with bifunctional kinase/phosphatase activity. It is not
known, however, whether these systems have switch character.
We point to reference [26]as a recent example suggesting com-
petition between antagonistic pathways in cellular decision
processes. Again, it is unclear whether such antagonism con-
verges on a shared circuit causing bistability along the lines we
consider in our paper.

Since the case of infinite J has no biological meaning I
would recommend removing the discussion of its peculiar
mathematical properties from the manuscript.

Author response:We disagree. We now explain in the text (as
is clear from the pertinent figure) that the infinite-J behavior is
the asymptote for all finite-J cases deep inside the bistable
regime. (The finite-J curves converge to the infinite-J curve at

large g.) It is, therefore, of interest to understand the infinite-J
case.

What are the advantages and disadvantages of different
values of J with respect to signal to noise ratio. In other
words, are there any biological lessons to be learned from
Figure 6?

Author response:We have added a brief paragraph in the per-
tinent section of the manuscript to verbally point to the fact
shown in Figure 6 that noise decreases with J at a given dis-
tance from the transition. We also point out that for a given J
noise increases past the transition when J is large and decreases
when J is small. We don't know whether this has biological sig-
nificance.

Since the "average residence time" t is a very important
characteristic of any bistable switch used as a memory
device could authors attempt to estimate it for some bio-
logically realistic microscopic parameters? For example, in
Figure 7 for, say, N = 100 molecules would t be of order of
minutes, seconds, milliseconds?

Author response:We have added an extensive paragraph
addressing this issue (which was also raised by Dr. Wingreen).

Reviewer's report 3
Artem Novozhilov, National Center for Biotechnology Information 
(nominated by Eugene V Koonin, National Center for Biotechnology 
Information, NIH)
The authors formulate and analyze a stochastic model of
a molecular switch frequently found in the molecular con-
trol circuitry of cells. This model circuit has been a subject
of extensive research during the last decade. Within the
framework of deterministic models, it was shown that
similar models can exhibit bistability and hysteresis,
which might be responsible for some of all-or-none irre-
versible processes in the cells. The main novelty intro-
duced by the authors is taking into account intrinsic
stochasticity of the (de)phosporylation processes and
analytical analysis of the resulting stochastic mathemati-
cal model (which is in remarkable agreement with the
simulation results). Applying formalism from the theory
of non-equilibrium phase transitions the authors obtain
phase diagram (stratification of the parameter space into
mono- or bistable domains) for arbitrary parameters and
fluctuation spectrum for the symmetric scheme with
equal rates of kinase and phosphatase activity. This is an
important contribution because stochastic consideration
not only allow one to obtain the phase diagram in terms
of mean system behavior, but also to estimate such prob-
abilistic characteristics as the variance of the order param-
eter and mean residence time of the substrate population
in one of the two possible states, thus providing some
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insight how macroscopic behavior can emerge from sto-
chastic molecular interactions.

However, I have some comments and questions concern-
ing the text.

I think that some of the statements presented in the Con-
clusion section do not really follow from the results and
discussion in the main text. The authors claim that "The
primary value of this contribution is to present a thorough
and rigorous stochastic analysis of a switching circuit" is
disputable.

(a): The derivation of the mathematical results in the case
of the mean-field analysis is, in my opinion, quite frag-
mentary and could be supplemented with a Mathematical
Appendix.

(b): The results for fluctuation in the order parameter and
for residence time are presented without any derivation
with [16] to unpublished work. These results also could
be included in Mathematical Appendix.

(c): The results for fluctuation in the order parameter and
for residence time are presented and discussed only in the
case of the symmetric feedback and P = I (loosely speak-
ing, not the most probable case). Is it possible to obtain
analytical estimates of these characteristics in the general
case?

(d): Thus, I presume that it would be more appropriate to
state that the primary value of the author's contribution is
to illustrate, on a biologically relevant example, the ana-
lytical framework presented elsewhere ([16]) and show
that in some particular cases it is possible to calculate fluc-
tuations and residence times.

(e): I, hence, would also question conclusion 6 (here, the
way it is stated in the main text, equal rates of(de)phos-
phorylation are not enough for a second-order phase tran-
sition, one should also have the symmetric feedback) and
...

(f): ... conclusion 7, which, being quite a general assertion
on the average residence times, does not follow from the
results presented only for the symmetric scheme and P = I.

Author response:(a): We have added two detailed appendices
in regard. One appendix explains the idea of mean-field theory.
The other derives in detail the generating function F(z).

(b): We understand the frustration of references to unpublished
work, but we feel we cannot do justice to the technical details of
the field-theory formalism by relegating them into an appendix.
The appendix would become a manuscript in its own right. A

preprint of the paper will be available shortly and we hope we
can link to it from the web-published version of the present arti-
cle. We believe that the presently revised and extended version
of this manuscript decreases its dependency on the forthcoming
paper to an acceptable level.

(c): We are at the moment unable to provide analytical calcu-
lations for residence times in the asymmetric case. In point 3 of
the Conclusions we now discuss issues related to residence times
in the asymmetric case more extensively.

(d): We agree with the reviewer's assessment regarding the pri-
mary value of our contribution to the point of paraphrasing his
comment in our Conclusions.

(e): The second-order phase transition hinges on parameter and
circuit symmetry. We are now more explicit throughout the
manuscript about the symmetries we refer to.

(f): We have reworded what was conclusion 7.

The authors could elaborate on the hysteresis (or path
dependence) phenomenon (of course, in terms of the
order parameter) which can be seen from Figure 4b, where
two critical couplings are found. In connection with this,
it could be helpful to produce figures similar to Fig. 5 but
for P ≠ I and both symmetric and asymmetric feedbacks.
This additional plot(s) can also clarify for a biologist the
difference between first-and second- order phase transi-
tions. I also suggest to redraw the plot in Fig. 5 such that
both branches of the order parameter are shown when g >
gc, thus illustrating the concept of bistability.

Author response:The newly added Figure 2addresses some of
these requests and illustrates the concept of bistability. We have
added wording to the caption of Figure 4 (new numbering) to
remind the reader that the modulus folds both symmetric
branches into one. From the viewpoint of hysteresis, asym-
metries affect the shape details of the curves but don't impact
any essential aspects of the message conveyed by Figure 2. We
have added what is now Figure 4 to show the bistability transi-
tions for the symmetric circuit with asymmetric I/P. This illus-
trates, as the reviewer requested with biologists in mind, the
difference between first and second-order transitions. The Fig-
ure complements both Figure 3a (phase portrait) and Figure
5(which is the I = P case compared against simulations and for
varying J). We have not added a similar figure for the asym-
metric circuit, as the phase portrait, Figure 3b, suffices. The
addition of Figure 4has necessitated a few additional equations
in the theoretical analysis section.

The part of the paper dedicated to the average residence
time is too short considering its importance. It would be
very interesting to see residence times in other cases (e.g.,
the symmetric feedback and P ≠ I).
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Author response:We have now addressed some of these issues,
as indicated in our responses to similar points raised by other
reviewers.

It is indicated in the text (the last paragraph of the Theo-
retical Analysis section) that "function f(g, J) is independ-
ent of N" but parameter g, as defined in the text, depends
on N. Can you clarify this point?

Author response:To meaningfully compare residence times for
different values of N at fixed J we must also fix the value of g,

which is done by adjusting to compensate for the fact that

N affects the coupling, g = N/ . The phrase "f(g, J) is inde-
pendent of N at fixed g and J" expresses exactly this, but we
have unpacked it in the caption to Figure 7 (new numbering).

Figure 7 gives an impression that the mean residence time
depends only on N and J, and is independent of kinase
activity, phosphatase activity, and the type of the feed-
back. Is it really so?

Author response:See our comments to the previous point.
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