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a b s t r a c t

Scientific theories seek to provide simple explanations for significant empirical regularities based on
fundamental physical and mechanistic constraints. Biological theories have rarely reached a level of
generality and predictive power comparable to physical theories. This discrepancy is explained through
a combination of frozen accidents, environmental heterogeneity, and widespread non-linearities
observed in adaptive processes. At the same time, model building has proven to be very successful
when it comes to explaining and predicting the behavior of particular biological systems. In this respect
biology resembles alternative model-rich frameworks, such as economics and engineering. In this paper
we explore the prospects for general theories in biology, and suggest that these take inspiration not
only from physics, but also from the information sciences. Future theoretical biology is likely to
represent a hybrid of parsimonious reasoning and algorithmic or rule-based explanation. An open
question is whether these new frameworks will remain transparent to human reason. In this context,
we discuss the role of machine learning in the early stages of scientific discovery. We argue that
evolutionary history is not only a source of uncertainty, but also provides the basis, through conserved
traits, for very general explanations for biological regularities, and the prospect of unified theories
of life.

& 2011 Published by Elsevier Ltd.

Contents

1. Outline of goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
2. Introduction to theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

2.1. Case study summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3. The relationship of biological models to theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
4. The challenges and character of biological theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

4.1. Problems of level separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
5. Theoretical biology in relation to evolutionary theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
6. Theory and the logic of experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7. Theoretical tools and formal languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

1. Outline of goals

Biology has been called ‘‘the physics of the twenty-first
century’’. This remark suggests that biological data have become
sufficiently rich and well curated, and biological mechanisms
sufficiently wide spread and conserved, that there is a prospect
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for the generation of new effective theories, perhaps even laws,
for living systems. The comment also raises important questions
about the objectives of theory in the life sciences, whether the
grand unified goals of physics serve as the correct prequel to
biology, or whether it might not be more fitting to view biology
from the perspective of the information and computational
sciences, also potent in mathematical and formal reasoning
(Keller, 2003). Perhaps biology will be ‘the computer science of
the twenty-first century’, seeking to understand the logical
structure of life in terms of directed rules of assembly, rather
than interactions among fundamental constituents. Others have
argued for a grounding in economics or engineering (Jacob, 1977).
Both of these areas have proven a rich source of models, from
game theory through control theory, but neither have contributed
much in the way of general theoretical frameworks. Indeed, in the
case of economics, the classical equilibrium theory with an
emphasis on individual utility maximization has proven to be
both non-empirical and rather easily refuted (Arrow, 1994;
Colander, 2000). The recent trend in economics has consequently
been to integrate more effectively with biological (Samuelson,
1985; Glimcher and Rustichini, 2004), physical (Farmer and
Geanakoplos, 2009) and computational (Tesfatsion, 2001) models
and theories. In contrast, the emphasis on practicality in engi-
neering has created very powerful modeling frameworks, but the
field has largely neglected synthetic frameworks (see Suh (1990)
as an attempt to redress this imbalance). It should be acknowl-
edged that the absence of general theories need not be seen as a
weakness, and for some this is probably a strength. In this review
we attempt to outline the character of theory – for good or ill –
biological theory in particular, where we shall cover some of the
following questions:

1. What is a scientific theory, and a biological theory in
particular?

2. What is the relationship of theory to models?
3. What are the limitations of statistical models, or models based

on machine learning?
4. Why have effective biological theories been difficult to

construct?

5. In what way is evolutionary history a source of difficulty or a
source of solutions in theory construction?

6. Do biological theories require new experimental, mathemati-
cal and computational tools?

2. Introduction to theory

Science begins by identifying regularities within sets of obser-
vations. The challenge of extracting patterns from complex
empirical data is the province of statistical inference (Fig. 1A).
But even the most parsimonious statistical representations of data
do not constitute theories. Before we can look for patterns, we
often need to know what kinds of patterns to look for, which
requires some fragments of theory to begin with. For the purpose
of our argument, we consider an explanatory theory to be a
mechanistic-deductive model that applies in a large number of
different situations. We might call such a theory a quantitative law
if it defines a core set of concepts expressed as universal condi-
tionals from which testable predictions can derive (Nagel, 1979).

The progressive refinement of quantitative observables into a
suite of variables that are interrelated across temporal and spatial
scales is one critical approach to theory building. In a hierarchical
refinement, the lowest levels are represented by the most general
(sometimes considered as the fundamental) mechanisms and
processes, whereas the highest levels refer to ‘‘emergent’’ proper-
ties of matter that require new forms of description and explana-
tion (Laughlin et al., 2000). By definition, the highest levels do not
capture all of the variation present at the lowest levels. Critical
variation at the lowest levels, however, may promote through
frozen accidents, diversity at the highest levels of a kind that
prevents a theory from attaining the universal character of
physical law. We expect this to be the case in biological theories,
largely as a result of the enduring role of initial conditions
propagated through the evolutionary processes. Bertrand Russell
wrote that ‘‘All exact science is dominated by the idea of
approximation’’. This is an insight often missed when criticizing
biological theories on the ground of empirical exceptions. We
should be more worried if there were none.

Fig. 1. The dual logic of model building in theoretical sciences. In Panel A we illustrate the common inductive–deductive flow of information involved in developing
theory. Observational data are mined for regularities using inferential statistics that seek to reduce the dimensionality of a phenomenon and filter out uninformative noise.
These regularities provide the ‘‘effective’’ degrees of freedom for ‘‘effective’’, quantitative or logical theories that further compress statistical regularities in terms of
verifiable, mechanistic processes. In Panel B we illustrate an alternative means of deriving models through the constraining of a general theory or law of nature. A model of
a ballistic trajectory through the parameterization of classical equations of motion or the construction of a population genetics dynamics through the application of
Darwinian dynamics are both of this variety. In both cases the models are iteratively improved by means of comparing and reducing discrepancies with compressed,
observational data.
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Predictive theories that show significant degrees of generality
in biology have tended to be based on dynamical properties of
biological systems or derived from a logical calculus such as
parsimony and its statistical extensions (Hennig, 1965;
Felsenstein, 1988). The former category includes a family of
theories in population biology (Levins and Lewontin, 1985) (such
as ecological theories based on predator–prey interactions),
evolutionary biology (such as multilevel selection theory and
game theory), and neuroscience (such as learning theories based
on neural networks of Dayan and Abbott (2001)). Theories
that started out with a logical calculus include cladistics or
phylogenetic systematics. Through likelihood-based extensions
(Felsenstein, 1988), phylogenetic systematics have become the
standard technique for reconstructing the evolutionary history of
life and other evolving systems, such as languages.

To ground subsequent discussion, we briefly consider three
examples, each of which represents a formal attempt at explain-
ing a key feature of biological systems. These examples span the
spectrum from putative theories to simple models. Throughout
this review we tend to neglect toy models that make only weak
connections to empirical data.

Scaling: Despite the diversity and complexity of organisms, key
biological processes generate rates Y, such as basal metabolic rate
that scale as simple power laws, Y ¼ Y0Mb, over many orders of
magnitude in body mass M (Y0 is a normalization constant). The
exponents b are often multiples of 1/4. These scaling laws
underlie and constrain many organismal time scales (such as
growth rates, gestation times, or lifespans) as well as trophic
dynamics. It has been suggested that the relation between basal
metabolic rate and body mass is determined by the scaling
relation between the volume of a hierarchical space-filling (frac-
tal) vascular network and the number of its endpoints (capil-
laries) (West et al., 1997). The hypothesis then is that hierarchical,
fractal-like branching networks were evolved by natural selection
to minimize power loss when delivering resources to the cells of
the body.

Gene regulatory networks: In many cases, the development of
complex phenotypic features is described in terms of gene
regulatory networks, or GRNs. Networks of interacting genes
provide a causal and partially mechanistic explanation for the
temporal and spatial regulations of embryonic differentiation and
the development of specific phenotypic characters, such as the
skeleton of sea urchin larvae, the heart, or the dorso-ventral
patterning of a Drosophila embryo (Davidson, 2006; Davidson and
Erwin, 2006). Once cell differentiation was recognized as a
problem of regulation and molecular mechanisms governing the
expression of individual genes were elucidated, logical and con-
ceptual models of ontogenetic patterning became possible. Dec-
ades of empirical studies have brought to light dependencies
between the expression of genes, revealing the structure of
regulatory networks (Britten and Davidson, 1969; Materna and
Davidson, 2007). This type of data has enabled conceptual
theories that link the structure of GRNs to patterns of phenotypic
evolution. Yet, recent data suggest that GRNs are but one element
of larger class of regulatory mechanisms that includes RNA based
and chromatin-based mechanisms.

Neural networks: There is great interest in how architectures of
biological systems can be used to solve computational problems.
Perhaps the most conspicuous architecture is the brain. In an
influential paper, McCullough and Pitts (1943) suggested that the
brain be thought of as a distributed computing network with
neuronal nodes implementing a boolean logic. Hopfield (1982)
neural network builds on this idea providing a simple model of
memory by ‘‘training’’ the network to associate input patterns
with output patterns using a learning process based on the
minimization of an energy-like function.

2.1. Case study summary

These examples illustrate that the purpose of both theories
and models is to provide unifying frameworks for measurable
quantities, capable of generating explanatory and predictive
statements about nature. In moving from scaling to GRNs and
neural networks, we move from a data rich deductive framework
to increasingly engineered models, which provide a proof of
principle for developmental or neural function. These models
conform to May’s (1973) biological model spectrum, ranging from
pragmatic or tactical descriptions of specific systems through
strategic models aiming to capture widespread regularities. All
three examples are broadly applicable, as metabolism, gene
regulation and nervous systems are common in nature. However,
the genetic and neural examples appeal to contingent structures
and functions that are not always observed in biological taxa, and
hence depend on a larger set of evolved constraints and para-
meters (Levins, 1966). These models also illustrate a shift in
perspective—from parsimonious systems of relations among
macroscopic variables (scaling), towards more detailed algorith-
mic specifications generating patterns of behavior at a micro-
scopic level (gene and neural regulation). There are in addition
numerous models in biology and economics exploring the logical
or empirical implications of sets of constraints and interactions
without application to carefully curated data sets. Indeed these
models – such as game theory – have dominated economic
theory. These are often powerful intermediates towards models
with a stronger correspondence to data. Due to brevity, we do not
consider this class of quantitative ‘‘thought experiments’’ in this
review.

3. The relationship of biological models to theory

We can be more explicit about the relationship of models to
theories. When general deductive and logic rule-based frame-
works (theories) are modified to fit a specific system by means of
the addition of constraints and parameters, or when logic rules
are ‘‘engineered’’ to describe a particular phenomenon, we speak
of models (Fig. 1B). Models represent the dominant application of
mathematics and computation in biology. Theories would ideally
support a large number of different models and frame a broad
range of nominally different modeling contexts. The more funda-
mental the theory, the greater its generality. Newton’s theory of
gravitation can be applied to masses of any scale and configura-
tion, such that a model of a solar system resembles a model of a
billiard table.

It is seldom the case in biology that a model is derived
deductively from a more fundamental quantitative theory, with
the possible exception of population genetics which has its
foundations in evolutionary theory. But this need not be a grave
weakness. The Hardy–Weinberg principle for alleles at equilibrium
is not based on a general theory of inheritance, although this might
be a realistic goal. Rather it is a model based on a set of very
specific assumptions or constraints. The model is very useful in
providing insights into departures from neutral expectations, i.e.
the basic conditions for its formulation, and in establishing one
desirable end point for a theory. In this way models can be a useful
stop-gaps in working toward, or engineering a theory, by suggest-
ing possible experiments and providing a testable and predictive
re-description of a complex body of data in lower dimensions.

Models often serve pragmatic purposes. Machine learning
approaches and related engineering formalisms, such as neural
networks, decision trees and support vector machines are pre-
valent in bioinformatics and neuroscience (Bishop, 2006). This
type of modeling of data seeks to construct computationally
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efficient representations of data with the aim of generalizing from
given instances and making predictions out of sample. In this goal
these approaches have been extremely successful. In most cases,
it is neither intended nor possible to extract from these models an
insight into what they have learned. One of the vaunted benefits
of machine learning is that classification and prediction tasks can
be performed without insights into the structure and dynamics of
the underlying system. For this reason machine learning is a
powerful means of preprocessing data in preparation for mechan-
istic theory building (Witten and Frank, 2005), but should not be
considered the final goal of a scientific inquiry. There is a growing
trend to equate the results of machine learning with the kinds of
insights generated by algorithmic models like those described
above applied to gene regulation. This is to confuse the implicitly
algorithmic nature of inferential frameworks used in data mining,
with the mechanistically principled, computational frameworks
that have arisen over the course of evolution.

A related approach is simulation, where computational power
allows for a large number of variables and parameters to be
included in the exploration of empirical regularities. Rather than
reconstruct properties of the data by dimension reduction as in
machine learning, one seeks to fit data based on a priori mechan-
ical models. This is somewhat different from the straightforward
reductionist approach (Fig. 1A), as it seeks to employ prior
principles in order to accommodate ensembles of data (Fig. 1B).
The best known examples for this are Monte Carlo (MC) simula-
tions and agent based models (ABM) (Bonabeau, 2002). MC
simulation seek to solve problems where there is a lack of
statistical power by generating large data sets compatible with
model assumptions. ABM seek to increase the degrees of freedom
of individual agents and in this way, represent more realistic
models of behavior where agent rules are assumed to percolate
into collective dynamics (Epstein, 1999). This approach often
presupposes that coarse-graining a system is not desirable, as
the process of abstraction can eliminate essential details required
to fully explain, or reproduce, the system dynamics. A weakness
of ABM in practice is that they can too easily be constructed and
their underlying rule sets are often poorly tested empirically.

The most recent incarnation of the model-based approach to
biology is systems’ biology, which seeks to automate, as far as
possible, the analysis and reduction of large bodies of – most
recently molecular – data present these in terms of parsimonious
data structures (Alon, 2007; Hood, 2003; Kirschner, 2005). These
structures tend to be selected on the basis of calculational
efficiency and generality. However, in system’s biology there
has also been an effort to reconcile these structures with known
mechanism through simulation and rule-based approaches in
order to provide a basis for systematic logical analysis of biolo-
gical pathways and dynamics (Danos et al., 2009).

Thus models can be derived from a general theory – top down
– through the application of constraints, or derived from data –
bottom up – through the assumption of preferred data structures.
In both cases, the model represents a structure of local cognitive
and predictive utility. Theory provides the basis for the general
synthesis of models, and a means of supporting model compar-
isons and ideally establishing model equivalence.

4. The challenges and character of biological theory

The current absence of a strong theoretical foundation in
biology means that there is weak guidance regarding what quan-
tities or variables need to be understood to best inform a general
understanding (an explanatory basis) for biological features of
interest. An unfortunate result of the absence of theory is that
some researchers confuse just having data with ‘understanding’.

For example there is a base for collecting and analyzing the most
microscopic data: experimental procedures and measurements in a
high-throughput transcriptomics study are built around the
assumption that transcripts are the primary data to be explained,
and in neuroscience, recording from numerous individual neurons.
This bias reflects a rather naive belief that the most fundamental
data provide a form of explanation for a system, as if enumerating
the fundamental particles where equivalent to the standard model
in physics.

With the advent of high-throughput genomics, transcrip-
tomics, proteomics, and metabolomics, and functional imaging
we have witnessed a technological revolution in biology that
went hand-in-hand with the rise of bioinformatics and the wide-
spread use of machine learning predictions. There has been a lack
of complementary conceptual theory that could help us organize
the flood of facts. An emphasis on models, rather than theory, has
led to an occasional failure to recognize as legitimate conceptual
questions that do not yet have associated with them a set of well-
defined modeling tools. This lack of conceptual guidance in the
practice of technology driven research can also be seen in the
problematic and historically derived structure of large scale
databases, which are still static and largely sequence-based,
whereas recent empirical discoveries strongly suggest that a
database structure explicitly representing the multiple dynamic
relations between relevant elements (DNA sequence, transcripts,
proteins, etc.) would be more desirable.

A persistent problem in biology is that regularities exist at
aggregate levels of description. It is assumed that a qualitatively
different theory is required to explain these emergent phenomena
than the theory describing the underlying microscopic dynamics
(Anderson, 1972). Chemistry, in particular synthetic organic
chemistry, serves as a good example. It is taken for granted in
the field that chemical reactions can be understood in terms of
the underlying quantum mechanics. Higher-level concepts, such
as ‘‘bonds’’ or ‘‘electronegativity’’ are used in practice to explain
chemical reactivity. In fact, organic chemistry is taught in terms of
rules of transformations (‘‘reaction mechanisms’’ and ‘‘named
reactions’’) that are much more akin to the graph grammars of
theoretical computer science than to the many-body quantum
mechanics alluded to as the theoretical foundation (Benko et al.,
2004). Interestingly, although we learn organic chemistry to a
large extent as a collection of structured (transformation) rules,
this is rarely made explicit, and even more rarely formalized at
this level (with the exception of a few enterprises in Artificial
Chemistry (Fontana and Buss , 1994; Benko et al., 2003; Suzuki
and Dittrich, 2009). The rule-based representation of chemistry
might serve as an example of a ‘‘non-physics’’-type theory.
Whereas chemical (reaction) equations again describe relation-
ships of sets of observables (in this case the educts and products
of a chemical reaction), the algorithmic transformation rules
provide a means of predicting what novel entities might be
produced. The price we have to pay for the convenient high-level
description—for not being derailed by details of electron densities
and nuclear movements in physical space—is twofold: First, we
have to memorize quite a few rules, not just a single, beautiful
and fundamental equation. And secondly, the predictive power of
the rules is limited: For instance, to decide which of the (poten-
tially many) applicable rules describes the chemical reaction that
is going to take place in a certain situation requires recourse to
the underlying physics—in this case, to determine activation
energies and the energy balance of a reaction.

The same logic applies to biological models in theoretical
ecology and population genetics (Bulmer, 1994; May, 2001).
Systems of competition equations seek to capture essential
interaction rules among individuals and species, without includ-
ing the energetic, physiological and behavioral bases of the
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interactions. It is assumed that these processes, all of which in
some fundamental way determine the nature of the competition,
can be summarized by means of interaction coefficients. This is
admissible if one is simply trying to ascertain the most likely
equilibrium outcome of competition in a density regulated
population. Historically, the simple formulation of the Lotka–
Volterra equation as a system of linked differential equations has
not only enabled the description of a wide range of population
dynamics, but also allowed for a general analysis of such pro-
cesses with regard to their stability (Kingsland, 1995). As with
ecology, in population genetics the details of the nucleic acid
sequences, the molecular biology of cell division and develop-
ment, as well as those factors determining the aggregate value of
fitness are deliberately neglected (Gillespie, 1994; Kimura and
Takahata, 1994). The essential transmission rules of Mendelian
inheritance are captured through simple recurrence equations
(Gillespie, 2004). Once again, the processes of drift and selection
acting on heritable traits are considered suitable coarse-grained
descriptions in order to grasp the equilibrium behavior of popula-
tions of genomes. And within these general dynamics, a family of
more specific models has emerged that investigate the conse-
quences of particular types of constraining assumptions, such as
specific constraints on the underlying genetic architecture or the
interactions between the genome and the environment.

4.1. Problems of level separation

So why has constructing biological theory been such a chal-
lenge? In biology, unlike for traditional physical and chemical
phenomena, many of the spatial and temporal scales interact. In
physics, nuclear forces can be neglected when calculating plane-
tary orbits as these are screened off over large distances. In
biology, however, the lowest levels can have a direct impact on
the highest levels (and vice versa), as in the case of genes that
influence behavior and social structures and behavior that influ-
ence gene expression patterns (Young and Hammock, 2007;
Abbott et al., 2003). Levin et al. (1997) suggests that one of the
central issues for theoretical biology is the better understanding
of how detail at one scale makes its signature felt at other scales,
and how to relate phenomena across scales. There is no reason to
assume that the imperfect separation of levels of description is
prohibitive to formulating meaningful theory, although it might
place limits on the accuracy of prediction at any given level.

This connects directly with the thorny question of emergence.
How much of biological nature can be predicted from basic
physical law? This question is simple to answer: effectively zero.
We know, in so far as we have tested them, that all of biology is
compatible with, or in principle derivable from, physical laws. But
this is a different statement. Classical mechanics, quantum
mechanics, relativity and condensed mater physics (Einstein
et al., 1966; Kragh and Brush, 2001), to name only four classes
of physical theory, do not in themselves predict biological evolu-
tion or any of its products (Anderson, 1972). This tells us that
evolutionary dynamics must be the outcome of a series of frozen
accidents in physical dynamics, accidents that somehow have
provided the basis for the formation of adaptive bio-molecules.
This is called the emergence problem. There are two properties of
interest in the emergence discussion. One might be called
endogenous coarse-graining property. The other might be called
the long history property. Endogenous coarse-graining is the use of
some summary statistic, or aggregate variables, by the system or
its components to make decisions. The idea is that the summary
statistic, which changes relatively slowly, is a better predictor (or
hypothesis) of the system’s future state than lower-level, faster
timescale fluctuations in component behavior (Crutchfield and

Shalizi, 1999; Krakauer and Zanotto, 2008; Boehm and Flack,
2010). Building these variables is a way to buffer against mis-
leading or erroneous information at lower levels (Boehm and
Flack, 2010; Flack and deWaal, 2007). For example in the brain,
individual neurons can be unreliable and population averages
provide more reliable information through redundancy. And in
populations of organisms, individual preferences can be mislead-
ing of group trends. Hence system components are a product of
and respond to system averages.

Systems with long histories (i.e., mechanisms of long-term
memory) allow for the ‘‘emergence’’, or accumulation of physical
properties in a growing space of otherwise highly unpredictable
states. This idea has been captured intuitively through a complex-
ity measure – algorithmic depth – which seeks to equate com-
plexity with historical depth (Bennett, 1988; Machta, 2006).
Hence complex systems are systems for which a full under-
standing requires a specification of a historical sequence. Replica-
tion and natural selection are themselves endpoints on one or
more of many paths along which basic physical symmetries have
been broken, leading to sustained preferences for alternative
configurations of matter. Finding some principled means of
enumerating and bounding these trajectories presents a great
challenge for theoretical biology.

5. Theoretical biology in relation to evolutionary theory

The evolutionary history characteristic of biological systems is
most frequently adduced – as above – as an argument against
theory. Evolution has been called a tinkerer (Jacob, 1977),
improving on existing biological adaptions by incremental mod-
ification over generations. Should we expect tinkering to generate
structures and functions comparable to those observed in abiotic
systems, a regularity permitting the development of theories of
great generality and predictive power (Avise and Ayala, 2007)?
The pervasive distribution of contingencies, or accidents of
history across the tree of life, suggests that this is not likely to
be the case. In response, some have argued for theories of
‘‘contingent generality’’-models of adaptive regularities restricted
to specific clades and guilds.

The idea of a contingent generality also alludes to the power of
a shared history and the opportunities afforded by historically
grounded generalities. The observation that all of life shares an
evolutionary history, imposes enormous regularity on biology in
the form of conserved traits amenable to general description and
explanation (Krakauer, 2002). For example, many of the mechan-
isms of inheritance and of development are effectively universal
(Carroll, 2000). This also extends to the level of individual
sequences and proteins. The conserved structure of life opens
up a huge space for general theory that could not be developed if
life where the outcome of multiple independent origins.

The common phylogenetic structure of living systems forms
the basis for a large range of powerful theoretical frameworks
that seek to explore the ancestor–descendant relationships
among species (Hillis et al., 1997). Cladistics, numerical taxon-
omy, phylogenetic inference, coalescent theory and all provide
useful generalizations that apply across many different species,
and can claim to form a quantitative theoretical framework for
much of biology (Hennig, 1965; Felsenstein, 1988). The founda-
tion of these fields is the common recognition that lineages
undergoing evolutionary diversification can be grouped into
monophyletic groups based on shared characters or synapomor-
phies and that the nested hierarchy of these lineages is char-
acterized by a similarly nested hierarchy of characters.
Phylogenetic reasoning is thus a universally applicable calculus
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for the reconstruction of branching patterns in genealogical
systems.

At the level of the genome, models of gene regulation, drawing
heavily on insights from engineering, developed in relation to a
model system, such as the fly or sea urchin, are by virtue of the
conserved structure of developmental regulation, likely to apply
to most forms of multicellular life (Davidson, 2006). In this way, a
general theory of regulation in biology becomes possible, even
though life itself has clearly evolved as a result of a huge number
of frozen accidents. Such a universal theory has to incorporate
multiple competing basic mechanisms (transcriptional regulation,
post-transcriptional silencing, chromatin modifications, DNA
amplifications) (Materna and Davidson, 2007). Clades evolve in
ways that emphasize different traits; some are reduced while
others are elaborated in great detail. Is this variability really ‘‘just’’
a frozen accidents or is there a way to understand physical and/or
logical constraints on these historical contingencies?

The field of social evolution is another area that has had
success in developing theories based on mid-level generalities.
Complex social systems have evolved several times, with pri-
mates (including humans) and eusocial insects being the most
prominent examples. Important features of these systems include
the full or partial division of labor, heterogeneity, learned strate-
gies sets, novel transmission mechanisms, and the prominent role
of ontogenetic in addition to evolutionary dynamics. These
features have highlighted fundamental problems, such as explain-
ing altruism within a framework of individual-based selection
(Hamilton et al., 2001; Hamilton, 1971). Recently, progress has
been made through the development of theories that have either
expanded fundamental selection dynamics in a hierarchical fash-
ion, such as multilevel selection theory (Lehmann et al., 2007a),
demonstrating a mathematical isomorphism between kin selec-
tion and group selection (Hamilton, 1975; Traulsen and Nowak,
2006; Lehmann et al., 2007b; Frank, 1998), or how individual-
based strategies in game theory might accounts for the evolution
of behavior. This last case is particularly interesting, as we have
subsequently seen an expansion of this concept to account for
dynamical interactions at lower levels of complexity such as
viral dynamics (Nowak, 2006). Hence game theory, and popu-
lation dynamical models, has contributed to the common orga-
nization of a large range of materially disparate phenomena,
and might eventually assume the status of ‘‘theory’’ in the sense
of providing a quantitative demonstration of principle that
applies to dynamics at very different biological levels (Levin
et al., 1997).

6. Theory and the logic of experimental design

Many natural sciences make progress through a careful choice
of model system. Model systems in physics seek to isolate the
crucial, causal components in system dynamics, and render them
amenable to observation and quantification. Galileo’s inclined
plane and Newton’s experiments with a prism are of this sort. The
analysis of the giant squid axon by Hodgkin and Huxley was also
in this tradition, as it sought to bring the properties of excitable
cells into the purview of a controlled, laboratory experiment.

A qualitatively different model system in physics, and one that
is closer to traditional biological model systems, is the hydrogen
atom. The hydrogen atom is simple enough in structure and
properties to offer itself up as a test case for fundamental theory –
from quantum mechanics through to chemistry. An ability to
predict many, if not all, of the chemical properties of the hydrogen
atom is thought to provide strong support for fundamental
theory, and justify the extension of the theory to more complex
atoms, and perhaps even molecules.

The most common biological ‘‘hydrogen atoms’’ are the stan-
dard model organisms, such as Escherichia coli, Saccharomyces
cerevisae, Caenorhabditis elegans, etc. These are all species that
represent nominally tractable and representative forms of life.
The discovery of genetic and molecular machinery in any one of
these is assumed to represent a reasonably plausible prior for the
discovery of a related mechanism in an untested species. This is
often the case, but calls for a very careful choice of model system
in terms of our basic knowledge of phylogenetic relationships and
identification of representative features. A uniform, or at least
principled, distribution of species for analysis over the tree of life
might be weighted as heavily as the more typical economic
factors when selecting model species. There is otherwise a risk
of providing detailed insights into idiosyncratic species. Social
evolution is a good example in so far as there will be no
compelling theory of social evolution if it is built on data on
social processes at a single level. We require a set of model
systems – from biofilms to volvox to the primates – that span a
space of problems encountered in the evolution of aggregates. In
this way, theoretical approaches might provide a justification and
procedure for the choice of model species or genera. Furthermore,
adopting a comparative model systems approach offers the pro-
spect of testing the generality of theories as they pertain to life
on earth.

Even when in possession of a suitable set of model systems,
there is a problem of establishing causality in highly inter-
connected systems. There is rarely a single, dominant force at a
given scale in biology. This requires novel combinatorial, experi-
mental procedures that allow for multiple fixed or knock-out,
interventions, with their consequences monitored in a range of
contexts and variety of timescales. Different contexts and time-
scale assessments are required for establishing different kinds of
causal relations. This is becoming practical with increasing auto-
mation of experiment, and in this way comes to resemble large
projects in high energy physics. In addition to informing experi-
mental methods to get at complex causal interactions in many
biological systems, the exercise of designing knock-out protocols
in such systems, particularly when coupled to a comparative
model systems approach, promises to provide powerful insight
into the problems that the system overcame over its own
evolutionary history.

7. Theoretical tools and formal languages

Having identified phylogenetically widespread regularities, we
might ask what form biological theory might take that best
captures the essential phylogenetic sub-structure: natural lan-
guage narrative (as in the humanities), compressed transforma-
tion rules capturing physical interactions (as in organic
chemistry), traditional dynamical systems (as in physics), or
new forms of computer based logic and simulation?

It is widely agreed that natural language plays a very powerful
role in concept formation and in concept dissemination. However,
in the middle stages of science, more formal approaches, such as
mathematics and computer models, tend to provide a significant
advantage over natural language. The reasons for this have been
long debated in the philosophy literature.

Wigner (1960) writes of ‘‘The Unreasonable Effectiveness of
Mathematics in the Natural Sciences’’, referring to the existence of
empirical regularities of great generality that are often physically
continuous properties of a natural system. However, the uncer-
tain nature of initial conditions provides an ultimate limit to law-
like theories. In such cases we might be required to generate a
variety of theories, each conditioned on the initial conditions. In
this way, in a biological setting, each species might require a
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different theory as each was originated in slightly different
circumstances. This is obviously undesirable, and in all likelihood,
unnecessary.

There is, however, another problem discussed by Wigner:
there is no a priori reason to believe that all phenomena will be
unified by mathematics. Speaking of the laws of physics and
heredity, Wigner wrote that, ‘it is quite possible that an abstract
argument can be found which shows that there is a conflict between
such a theory [heredity] and the accepted principles of physics’.
Wigner had in mind when writing this, the rather more ‘‘modest’’
difficulty of unifying relativity and quantum mechanics.

If there are few standard, mathematical frameworks of com-
pelling power for biology, might there be alternative frameworks
that are better suited to exposing general properties of adaptive
nature? It is frequently claimed that – like Newton’s invention of
calculus – biological theory will require ‘new mathematics’.
Cohen (2004b) has reviewed many intriguing cases where biolo-
gical problems have lead to the development or refinement of
areas of mathematics, from non-linear dynamics through to
stochastic processes. There are, however, many areas of mathe-
matics that have been neglected by theoretical biology that could
prove to be of great value. Einstein’s work on general relativity,
for instance, made good use of mathematical ideas, in particular
differential geometry that had previously been developed with
completely different motivation. More likely than not, the formal
structures have been set forth in some context, and await their
discovery and subsequent development in representing biological
theory.

The analysis of regular features of natural language using
formal grammars in linguistics is a powerful example of a formal
theory that seeks to explain regularities in nature without adopt-
ing the traditional mathematical approaches found in physics
(Chomsky, 1990, 1965). This is an approach based on computa-
tional rule systems (such as L-systems) capable of generating,
hierarchical or recursive, tree-like outputs. In a biological context
such as development, formal grammars seek to describe trans-
formation rules capable of generating a set of complex pheno-
types, such as branching morphologies, or nested sets of
cell types.

To-date, the problem with these algorithmic approaches has
been their weakness in generating predictions and their limited
ability to fit quantitative data. Unlike Newton’s laws that can help
us place a robot on the surface of Mars, formal grammars have not
yet predicted, say, the specific details of the ras cascade. Perhaps
this kind of detailed prediction is not the goal in biological
examples, in which case we need to be very explicit about the
goals of biological theory in the face of a demonstrable absence of
fine-grained predictive power.

8. Conclusions

Theory in physics has succeeded in identifying effective
degrees of freedom at multiple scales of physical organization,
and used corresponding effective theories to both predict and
intervene, in natural processes. Biology has achieved comparable
success, at more modest scales, in only a few domains: best
known of which are population biology, population genetics, and
the theory of scaling. In each case, the relatively simple nature of
the measured variables (population density, allele frequencies,
and mass) has allowed that coarse-grained theory achieves a high
level of predictive and explanatory power. When we turn to finer
grained details, such as gene expression, or components of
physiology and behavior, then general theories have proven more
elusive, and system-specific or engineering or economic style
models have dominated (Keller, 2003). As the volume of

biological data has increased, we have observed a corresponding
shift in model preferences, towards those frameworks that
provide increasing predictive power and a loss of compressed,
explanatory insight. These are often computational models, and
suggest a future in which informational and algorithmic concepts
will come to dominate our understanding of adaptive processes.
The great challenge will be to synthesize these high dimensional
predictive frameworks with the kind of low dimensional effective
theories that have proved so successful in the physical sciences. If
this objective proves to be impossible, we shall find ourselves in a
world not unlike that of statistical inference, where we are able to
predict and control the biological world, but for reasons
unknown.

At this point there are reasons to be more optimistic. There are
many properties of biology, including its common phylogenetic
structure that seem to offer a powerful organizing framework for
mathematical theories of the more traditional variety, even when
this history imposes contingency on biology, militating against
regularities at the most detailed levels. In this sense biology has a
prospect of turning what would be pure modeling approaches in
economics or sociology (restricted to a single lineage of primate),
into more general principles by virtute of their phyletic general-
ity. This is not a criticism of social science models, merely a
limitation of their disciplinary application.

There are also conceptual possibilities that have gone largely
unexplored. Physics has grown conceptually by accommodating a
diversity of mathematical disciplines, from dynamics through to
group theory (Courant and Hilbert , 1962). Einstein was able to
develop new physical theory by recognizing the crucial value of
differential geometry in describing space time. Theoretical biol-
ogy has been mathematically somewhat more restricted, focusing
largely on dynamics, stochastic processes and more recently, on
discrete mathematics (Cohen, 2004a). It will likely prove very
profitable to explore a wider range of mathematical ideas (Cowan
and Society, 1974), especially those connected with formaliza-
tions of logic rules and a variety of frameworks supporting
concepts related to information-processing, such as info-max
assumptions, and forms of distributed decision-making.

A few uniquely biological problems that might benefit from an
infusion of new mathematics include unraveling the intimate
relationship between energy and information, the origins of
heterogeneous, hierarchical structures, the development of prin-
cipled explanations for individuality (Krakauer and Zanotto,
2006), the emergence of learning mechanisms, how social sys-
tems and multicellular organisms arise from simple adaptive
agents, and when persistence mechanisms, as opposed to replica-
tion mechanisms, play the organizing role in evolutionary
dynamics. In each of these cases, new ideas will be required to
realize the ultimate goal of theory, as articulated by Mach, ‘‘the
completest possible presentation of the facts with the least
expenditure of thought’’. The least expenditure of thought, to
imply comprehension, not the minimal representation of the data
in silico.
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