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ABSTRACT RNA secondary structure folding algorithms
predict the existence of connected networks of RNA sequences
with identical structure. On such networks, evolving popula-
tions split into subpopulations, which diffuse independently in
sequence space. This demands a distinction between two
mutation thresholds: one at which genotypic information is
lost and one at which phenotypic information is lost. In
between, diffusion enables the search of vast areas in genotype
space while still preserving the dominant phenotype. By this
dynamic the success of phenotypic adaptation becomes much
less sensitive to the initial conditions in genotype space.

To explain the high fixation rate of nucleotide substitutions in
a population, Kimura (1) argued that the vast majority of
genetic change at the level of a population must be neutral
rather than adaptive. Sewall Wright's reaction to Kimura's
point was politely neutral (ref. 2, p. 474): "Changes in wholly
nonfunctional parts of the molecule would be the most fre-
quent ones but would be unimportant, unless they occasionally
give a basis for later changes which improve function in the
species in question which would then become established by
selection." Today, in view of the data generated by compar-
ative sequence analysis, the surprise is no longer over the
existence of neutrality but over how little conservation there
is at the sequence level (3-6). This makes Wright's point even
more pertinent. How are we to imagine the relation between
neutral evolution and adaptation? An answer to this question
requires a model of the relationship between genotype and
phenotype. Such a model is available for RNA secondary
structure. The latter can be computed from the sequence by
means of procedures based on thermodynamic data which
have become standard in the past 15 years (7, 8). Secondary
structure covers the major share of the free energy of tertiary
structure formation and is frequently used to interpret RNA
function and evolutionary data. As such, the case is a quali-
tatively important one.

Robust Properties of RNA Folding

The mapping from sequences to secondary structures is many
to one for two reasons: (i) there are many more sequences than
secondary structures, and (ii) some structures are realized
much more frequently than others (9). Call two sequences
connected if they differ by one or at most two point mutations.
A neutral network, then, is a set of sequences with identical
structure so that each sequence is connected to at least one
other sequence. The crucial point for our discussion comes
from a recent study of the standard secondary structure
prediction algorithm (9), which showed that such networks
exist and that for frequent structures these networks percolate
through sequence space. For example, starting at a sequence
that folds into a tRNA structure, it is possible to traverse
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sequence space along a connected path, thus changing every
nucleotide position without ever changing the structure. More-
over, due to the high-dimensionality of sequence space, net-
works of frequent structures penetrate each other so that each
frequent structure is almost always realized within a small
distance of any random sequence. These features seem to be
intrinsic to RNA folding, since they are insensitive to whether
the folding algorithm is thermodynamic, kinetic, or maximum
matching (E. Bornberg-Bauer, M. Tacker, and P. Schuster,
personal communication) or whether one considers one min-
imum free energy structure or the entire Boltzmann ensemble
(10).

A Simple Model for Test Tube Evolution

To assess the consequences of these properties for molecular
evolution, we study a model in which the replication rate
(fitness) of an RNA sequence depends on its secondary
structure. Our folding procedurel is a speed-tuned implemen-
tation of the Zuker-Stiegler algorithm (8). The model consists
of a population of RNA sequences of fixed length v, which
replicate and mutate in a stirred flow reactor. RNA popula-
tions manageable in the computer or in the laboratory are tiny
compared to the size of the sequence space (4v), and a correct
simulation must, therefore, resort to stochastic chemical re-
action kinetics (11, 12). A selection pressure is induced by a
dilution flow, which adjusts over time to keep the total RNA
population fluctuating around a constant capacity N (11, 13).
This setup mimics Spiegelman's serial transfer technique (14),
where sequences with a replication rate above (below) the
average increase (decrease) in concentration.
When a sequence undergoes a replication, each base is

copied with fidelity 1 - p. The overall replication rate of an
individual sequence is defined to be a function of the distance
(9, 30) between its secondary structure and a predefined target
structure. Here the target structure is the tRNAPhe cloverleaf,
but the structure of any randomly chosen sequence would do
as well. This corresponds to the artificial in vitro selection of a
structure with some desired function or affinity to a target
(14-21). A similar situation, though with proteins and not
RNA, occurs in the affinity maturation of the immune re-
sponse (22). In both artificial and natural selection there are
two sources of neutrality: one is the sequence (genotype) to
structure (phenotype) mapping, and the other is the structure
to replication rate (fitness) mapping. It is the former source
that is central to this discussion. Notice, thus, that in the
present model the second source of neutrality arises only for
sequences whose structures differ from the target.
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Genotypic vs. Phenotypic Error Threshold

We first consider the case where the initial population consists
of, say, N = 1000 copies of the tRNAPhe sequence (v = 76).
Since that sequence folds into the target structure, no evolu-
tionary optimization will take place. In this case, the sequences
that are most relevant to the population dynamics are those
with structure-distance zero-i.e., those that fold exactly into
the target structure. At a single-base error rate ofp = 0.001 the
population first broadens in sequence space as mutants accu-
mulate and then starts drifting away and the initial sequence
is lost. Any two populations that are separated in time by =500
generations do not have a single identical sequence in com-
mon. The picture in structure space looks entirely different;
the distribution of structures present at any time is firmly
dominated by the original tRNA phenotype. In previous
studies of evolutionary dynamics, which did not involve a
genotype/phenotype model, the loss of sequence information
at a critical error rate was identified with the loss of the
dominant phenotype (23). In the presence of percolating
neutrality, however, all sequence information is lost at any
error rate different from zero. Yet there is another threshold
that we term the phenotypic error threshold,pc, beyond which
the dominant phenotype is lost as well. That is when evolu-
tionary adaptation breaks down. A linear extrapolation of the
relation between the fraction of sequences that have the tRNA
phenotype and the mutation rate (correlation coefficient,
0.98) gave an estimate of Pc = 0.0031. This is consistent with
findings that for Pc = 0.003 the tRNA phenotype remained
present in the population for the length of the simulation (1460
generations), whereas for Pc = 0.0035 it disappeared shortly
after the initiation of the simulation (within 200 generations).

Diffusion in Sequence Space

Fig. 1A shows the mean-squared displacement of the center of
the RNA population in sequence space. It is linear for short
times. This indicates that the aggregate population undergoes
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Brownian motion; the effects of mutations on the center of the
population cancel out on average, and the overall displacement
is generated by the variance. For a flat landscape, where every
sequence has the same replication rate a, the diffusion con-
stant D can be approximated as follows. A simple model of our
flow reactor consists of repeated events in which the replica-
tion of a randomly chosen sequence is followed by the removal
of a randomly chosen sequence (24), thereby keeping the total
population exactly constant. This is a first-order Markov
process with reflecting barriers for the number nia of nucle-
otides of type a at position i. The diffusion coefficient for a
population ofN sequences of length v replicating at rate a with
mutation frequency p per nucleotide is Do = (av/N)I<,(8n?j),
where 6 is the change in the state variable upon one replication
and removal event. The calculation yields Do = a{(2/3)p(4F
- 1) + 2(1 - F)}, where F = (1/N2)1n,,. is the probability
that two randomly chosen sequences have the same nucleotide
type at position i. The stationary F can be obtained without
knowing the full solution of the stochastic process. A calcu-
lation along the lines in Ewens (ref. 25, p. 81) yields for this
process F = (3 + Np)/(3 + 4Np) and, therefore, Do = (6avp[1
+ 1/N])/(3 + 4Np), or

5avp
3+4Np-

For small mutation rates, the diffusion coefficient D on the
structure-dependent landscape can be approximated by D =

DOA, where A denotes the average fraction of neutral mutants
for the dominant structure (Fig. 1B).
The diffusion of finite populations in sequence space ob-

served here is a phenomenon that can be related to Kimura's
neutral theory (26). The latter stresses a different aspect: the
number of nucleotide substitutions that reach fixation per
generation, k, also referred to as the rate of evolution. The
theory yields k = apvA, independent of population size, and for
small p (p s 0.0005) we find our model to agree with this very
well. Thus, D = 6k/(3 + 4Np).
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FIG. 1. Diffusion in sequence space. The center C(t) of a population at time t is a real valued consensus vector specifying the fraction xi0(t)
of each nucleotide ae{A,U,G,C} at every position i. (A) Mean-squared displacement of the center, A(T)2, as calculated from one simulation by
averaging the expression A(t,T)2 = [C(t + T) - C(t)]2 = , + T) - Xia(t)]2 over t for fixed lag r, v = 76, N = 1000,p = 0.00025, target structure
is the secondary structure of tRNAPhe. Curve II shows A(T)2 in the T range from 0 to 60 reactor time units (upper abscissa, right ordinate). Curve
I zooms into the time interval [0, 1] of curve II (lower abscissa, left ordinate). Due to the finiteness and the geometry of sequence space, the
displacement must eventually level off to (3/4)v (here 57), corresponding to the average distance between two random sequences. (B) Dependency
of diffusion coefficient D on the mutation rate per nucleotide,p. D = lim.od A(T)2/dT is calculated as the slope of the mean-squared displacement.
Each data point (0) is calculated from one computer simulation with N = 1000, which is run for at least 20 time units (a time unit corresponds
to 146 generations) to allow for convergent averaging of the squared displacement. Solid line is the theoretical Do for a flat landscape where every
sequence is assumed to replicate with the same rate as sequences with tRNA structure in our structure-dependent simulations; O, simulations with
our flow reactor on the flat landscape. ---, DoA, where A = 0.3 is the estimated fraction of neutral mutants.
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FIG. 2. Population structure in sequence space. The support of a population in sequence space is the set of sequences present in at least one
copy. The population support can be pictured in two dimensions using some theorems from distance geometry (27). We compute the metric ma-
trix M with entries mij = (d2 + d2 - dlj)/2, where dij is the Hamming distance between sequences i and and 0 is the center of mass of the support.
Sequences are expressed in principal axes coordinates by diagonalizing M. Only the components corresponding to the largest two eigenvalues are
kept, yielding a projection onto the plane that captures most of the variation. Dots represent a static snapshot of N = 2000 individuals after 135
time units replicating with p = 0.002. Among the 2000 individuals, 631 are different and among them 301 fold into different structures. To help
correct for the distortions of the projection, the dots are connected by the edges of the minimum spanning tree. Edges connect closest points. Red
(blue), Hamming distance less (more) than 6; dot size large (small), more (less) than four copies in the population; yellow (green), sequences that
do (do not) fold into the tRNA target structure.

In a laboratory setting, sequencing a diverse population
yields a virtual consensus sequence. The squared distance
between the consensus sequences at different times divided by
the time interval yields an estimate for the diffusion coeffi-
cient. If the error rate is known, the average degree of
neutrality can be determined. For example, from the D(p) data
in Fig. 1B we obtain a A of 0.27 + 0.04 for smallp. This agrees
with independent calculations based on a random sample of
sequences generated by inverse folding (9) of the tRNA
structure (0.28 + 0.06).

The Structure of Sequence Populations

Replication, mutation, and selection on an extended neutral
network induce a clustered structure of the population in
sequence space (Fig. 2). Analytical calculations by Derrida and
Peliti (28) have predicted this effect for the extreme case where
every sequence folds into the same structure (flat landscape).
Randomly amplified neutral sequences become origins of
temporarily localized clouds of related mutants. Clusters are
defined with respect to a threshold Hamming distance d using
the single-linkage method (nearest-neighbor joining) (29). For
the average number of clusters, Derrida and Peliti derived a
l/d scaling law for small d. On the neutral tRNA network, we

find a scaling relation of 1/dc with 1.7 < a < 2 depending on
population size and error rate. The population structure,
therefore, reflects qualitatively a flat landscape, but there is
less fragmentation on average as a result of the network
boundaries.

This population structure has profound consequences for
evolutionary adaptation. All sequences compete for concen-
tration shares in the chemostat, while at the same time the
population splits into well-defined subpopulations in the ab-
stract high-dimensional sequence space. These subpopulations
share the same dominant phenotype but undergo independent
diffusion on the currently prevailing neutral network, thereby
exploring vastly different parts of sequence space simulta-
neously. Connected neutrality endogenously induces a divide
and conquer type of parallel local search. Yet selection is
nonlocal in sequence space; once an entry point to a neutral
network of a more favorable phenotype has been found, the
population is quickly amplified around that point by adaptive
selection.

Implications for Adaptation

The implications of neutrality for adaptive evolution are shown
in Fig. 3, where we monitor the evolutionary progression

Evolution: Huynen et al.
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FIG. 3. Evolutionary optimization. A flow reactor with capacity N = 1000 is initialized with that many copies of a random sequence of length
v = 76. The mutation rate isp = 0.001 and the target secondary structure is the tRNAPhe cloverleaf, the replication rate function isA(d) = 1.O6046d,
where d is the tree-edit distance (9) to the target structure. The population average of the distance to the target is plotted against time (solid line)
for a specific interval of the entire run (Inset). Superimposed series of dots render the evolution of the population structure over time. Dots at one
time epoch are a one(!)-dimensional projection (see Fig. 2 legend) of the population of sequences present in >10 copies at that time. Collecting
all time slices yields a unique glimpse of the cluster dynamics. The same qualitative picture of punctuated equilibria occurs with all parameter settings
and random target structures we tried for both linear and exponential fitness functions A(d).

toward our tRNA target, starting from a homogeneous pop-
ulation consisting of a single random sequence. The average
structure distance from the target shows plateaus separated by
transitions. As opposed to the previous example (in which the
target phenotype was present at the outset), every plateau is
now characterized by more than one dominant phenotype
because of the degeneracy introduced by the structure-
distance function. From ref. 9 we know, however, that almost
any structure assumed by a random sequence has its own
extended neutral network. A diffusion process of the kind
described above for the tRNA case will occur on the neutral
network belonging to any such structure. Diffusion enhances
the likelihood that a region in sequence space is found where
the network of the currently dominant structure comes close
to the network of a better structure. In this contact region a
selection-induced transition will occur like those seen in Fig.
3. We believe, therefore, that the scenario of Fig. 3 is typical
even for the (unlikely) case of a fitness function, which would
assign a unique value to each structure.
Algorithms for folding RNA sequences into secondary

structures predict extended connected networks of sequences
with identical structure. The actual existence and extension of
such networks must be assessed empirically. Such assessment
pending, the present work predicts striking consequences for
adaptation, based on a fairly realistic model of test tube
evolution. (i) Finite populations diffuse along neutral net-
works. After a sufficiently long period of time (set by the
diffusion coefficient), all sequence information is lost, yet the

phenotype is conserved. A similar point has been made by
Wagner and Gabriel (31). It is the maintenance of a pheno-
type, not of a genotype, that defines the mutation threshold
beyond which adaptation breaks down. (ii) On a single neutral
network, the population splits into well separated clusters. A
population is not a single localized quasispecies in sequence
space (23) but rather a collection of different quasispecies.
Each undergoes independent diffusion, while all share the
same dominant phenotype. (iii) Neutral networks of different
structures are interwoven. While drifting on a neutral network,
a population produces a fraction of mutants off the network
and thereby explores new phenotypes. A selection-induced
transition between two structures occurs in regions of se-
quence space where their networks come close to one another.
The independent diffusion of subpopulations increases the
likelihood that a population encounters such transition re-
gions. The success of an evolutionary search process for a
target phenotype is, therefore, substantially less dependent on
the location in sequence space of the initial population. (iv)
The model invites us to use care when characterizing the
ruggedness of fitness landscapes by their correlation statistics.
In high-dimensional spaces, a small correlation length indicat-
ing a very rugged landscape with many local optima tells little
about their connectedness. When connected, local optima are
no longer local, and this is reflected in the dynamics of
adaptation.

Conversations with Peter Schuster, Leo Buss, Robert Dorit, and
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