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Formalized rules for protein-protein interactions have
recently been introduced to represent the binding
and enzymatic activities of proteins in cellular signal-
ing. Rules encode an understanding of how a system
works in terms of the biomolecules in the system and
their possible states and interactions. A set of rules
can be as easy to read as a diagrammatic interaction
map, but unlike most such maps, rules have precise
interpretations. Rules can be processed to automati-
cally generate a mathematical or computational model
for a system, which enables explanatory and predic-
tive insights into the systemís behavior. Rules are
independent units of a model specification that facili-
tate model revision. Instead of changing a large number
of equations or lines of code, as may be required in
the case of a conventional mathematical model, a
protein interaction can be introduced or modified
simply by adding or changing a single rule that repre-
sents the interaction of interest. Rules can be defined
and visualized by using graphs, so no specialized
training in mathematics or computer science is nec-
essary to create models or to take advantage of the
representational precision of rules. Rules can be
encoded in a machine-readable format to enable elec-
tronic storage and exchange of models, as well as
basic knowledge about protein-protein interactions.
Here, we review the motivation for rule-based model-
ing; applications of the approach; and issues that
arise in model specification, simulation, and testing.
We also discuss rule visualization and exchange and
the software available for rule-based modeling.

Introduction
Many diseases are caused by molecular changes that affect signal-
transduction systems, and some of these diseases, such as
chronic myelogenous leukemia, can now be treated by drugs
that target signaling proteins, such as kinases (1). Thus, in addi-
tion to our curiosity about the fascinating mechanisms that cells
use to respond to signals, there is practical motivation to better
understand the processes of cellular signaling, in which protein-
protein interactions play a central role. Indeed, we would like to
make accurate predictions about the functional roles of proteins
and the effects of modifying the interactions of proteins in par-

ticular systems. Our ability to make such predictions is a mea-
sure of our basic understanding of molecular cell biology and is
likely to have practical consequences in drug discovery (2, 3).

The behavior of a signal-transduction system depends on dy-
namic interactions among its proteins (4, 5). The combined ef-
fects of these interactions are difficult to predict from intuition
alone. When intuition is insufficient, a mathematical model is
often useful for acquiring a quantitative and predictive under-
standing of a complex dynamical system, and mathematical
modeling is being increasingly used to aid in studies of cellular
signaling (6, 7). Models have now been developed and tested
for signaling events mediated by several well-studied cell sur-
face receptors, including the epidermal growth factor receptor
(EGFR) (8) and two of the antigen-recognition receptors of the
immune system (9).

However, current models are still far from capturing all of the
relevant mechanistic details of signal-transduction systems that
must be considered to provide realistic and complete pictures of
how these systems work (10). In particular, models often fail to
account for the complexities of protein-protein interactions, such
as how these interactions depend on contextual details at the lev-
el of protein sites. Also, few models account for the enormous
number of possible posttranslational covalent modifications of
proteins and for formation of all the possible protein complexes
(11). A major reason for this shortcoming is the strain on con-
ventional modeling approaches caused by the combinatorial po-
tential of protein-protein interactions. New modeling approaches
that address this problem involve the use of rules to represent
protein-protein interactions. (Rules are also useful for represent-
ing other types of biomolecular interactions, but we will focus
on protein-protein interactions for purposes of discussion.) The
introduction of rules greatly eases the task of specifying a model
that incorporates details at the level of protein sites. A rule—
such as “ligand binds receptor with rate constant k whenever lig-
and and receptor have free binding sites”—describes the features
of reactants that are required for a particular type of chemical
transformation to take place. Rules simplify the specification of
a model when the reactivity of a component in a system is deter-
mined by only a subset of its possible features. Here, we review
rule-based modeling of signal-transduction systems.

Modeling Goals and Challenges
What do we expect from a model? A model should incorporate
enough details to make testable predictions about quantities that
can be measured and controlled in experiments. Whenever pos-
sible, the parameters of a model should have a physical rather
than phenomenological basis, such that parameters are indepen-
dent of system behavior. A model should provide insights and
guide experimentation by revealing the logical consequences of
knowledge and assumptions about the mechanistic details of a
system, including the proteins in the system and their binding
sites, enzymatic activities, and sites of posttranslational modifi-
cation. The development of models at this level of resolution is
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justified by current and emerging capabilities for characterizing
systems at the level of protein sites and for monitoring the dy-
namics of multiple readouts of protein interactions (12–16).
Thus, although other levels of abstraction may prove useful, we
are most interested in models with physicochemical parameters
that capture details about proteins and their interactions at the
level of protein sites, which we take to include motifs, domains,
and subunits.

General features of proteins and protein-protein interactions.
Protein-protein interactions triggered by a signal can lead to
various covalent posttranslational protein modifications, such as
phosphorylation, ubiquitination, acetylation, or methylation (4,
5, 17). The effect of such modification, which is often re-
versible, may be a change in a protein’s enzymatic or binding
activity, location, or rate of turnover. Signal-regulated protein-
protein interactions also mediate the assembly of heterogeneous
protein complexes. A common effect of complex formation is
an increase in the activity and specificity of an enzyme through
colocalization of the enzyme with a substrate (18, 19). Signal-
induced protein complexes are also known to regulate enzymat-
ic activity through allosteric mechanisms (20, 21).

The enzymatic and binding activities of proteins involved in
signaling tend to be localized to modular domains (19, 22),
such as the protein tyrosine kinase (PTK) and Src homology 2
(SH2) domains of a Src family kinase. Proteins may also con-
tain smaller parts, like immunoreceptor tyrosine-based activa-
tion motifs (ITAMs) (23), that are sites of modification or bind-
ing or both (24). A signaling protein generally has multiple do-
mains (25, 26) and binding sites (and binding partners, which
may have overlapping specificities), as well as multiple sites
subject to posttranslational modifications (which may include
the binding sites themselves) (27) (Fig. 1). Such multiplicity
may permit many combinations of modification and binding
events, which can be difficult to track in a model (11, 28, 29).

Combinatorial complexity. As a modeler considers more
proteins and protein sites of a signal-transduction system, the
number of possible protein complexes and combinations of
protein modifications tends to increase exponentially. More-
over, hundreds to thousands of chemical species may be gen-
erated by the interactions of only a few proteins (28, 30–33).
Thus, a signal-transduction system can be quite large when
viewed as a chemical reaction network. We refer to this po-
tential for large size as “combinatorial complexity.”

One source of combinatorial complexity, to which we have
already alluded, is multisite protein modification (27). Consider
the EGFR. According to a recent review (34), at least nine ty-
rosines in EGFR are phosphorylated during signaling (Fig. 2).
Phosphorylation of these tyrosines is mediated by a nonreceptor
PTK, Src, or EGFR itself when the PTK domain of one EGFR
in a ligand-induced receptor dimer catalyzes phosphorylation of
the paired EGFR in the dimer. As a simplification, let us as-
sume that only one of nine tyrosines of EGFR can be phospho-
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Fig. 1. Frequency distribution of multisite protein phosphorylation.
This plot is based on information about phosphorylation of serine
(S), threonine (T), and tyrosine (Y) residues of 1663 proteins doc-
umented in version 3.0 of the Phospho.ELM database
(http://phospho.elm.eu.org/). The vertical axis indicates the frac-
tion of proteins; the horizontal axis shows the number of phos-
phorylation sites. More than half the proteins are phosphorylated
at two or more sites.
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Fig. 2. Multisite phosphorylation of EGFR. The nine tyrosine
residues indicated here are phosphorylated by EGFR or Src (34).
Phosphorylation of particular sites regulates interactions of EGFR
with intracellular binding partners, eight of which are indicated in
the figure [including PLC-γ (phospholipase Cñγ)]. These binding
partners bind EGFR through their SH2 and/or phosphotyrosine
binding (PTB) domains. Other tyrosine residues of EGFR are also
subject to phosphorylation, and additional binding partners of
EGFR are known (14, 16). Numbering of residues is based on the
full-length sequence of EGFR.
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rylated at a time. Under this assumption, there are still 10 dif-
ferent phosphoforms of EGFR and 55 distinct combinations of
these phosphoforms for a receptor dimer. These numbers grow
to 512 and 131,328 if more than one tyrosine of EGFR can be

phosphorylated at a time. The number of phosphorylation states
relevant for signaling in particular contexts is unknown, and it
seems unlikely that all states are functionally relevant or even
realized. Indeed, some phosphorylation states may be prohibited
(35). However, a modeler may wish to consider the full spec-
trum of possible phosphorylation states to assess their relevance
in an unbiased manner. The states included in a model will de-
pend on the questions asked and the opportunities a modeler
may have to make meaningful simplifications.

Another source of combinatorial complexity is multivalent
binding. Consider the death domain (DD), a protein interaction
domain found in many proteins (36, 37). A model of a complex
of DDs of the death receptor Fas (also called CD95) and the Fas-
associated protein with death domain (FADD) are shown in Fig.
3 (38). The model, which is based on interfaces seen in crystal
structures (39, 40), predicts that the Fas and FADD DDs form a
hexamer through three interfaces. In fact, interactions through
the three interfaces can generate a distribution of homo- and het-
erooligomers: 6 homodimers, 6 heterodimers, 20 homotrimers,
66 heterotrimers, and so on. Without regard for physicochemical
limitations, the reaction network implied by the DD-DD interac-
tions is of infinite size. Of course, the actual distribution of
oligomers will be limited by a number of factors, such as protein
copy numbers, binding affinities, steric effects, and cooperativi-
ty. However, to elucidate how these factors shape the distribu-
tion, a modeler may wish to account for all possibilities.

Dynamical models that account comprehensively for the
possible species in a system can help determine which of these
species are relevant for signaling, under what conditions, and
why. In an analysis of such a model (41), Faeder et al. (42)
found that only a small fraction of the possible species in the
model is effectively populated, although there are enough pro-
teins to populate all species in the model at a nontrivial level.
When parameters that affect system dynamics (such as protein
concentrations) change, the populated species can shift dramati-
cally. These shifts are not predicted by reduced models that omit
species. Other theoretical analyses also indicate that the popu-
lated species in a system are influenced by parameters that
affect system dynamics (43–45). Thus, if certain species of a
system appear to be favored, as in temporal ordering of phos-
phorylation events (35), a dynamical explanation might be sug-
gested and evaluated with the aid of a model that has the capa-
bility to predict how the favored species will be affected by
perturbations of system dynamics. A model that has such a
capability is one that accounts for all possible species.

Approaches to Model Specification
Combinatorial complexity raises a series of problems when one
is modeling signal-transduction systems as chemical reaction
networks. One problem is model specification, the task of stat-
ing one’s knowledge and assumptions about a system in a way
that enables mathematical analysis.

Conventional approach to model specification. The textbook
approach to modeling a biochemical system is to draw a reac-
tion-scheme diagram depicting the chemical species and reac-
tions in the system and then to translate this diagram, which is
essentially an organized layout of a list of reactions, manually in-
to a set of equations (46), such as a system of coupled ordinary
differential equations (ODEs). Reaction-scheme diagrams that
have been drawn for signal-transduction systems, some of which
are quite large (47, 48), are based mostly on knowledge and as-
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Fig. 3. Multivalent binding of the DD components of Fas and
FADD. (A) View of a three-dimensional model of a 3:3 heterohex-
amer of the DDs derived from knowledge-based docking of ho-
mology models of the individual DDs (38) [reproduced by C.-S.
Tung, Los Alamos National Laboratory]. The configuration of DDs
is planar in this complex. (B) A schematic model of the same
complex indicating that the DDs interact through three types of in-
terfaces. The type I and II interfaces are seen in crystal structures
of other protein complexes composed of members of the DD su-
perfamily (39, 40). These interfaces were used to guide docking.
The type III interface is a prediction of the model (38). Binding of
Fas and FADD DDs through the different interfaces can produce
a variety of protein complexes.
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sumptions about protein-protein interactions. An example of a
simple scheme is provided in Fig. 4. A drawback of a reaction-
scheme diagram is that it obscures the underlying protein-pro-
tein interactions by not explicitly representing them. Still, a dia-
gram is far easier to interpret than the corresponding equations,
and the readability of a diagram can be improved by using
iconographic annotation. For example, Fig. 5 shows how the
scheme of Fig. 4 can be made more readable with the notations
of Kitano et al. (49) and Faeder et al. (50). In some cases, a reac-
tion scheme can serve the purpose of model specification well.

Software tools have been developed to help biologists to draw
reaction-scheme diagrams, to
translate these diagrams into
mathematical equations, and to
perform model-based calcula-
tions by using standard methods
of scientific computing (http://
sbml.org/). Examples include
CellDesigner (51) and the Virtual
Cell (52). However, these tools
are useful only if the textbook
approach to model specification
can be applied. In many cases,
combinatorial complexity makes
this approach prohibitively time-
consuming and error-prone, even
with the aid of powerful software
tools for drawing reaction-
scheme diagrams (53).

Limits of conventional model-
ing. Although the conventional
approach to model specification
is problematic for signal-trans-
duction systems, which are
marked by combinatorial com-
plexity, it is nevertheless the
approach most often used to
specify models for these sys-
tems, but at a cost. Models de-
rived in this way are invariably
based on assumptions, which
may be difficult to justify, that limit the chemical species and
reactions considered to a fraction of those possible. An example
is the model of Kholodenko et al. (54) for EGFR signaling,
which has been extended by a number of researchers (55–58).
This model is based on mechanistic assumptions that result in a
selective focus on only a fraction of the protein complexes and
phosphorylation states that could potentially arise from the pro-
tein-protein interactions considered in the model. For example,
one assumption is that ligand-induced dimers of EGFR are un-
able to dissociate when receptors are phosphorylated, which
seems unlikely. This assumption arises from a description of
signaling events as an ordered pathway, which is consistent with
the way this system is presented in typical diagrammatic inter-
action maps, but inconsistent with rapidly reversible reactions
and multiple branching possibilities. Lifting this and other as-
sumptions causes a combinatorial explosion in the number of
possible reactions and species (59), which makes manual model
specification impractical.

Rule-based approach to model specification. Given that pro-
tein-protein interactions can generate large reaction networks,

what can be done to capture the essence of these interactions with-
out ignoring their combinatorial complexity? To address this ques-
tion, a number of research groups have suggested, in one form or
another, a new starting point for model specification. The basic
idea is to specify protein-protein interactions as rules that serve as
generators of chemical reactions (or reaction events) and species. A
rule specifies the features of proteins that are required for or affect-
ed by a particular protein-protein interaction. A rule can be viewed
as a definition of a reaction class, a generalized reaction. The rele-
vant features of an interaction can often be identified, at least to a
first approximation, because of the modularity of protein catalytic

and interaction domains (19).
In one approach to rule-

based modeling (60, 61),
which is implemented in the
BioNetGen software pack-
age, rules are used as genera-
tors of chemical species and
reactions as follows. A rule
comprises patterns for recog-
nizing reactants, a mapping
of reactants to products, and
a rate law. Given a set of ini-
tial chemical species, repre-
sented with text strings or
graphs, each rule is used to
identify, through pattern
matching, the species that
have features required to un-
dergo the transformation
from reactants to products
specif ied in the rule. Each
transformation is performed
to obtain product species and
the transformation is as-
signed a rate law, the one
associated with the corre-
sponding rule. By conven-
tion, it is assumed that the
interaction represented in a
rule is independent of fea-

tures not explicitly indicated. Thus, multiple species may qualify
as reactants in a type of reaction defined by a rule, and multiple
reactions may be generated that have the same characteristic rate
law, although parameters of the rate law may need to be adjusted
for a variety of contextual reasons (60, 62). The exact number of
reactions generated by a rule depends, in general, on the entire
set of rules in which the rule of interest is embedded and also on
the set of species to which rules are initially applied. The species
and reactions may either be generated in advance of a simula-
tion, the “generate-first” approach, or during the course of a
simulation, the “on-the-fly” approach (60, 62, 63). With the
generate-first approach, a network of species and reactions is
generated through iterative application of the rules until a speci-
fied, arbitrary termination condition is satisfied or no new reac-
tions are generated (60). With the on-the-fly approach, reactions
are generated as new species become populated, which may be
advantageous when the network is large or unbounded, as is the
case when rule application is nonterminating in the absence of
an arbitrary halting condition (60, 62). An example of a rule for
which rule evaluation is nonterminating is provided in Fig. 6.

R E V I E W

RP2RP1

Grb2

RP1-G RP2-G

RP2-G2

vp1 vp2

vd1 vd2

Grb2 Grb2

vp3

vd3

Grb2 Grb2

v-1v+1 v-2v+2

v-3v+3

R2

Fig. 4. A reaction scheme. The scheme includes seven chemical
species, labeled R2, RP1, RP2, Grb2, RP1-G, RP2-G, and RP2-
G2, and 12 reactions, labeled vp1, vp2, vp3, vd1, vd2, vd3, v+1, vñ1,
v+2, vñ2, v+3, and vñ3. Such notation is typical. Each label must be
defined before this reaction scheme can be understood. Also, to
derive a mathematical model from this scheme, a rate law must
be assigned to each reaction.
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Applications of rule-based modeling and first software tools
for model specification. To date, rule-based modeling has been
applied to only a handful of systems, but there is an increasing
awareness of the need for such models. In considering whether
a particular application represents an example of a rule-based
model, we ask the following question: Are the chemical species
and reactions in the model drawn from a fixed user-specified
list or are they generated automatically in some way by a com-
puter algorithm from a set of rules? The latter represents what
we call rule-based models. The programs used to generate rule-
based models can be divided into two categories: those that are
specific to a particular application and those that generalize to a
range of problems.

Rule-based modeling has been applied to bacterial chemo-
taxis mediated by the Tar-receptor complex [for reviews of the
biology, see (64, 65)]. The complexity of models for receptor-
mediated phosphorylation events (66) and the aggregation of
receptors (67) led Bray and co-workers to develop two general-
purpose computer programs, OLIGO (68) and STOCHSIM (69).
These programs divide the modeling problem into two parts—
formation of multisubunit signaling complexes, and phosphory-
lation cascades.

OLIGO uses graphs to represent multiprotein complexes,
with each node representing a protein and each edge represent-
ing a noncovalent interaction between two proteins. A user
draws a contact graph with the help of a graphical user interface
(GUI). OLIGO then generates a reaction network by disassem-
bling the complex in all possible ways. For example, the six-
subunit complex that is active in Tar-mediated signaling is de-
composed into its three protein constituents, and in the process,
a network of 14 reversible binding reactions is generated. A
subsequent program, OLIGO-D (43), generates a network in the
opposite order, starting with a list of proteins and binding
sites. Both programs generate networks on the basis of the
assumption that rings form whenever possible. This simplifi-
cation prevents polymerization through chain propagation.
Although this assumption may be valid in some cases, there
are cases where extensive oligomerization of signaling pro-
teins occurs (70). A further and more severe limitation of
these software tools is that regulation of protein interactions
through covalent posttranslational modif ications, such as
phosphorylation, cannot be considered.

Use of OLIGO-D provided a qualitative explanation for how
signaling networks can exhibit a decrease in signaling when
complex-forming proteins are overexpressed, a phenomenon we
will refer to as high-dose inhibition. Bray and Lay (43) found
that bridging subunits that connected separate parts of a com-
plex were particularly likely to exhibit such effects, but also
showed that any subunit with multiple bonds to a complex
could exhibit high-dose inhibition if the binding constants in the
network were optimized for such behavior. Levchenko et al.
(44) modeled high-dose inhibition for the particular contact ge-
ometry of a scaffold protein that binds kinases of a mitogen-ac-
tivated protein (MAP) kinase cascade. Although this model was
constructed manually, a Mathematica-embedded biochemical
modeling package called Cellerator (71), an early example of
software for rule-based modeling, was later used to generate au-
tomatically and to solve the differential equations for a general-
ized model of kinase-scaffold interactions (72). Specific func-
tions (rules) were written to generate the species and reactions
for scaffolds and scaffold dimers with various numbers of bind-

ing sites and other properties. The effects of previous assump-
tions made to restrict network complexity, such as a rapid sec-
ond phosphorylation step for kinase activation, were investigat-
ed and found to have a quantitative, but not qualitative, effect
on the observed behavior of the system. In particular, the scaf-
fold concentration for optimal downstream activation was found
to be insensitive to modeling assumptions.

STOCHSIM (73, 74), the other main modeling package devel-
oped by Bray and co-workers, is complementary to OLIGO in
that it allows detailed modeling of the kinetics of covalent mod-
ifications, but has fairly severe limitations for modeling com-
plex formation. Further discussion of STOCHSIM’s design and
capabilities is provided below. An interesting feature of
StochSim is that it can be used to consider nearest-neighbor in-
teractions on regular two-dimensional lattices. This capability
was developed to study lateral interactions among receptors in a
static configuration (75, 76).

Goldstein and co-workers have developed a detailed model
of early events in signaling by FcεRI (41), the high-affinity re-
ceptor for immunoglobulin E (IgE) antibody, which plays an
important role in allergic reactions. The model considers phos-
phorylation and binding events initiated by receptor aggregation
and encompasses 354 chemical species and 3680 chemical re-
actions, but it is based on only 25 parameters (21 rate constants
and 4 protein concentrations). This economy of parameters is
achieved by using reaction rules describing conditional protein
binding and phosphorylation events to generate the species and
reactions that arise in the network model. Each reaction gener-
ated by a given rule uses the same rate constant. Thus, reaction
rates are assumed to depend on a subset of the features of reac-
tant species. A typical assumption is that the rate constant for
ligand-receptor binding is not affected by the cytoplasmic state
of the receptor. Analysis of this model has provided a number of
insights into how the rate constants and affinities that govern
particular interactions within receptor aggregates affect the out-
come of signaling (41). For example, it was found that the mul-
tiple requirements for transphosphorylation within a receptor
aggregate enable the system to discriminate effectively between
ligands that bind with short and long half-lives (9), an effect
known as kinetic proofreading (77).

Chakraborty and co-workers have developed two distinct
models of early events in T cell receptor (TCR) signaling that
have led to interesting insights and hypotheses about the effects
of spatial organization (45) and cooperative interactions (78) on
signal amplification. In the model of Lee et al. (45), the junction
between a T cell and a stimulatory antigen-presenting cell is
represented by a three-dimensional lattice on which various
proteins involved in early signaling events diffuse and react. A
set of interaction rules based on a detailed reaction scheme is
used to determine which biochemical events can occur between
a given pair of particles. At each simulation step, one of three
possible update moves is selected at random with equal probabil-
ity: diffusion of a molecule or complex, association or dissocia-
tion involving a pair of molecules chosen at random, or a state
transition involving a pair of molecules chosen at random. This
method avoids the problem of explicitly generating species and
reactions but is restrictive in that the computational cost scales
with the number of particles squared, limiting simulations to
relatively small numbers. A more severe problem that is specific
to this model is that although the model includes both reaction
and diffusion effects, little attempt is made to simulate the cor-
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rect rates of reaction and diffusion relative to each other or the
correct absolute rates of reactions. Because quantitative simula-
tions can be performed by using physically correct and computa-
tionally tractable methods (79), it might be interesting to do so to
see if conclusions inferred from the original model change.

A different, nonspatial model was used by Li et al. (78) to
model cooperative effects involving the TCR, its coreceptor CD4,

and its ligands [peptide–major histocompatibility complex
(MHC) complexes]. The model was designed to test the hypothe-
sis that low-affinity binding between MHC molecules bound to
endogenous (self) peptides could amplify signaling by a small
number of high-affinity peptide-MHC complexes containing
antigenic (foreign) peptides. The basic mechanism for coopera-
tive enhancement was proposed to be the formation of a pseudo-
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Fig. 5. Elaborations of the reaction scheme shown in Fig. 4. (A) A process diagram drawn according to the conventions of Kitano et
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dimer complex, in which a high-affinity bond between antigenic
peptide-MHC and a TCR acts as a scaffold to recruit a CD4
molecule, its constitutively associated molecule of the kinase
Lck, and a second peptide-MHC molecule, most likely bound to
endogenous peptide. The pseudo-dimer complex serves as an ef-
ficient machine for TCR activation, because TCRs that transient-
ly bind the free peptide-MHC in the complex come into close
proximity with the Lck, which phosphorylates TCR as the initial
step in TCR activation. Reaction rules are given that describe the
association and dissociation of these components, as well as
phosphorylation and dephosphorylation, up to hexameric com-
plexes (the size of the pseudodimer loaded with TCR), generating
a network of 741 distinct reactions. A special-purpose program
was used to generate the network, and dynamics were simulated
by using the Gillespie algorithm (80, 81). The model is construct-
ed and parameter values are chosen so as to favor the formation
of pseudo-dimer complexes only when high-affinity peptide-
MHC is present. Under these conditions, cooperative enhance-
ment of TCR signaling is observed at low densities of antigenic
peptide, and the strength of this enhancement depends strongly
on the affinity of interactions between TCR and the low-affinity
(endogenous) peptide-MHC, which suggests a possible biological
role for positive selection of TCRs that exhibit a relatively high
affinity for endogenous MHC. On the basis of new experimental
evidence, Krogsgaard et al. (82) have proposed a modification of
the pseudodimer model in which the second TCR is recruited to
the complex through its interaction with CD4, and it would be in-
teresting to see how this change might affect the behavior of the
network model.

Woolf and Linderman (83) used rules to model binary inter-
actions among sets of G protein–coupled receptors (GPCRs),
which they took to be in active or inactive states. Using Monte
Carlo methods, they determined how rules for GPCR dimeriza-
tion and changes of these rules affected the spatial distribution
of receptors on a two-dimensional grid and receptor signaling.
Using their rule-based models, they were able to make predic-
tions consistent with experimental measurements of receptor
clustering and second messenger signaling.

Haugh et al. (84) used a series of rule-based models to in-
vestigate mechanisms by which protein tyrosine phosphatases
(PTPs) might regulate signaling through their association with
membrane-bound receptors. Several cytosolic PTPs contain
SH2 domains that allow them to bind directly to phosphorylated
receptors. These interactions can increase PTP activity through
at least three mechanisms: (i) direct allosteric activation, (ii) in-
direct allosteric activation through phosphorylation of the PTP
by a receptor-associated kinase, and (iii) proximity to receptor
phosphotyrosine substrates. Haugh et al. (84) found that the re-
lation between PTP activity and receptor activation could be
tuned by alterations in the relative expression levels of proteins
that competed with PTPs for binding sites, leading to high-dose
inhibition (with respect to the degree of receptor activation) un-
der some conditions. The differential equations of the model
were generated by a special-purpose program. The model also
included algebraic equations, because Michaelis-Menten rate
laws were used to characterize the kinetics of phosphorylation
and dephosphorylation reactions with multiple substrates. These
equations can be avoided by using elementary reactions of the
Michaelis-Menten mechanism to model catalytic steps (85), at
the cost of increasing the size of the reaction network (86).

An important application of rule-based modeling has been to

examine the validity and implications of assumptions that have tra-
ditionally been made to limit the extent of combinatorial complexi-
ty. Conzelmann et al. (87) and Blinov et al. (59) have both devel-
oped rule-based versions of the EGFR signaling model originally
developed by Kholodenko et al. (54). Because the primary focus of
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Fig. 6. An example of a BioNetGen model specification, made up
of a single rule and set of two seed species, for which the itera-
tive rule evaluation procedure of Faeder et al. (60) and Blinov et
al. (61) is nonterminating. (A) The seed species, a free ligand
(oval) and a free receptor (box with rounded corners). Both the
ligand and receptor have two identical binding sites (circles). The
species are represented as graphs according to the conventions
of Faeder et al. (50) and Blinov et al. (61). (B) The rule, which is a
graph-rewriting rule, defines a class of irreversible bimolecular
association reactions in which the products are polymer-like
chains of ligands and receptors. The rule indicates that a bond
can form between a ligand with a free binding site and a receptor
with a free binding site if the ligand and receptor are not already
associated directly or indirectly. The plus symbol in the rule
serves to specify a molecularity of two for reactions generated by
the rule. (C) Reactions generated after two rounds of rule evalua-
tion. The first reaction is generated after one round of rule evalua-
tion. The product of this reaction is a 1:1 ligand-receptor aggre-
gate, a new species. The next round of rule evaluation generates
two new reactions, the products of which are two new species
(1:2 and 2:1 ligand-receptor aggregates). Each subsequent round
of rule evaluation generates at least one new reaction in which a
product is a new ligand-receptor aggregate composed of more
molecules than any aggregate previously generated. Thus, gen-
eration of all possible reactions implied by a rule for a protein-pro-
tein interaction is not always possible.
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Conzelmann et al. (86) was model reduction, which we discuss
elsewhere, we focus here on the efforts of Blinov et al. (59).

The rule-based version of the EGFR model was developed by
generalizing the individual reactions in the Kholodenko model
with the BioNetGen software package (88). Each reaction was
assumed to be a specific instance of an interaction that could be
expressed more generally as a reaction rule by using the rate con-
stant of the original reaction. Thus, there is a one-to-one corre-
spondence between reactions in the original model and reaction
rules in the expanded model, and no new rate parameters are in-
troduced. As an example, in the original model, dimerization of
EGFR bound to the epidermal growth factor (EGF) is described
by a single reaction with forward and reverse rate constants k+2
and k–2, respectively. In the expanded model, this reaction is con-
verted to a reaction rule that specifies that a molecule of EGFR
that is bound to EGF but has a free dimerization site can bind to
another EGFR molecule meeting the same criteria with the same
forward and reverse rate constants as in the original model. Be-
cause EGFR has several additional binding and phosphorylation
sites, this rule applies to a large number of EGFR-containing
species and generates a large number of potential dimerization re-
actions. In addition, this rule lifts an assumption implicit in the
original model that dimers of EGFR could only break up if both
receptors were unphosphorylated. This assumption precluded the
existence of phosphorylated EGFR monomers, which have been
shown to be significant contributors to signaling through EGFR
under certain conditions (89).

For the same values of the rate parameters, the original and ex-
panded models were found to predict nearly identical behavior for
the outputs examined by Kholodenko et al. (54), but the expanded
model makes new predictions that can be tested experimentally.
For example, the expanded model predicts different phosphoryla-
tion kinetics for the two primary EGFR tyrosines included in the
model. Recent proteomic measurements indicate that different
phosphorylation sites on EGFR exhibit different kinetics and that
the kinetics depend on the interaction partners at the various sites
(14). These results provide motivation for considering individual
tyrosines in models. Further motivation is provided by results indi-
cating that small-molecule kinase inhibitors have different effects
at different tyrosines (90). In summary, recasting a heuristic model
of a signaling pathway increased the computational complexity,
but did not require additional model parameters and also facilitat-
ed understanding of the model by unveiling hidden assumptions in
the original model. The rule-based model better reflects our un-
derstanding of protein-protein interactions, is more easily extend-
able, and generates additional predictions.

Model Simulation, Reduction, and Checking
In addition to model specification, a number of other problems
arise from the large number of possible reactions in a signal-trans-
duction system. In this section, we briefly review how rules have
been used to improve the efficiency of procedures for simulating
the dynamics of a system. We also discuss systematic methods for
reducing a model to a simpler one and for verifying that the dynam-
ical behavior of a model is consistent with specified properties.

Simulation. The cost of simulating the kinetics of a reaction
network depends on the size of the network. The exact scaling
of cost with network size depends on a number of factors and
varies from problem to problem, but the scaling is nonlinear for
practical methods. Thus, if a network is large, the simulation
cost can be expensive in terms of computation time and/or com-

puter memory. To address this problem, Lok and Brent (62) pro-
posed a method of simulation that takes advantage of rules, the
on-the-fly method mentioned earlier, which is similar to ap-
proaches that have been used to simulate chemical systems
(91–93). In this method, rule evaluation is embedded in a dis-
crete-event Monte Carlo simulation of reaction kinetics, and reac-
tions are generated only when a species is first populated during
a simulation. Thus, parts of a network unconnected to populated
species are ignored, which may speed calculations and reduce
memory requirements. This technique of on-the-fly network gen-
eration provides a practical benefit only when the populated frac-
tion of a network is sufficiently small and branching is limited.
For a highly branched network, the cost of updating the list of re-
actions connected to populated species can be an important factor
even if few of the possible species are populated (Fig. 7).

The problem of simulating a highly branched network is
addressed by another Monte Carlo method that takes advantage
of rules (69, 94) and is implemented in the STOCHSIM software
package (73). In the STOCHSIM algorithm, rules are used dur-
ing a simulation to generate discrete reaction events (that is, to
execute reactions), rather than to generate reactions. A list of re-
actions is unnecessary, and the cost of generating one is avoid-
ed. Thus, the STOCHSIM algorithm may provide a computation-
al cost savings when many reactions are possible but only a
fraction actually occur. However, its applicability is limited, be-
cause STOCHSIM rules explicitly represent only state changes of
proteins. Representing changes of connectivity can be problem-
atic. Thus, for example, STOCHSIM cannot be used in a straight-
forward way to model the system of Fig. 6.

New simulation capabilities are needed for rule-based mod-
eling, because reaction networks derived from rules are unusu-
ally large, which is problematic for conventional simulation
procedures. It may be possible to develop additional methods,
like those mentioned above, that take advantage of the underly-
ing rules of a rule-derived reaction network to speed simulation.
For example, it may be possible to extend on-the-fly methodolo-
gy from stochastic simulations to ODE-based simulations (95,
96), which would likely be more efficient. Current on-the-fly
methods essentially consider a species or set of species to be
relevant if it is populated by just one molecule, which triggers
reaction generation. It would be desirable to refine these meth-
ods to incorporate more stringent definitions of relevance such
that the trigger for reaction generation can be tuned for efficien-
cy. Finally, we wonder whether the method of STOCHSIM could
be made to work with more general rules or could be imple-
mented in hardware (97, 98). A general conclusion we draw
from our experiences with simulation to date is that, because
there are trade-offs involved in all of the methods that have
been developed, it is highly desirable for a software platform to
provide access to multiple simulation approaches through the
same interface.

Model reduction. Another way to address the issue of combi-
natorial complexity is through model reduction. Some researchers
have considered ways to obtain a model that is smaller than one
needed to represent all microscopic details, yet behaviorally equiv-
alent to it (42, 87, 99–101). For example, Borisov et al. (99) sug-
gested lumping microscopic species of a model together into new
variables to obtain an equivalent dynamical model in terms of
coarse-grained variables. Recently, Conzelmann et al. (101) have
developed a systematic method for obtaining reduced models in
this way. Exact time courses of the macroscopic variables are ob-
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tained by solving a reduced set of differential equations that in-
cludes both the macroscopic variables and possibly a set of auxil-
iary (mesoscopic) variables. The extent of model compression de-
pends on the degree of independence among the protein sites be-
ing modeled, because correlation among sites requires tracking of
additional auxiliary variables. A number of factors, such as coop-
erative binding or enzyme-substrate relations within a complex,
can give rise to coupling among sites. For example, the phospho-
rylation states of two sites in a receptor are correlated if binding of
a cytosolic PTK to one site depends on phosphorylation of the
site, and the PTK, once recruited to the receptor, catalyzes phos-
phorylation of the second site. The variable transformation ap-
proach has so far only been applied to the case of a single scaf-
fold protein containing multiple sites of modification and bind-
ing. More work is needed to extend the approach to more com-
plex situations. In addition, it would be desirable to develop a
systematic method for developing approximate reduced models
(for example, by dropping some of the auxiliary variables),
which might be helpful when exact compression is not possible
because of correlations between sites (100). The problem of

model reduction through aggregation of variables is as difficult
as it is necessary, in particular for systems that operate on sever-
al spatial and temporal scales.

Model checking. Model checking (102) refers to a suite of
techniques deployed to prove that a model of a system behaves
in a specified manner. The techniques originate in computer sci-
ence and engineering, where they are also known as program
verification. For example, an objective of program verification
is to prove that a highly complex piece of software meets design
requirements. A useful step in this direction is to construct a
simplified program (a model) that preserves essential design
characteristics, and then proving (or disproving) its compliance
with specifications. This is typically done before the actual
piece of software is built, precisely to avoid early design flaws.
In the present biological context, the “simplified program that
preserves essential design characteristics” is a rule-based model
of a signal-transduction system. Various researchers have
sought to apply the powerful tools developed in the context of
program verification to biological models, particularly when
they can be cast in the form of rules that are executed stochasti-
cally on the fly. Consider a volume in which molecular species
collide randomly and react when an appropriate rule becomes
applicable, much as in STOCHSIM described above. Unlike the
unique deterministic trajectories of ODEs, a stochastic simu-
lation will only yield a particular history at each run. Even
when many runs are gathered to perform a statistical analysis,
observing a time series of concentrations (or molecule num-
bers) does not necessarily lead to an understanding of the
model (and the system it is intended to elucidate). Moreover, a
detailed time series may not be the most appropriate represen-
tation to match against empirical observations that are qualita-
tive or expressed in terms of salient events. Here is where
model checking becomes useful.

The model checking process requires two inputs: (i) a suit-
able representation of the signal-transduction model and (ii) a
property whose truth within the model we wish to check. In the
process, a rule-based reaction network is translated (automatical-
ly) into an automaton. An automaton is a graph whose nodes
represent global states of the system (a global state is determined
by the numbers of all molecular species) and whose edges repre-
sent transitions between states due to possible reactions. An
automaton so defined represents, at once, all possible trajecto-
ries the system can take and may therefore be very large, even
infinite. Yet, it does not have to be held in computer memory in
its entirety. As with on-the-fly methods described previously, the
automaton graph can be expanded when needed by computing
the partial graph of accessible states (nodes) from the current
state. As the nodes of the automaton are generated, they are tra-
versed systematically (breadth- or depth-first); at the same time,
the automaton is checked in a divide-and-conquer fashion (that
is, by recursively breaking the problem down into simpler sub-
problems) to determine whether the given property holds. This
procedure reflects a strategy similar to that implemented in pro-
grams that play chess. Most important, when a property fails to
hold, the procedure will reveal why the property fails by exhibit-
ing the transition that led to its violation. Model checking is not
a simulation, but a clever exhaustive search of the state space of
a model. Naturally, model checking has limitations with regard
to the type of properties that can be effectively checked.

Model checking requires properties to be expressed as for-
mulas in a logical framework, such as standard first-order logic

R E V I E W

0 100 200 300
Number of populated species

0

25000

50000

75000

100000

125000
N

um
be

r o
f p

os
si

bl
e 

re
ac

tio
ns

Fig. 7. The number of potential reactions versus the number of
populated species when trivalent ligands interact with bivalent cell
surface receptors. These results are generated through on-the-fly
network generation with BioNetGen. Reactions are generated by
six rules, which are similar to the rule shown in Fig. 6. The pa-
rameters of the simulation are as follows. The total ligand and re-
ceptor concentrations are 7 and 0.5 nM, respectively. Rate con-
stants associated with elementary rate laws for three of the rules
are k+1 = 0.0004 nM−1s−1, k+2 = k+3 = 0.04 nM−1s−1, where k+1 is
the rate constant for binding of a receptor site to a site on a free
ligand, k+2 is the rate constant for binding of a receptor site to a
site on a ligand bound once, and k+3 is the rate constant for bind-
ing of a receptor site to a site on a ligand bound twice. The corre-
sponding reverse rate constants for the elementary rate laws as-
sociated with the three remaining rules are each 0.01 s−1. As can
be seen, a few hundred species have the potential to participate
in hundreds of thousands of distinct reactions. Thus, simulation
methods that rely on reaction generation, including on-the-fly
methods, will not be computationally feasible for large-scale net-
works in some cases.
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(predicate calculus) augmented with operations that capture
temporal relations between events (“before,” “after”); temporal
modalities (“sometimes,” “always,” “next time,” “until”); con-
straints; and perhaps even structural properties (such as graph
connectedness).

The application of model checking to biological systems is
in its infancy. At present, biological applications constitute
more an exploration of methods than breakthroughs in biologi-
cal insight. An illustrative example is the analysis of Kohn’s
map of the cell cycle (103). The properties checked for the
Kohn map were static assertions, such as, “The activation of
CDC25C is necessary to generate the CDK1-cyclin B com-
plex,” as well as dynamic ones, such as oscillations in the
abundance of cyclin A (which translates into, “There is a path
such that whenever cyclin A is present it eventually disappears,
and whenever it is absent, it eventually appears”). These for-
mulas do not push the boundaries of biological insight. Yet,
they illustrate the potential of queries for consistency checks,
behavioral comparisons across models, and compliance with
empirical observations.

Rule-based systems may be translated into different types of
automata that reflect various levels of resolution. The class of
hybrid automata defines a particularly important level. A hybrid
automaton represents a mixture of continuous dynamics and
discrete events, as in a system that is well described by a differ-
ential equation model until a condition is reached that triggers a
discrete event altering the dynamics. For example, the net rate
of production of a protein may switch from negative to positive
when the concentration of another protein falls below a thresh-
old value. In the class of piecewise affine systems, the dynami-
cal equations are linear with an offset. Such automata can serve
as qualitative approximations of complicated nonlinear reaction
systems. They effectively transform a nonlinear system into a
linear one, but with a structure that can be switched. This type
of model yields a representation of a reaction network that facil-
itates model checking. Batt et al. (104) provide an interesting
and predictive application of model checking to a hybrid-
automaton representation of the nutritional stress response in
Escherichia coli. The queries have illuminated the role of mutual
inhibition between the transcription factors FIS and CRP, which
are involved in regulating metabolism. Mishra and co-workers
have applied hybrid automata techniques and model checking to
a stylized Delta-Notch signaling circuit (105). We expect to see
increasing activity in this area.

Software for Rule-Based Modeling
General-purpose software is needed to enable rapid rule-based
modeling of diverse systems. Problem-specific programs can be
difficult to reproduce independently, and the time and effort re-
quired to write and debug such a program can be expensive. Al-
so, modifications of rules may require reprogramming, which
discourages the consideration of alternative hypotheses about
mechanisms of signaling or extensions of a model. In recent
years, various general-purpose software tools and correspond-
ing methods based on rules for protein-protein interactions have
been developed. Software capabilities and methodology are ad-
vancing quickly, and it seems likely that rule-based modeling
will soon be a practical, mature, and accessible method of com-
putational systems biology. Below, we discuss several specific
software tools and end with a short summary of the lessons
learned from the development of these tools.

STOCHSIM 1.4. The salient feature of this tool (ftp://ftp.cds.
caltech.edu/ pub/dbray/) is the representation of proteins as
computational objects or agents, which have states (73). Model
specification is accomplished by using a wizard-like GUI,
which helps a user create a set of formatted input files defining
proteins, their states, individual reactions, and rules for general-
ized reactions that change the states of proteins. A protein is
represented by a list of binary flags encoding the modification
or binding states of its sites. In the state-change rules of
STOCHSIM, state flags are specified as 0, 1, or “?,” which is a
wildcard, and plus (+) and minus (–) symbols are used to direct
the switching of flags from 0 to 1 and vice versa. A limitation of
STOCHSIM is its representation of complexes. A complex is ei-
ther represented implicitly in terms of protein states, in which
case the topology of a complex may be difficult to track, or it is
represented explicitly, in which case the molecular composition
must be declared manually beforehand in an input file.

An interesting feature of STOCHSIM is its method for dis-
crete-event Monte Carlo simulation of reaction kinetics. The
method involves picking two agents and then checking to see
whether they react. The method is approximate because time is
incremented in fixed steps (69, 94). Thus, a check for accuracy,
against the results of exact Monte Carlo methods (80, 81) or a
STOCHSIM run with a smaller time step, is necessary. The pro-
cedure may be slow because, for correct results, the time step
must be small enough such that pairs of reactants most often do
not react. However, as discussed above, the method avoids gen-
erating reactions, which can be an advantage essential for com-
putability in some situations. Shimizu and Bray (94) discuss the
scenario of a protein with n sites of modification and m binding
partners. This protein has up to 2n modified forms and may par-
ticipate in as many as m2n distinct bimolecular association reac-
tions. For such cases and cases like that of Fig. 7, methods that
avoid the cost of reaction generation, such as the STOCHSIM
method, may be essential for computability.

Moleculizer 1.0. As with STOCHSIM, a set of input files is
used to specify a model in Moleculizer 1.0 (http://www.
molsci.org/~lok/moleculizer/) (62); these files are written in
XML. Template input files are provided that correspond to a
fixed set of rule types (reaction generators), which are coded
as separate software modules. The templates are used to de-
fine individual rules and their parameters, such as rate con-
stants. Although the types of rules available to a modeler are
fixed, they provide sufficient flexibility to represent a wide
array of protein-protein interactions. A feature of Moleculiz-
er, not available in STOCHSIM, is the ability to represent the
topology of a protein complex explicitly in terms of pairwise
connections of binding sites. Also, the connectivity of a com-
plex can be considered in a rule definition.

As can STOCHSIM, Moleculizer can be used to perform a
discrete-event Monte Carlo simulation of reaction kinetics, but
an exact method, Gillespie’s direct method (80, 81), is used.
This method relies on a list of reactions, which Moleculizer
generates on the fly during a simulation. When a species is first
populated, rules are evaluated and new reactions involving this
species are generated if necessary (that is, if they are not al-
ready generated and stored in memory). Given the parameters
that govern a simulation of network dynamics, Moleculizer pro-
vides a principled means for identifying the relevant portion of
the reaction network (that is, the populated species and reac-
tions connected to these species). Moleculizer provides other
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simulation methods as well, such as a τ-leap method for
stochastic simulations (106). A new simulation feature is “look
ahead” rounds of reaction generation (107). If the number of
look-ahead rounds is set to a large enough number, then Mole-
culizer can generate a network without simulating it. This
method is then equivalent to the generate-first method men-
tioned earlier.

BioNetGen 2.0 and BNGL. Earlier versions of this tool (1.0
and 1.1), BioNetGen (http://cellsignaling.lanl.gov/bionetgen/),
which are based on the use of term or string rewriting rules to
represent protein-protein interactions, are discussed elsewhere
(60, 88). We will focus on version 2.0, which is based on the
use of graphs to represent proteins and protein complexes and
the use of graph rewriting rules to represent protein-protein in-
teractions (50, 61). For historical perspective and a review of
applications of graph transformation in molecular biology, see
Rosselló and Valiente (108). Graph rewriting rules are general-
izations of term rewriting rules. Unlike STOCHSIM and Mole-
culizer, BioNetGen interprets a formal model-specification lan-
guage, called the BioNetGen Language (BNGL). An advantage
of introducing a language is that model specification becomes
independent of software implementations and therefore
portable. In subsequent sections, we will discuss several lan-
guages for rule-based modeling that have been proposed. Inter-
esting languages that we will not discuss include Bioglyphics
(http://www.bioglyphics.org/) (109), Dynamical Grammars
(http://www.arxiv.org/abs/ cs.AI/0511073), and “little b”
(http://www.littleb.org/).

In BNGL, chemical species are represented by using
graphs, which are encoded as structured strings. The basic unit
of representation is a molecule string, which may contain
component strings enclosed in parentheses. In a model speci-
fication, molecule strings actually serve several purposes, one
of which is definition of the types of molecules included in
a model. An example of a string used for this purpose is
EGFR(ECD,aa1092~Y~pY), which defines a molecule called
EGFR containing components called ECD (ectodomain) and
aa1092. The string also indicates, by the prefix “~” for state
labels, that the latter component has two possible internal
states called Y and pY. This definition corresponds to one type
of molecule represented in the reaction network of Fig. 5B,
which also shows how molecule strings are concatenated to
represent complexes.

In BNGL, rules for protein-protein interactions are repre-
sented by using text-encoded graph rewriting rules, which
contain graph matching patterns. Patterns composed of
(incomplete) molecule strings explicitly indicate the features
required of reactants and implicitly indicate, through omis-
sion, the features that are irrelevant for a reaction. An example
of a rule is Grb2(SH2)+EGFR(aa1092~pY) → Grb2(SH2!1).
EGFR(aa1092~pY!1). This rule indicates that the adaptor pro-
tein Grb2 and EGFR can associate if the SH2 domain of Grb2
is free and residue 1092 in EGFR is free and phosphorylated.
By omission, the rule also indicates that association of Grb2
and EGFR is independent of the bound state of the ECD of
EGFR. The “!” character is a prefix for bond labels, which
indicate how components of proteins are connected in a com-
plex. The bond labels in this rule indicate that the SH2 domain
of Grb2 binds pY1092 in EGFR. The rule for Grb2-EGFR
association and others are illustrated in Fig. 8 by using the
conventions of Faeder et al. (50).

A model is specif ied as a set of graph-rewriting rules,
which are associated with rate laws, and a set of seed-species
graphs to which the rules are initially applied. Using the itera-
tive algorithm for processing rules outlined above (60, 61),
BioNetGen can generate a parameterized reaction network
(meaning that the reactions are assigned rate laws) without
performing a simulation of the network dynamics. Once a
network has been generated, it can serve as the basis for ODE-
based or stochastic simulations (60). Pregenerating a network
and then performing an ODE-based simulation, if possible,
may be more efficient than the stochastic simulation methods
of STOCHSIM and Moleculizer, because ODE-based calcula-
tions are usually less expensive than Monte Carlo calculations
for a “small” model (63). If the size of a network is too large to
permit ODE-based calculations, then BioNetGen also provides
the capability to generate a network on the fly during a simulation,
as Moleculizer does.

One problem that BioNetGen attempts to solve is how to
automatically adjust the rate law of a rule to account for contex-
tual differences among reactions in the class of reactions de-
fined by the rule. Contextual effects on rate laws can be speci-
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Grb2

2
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EGFG(ECD!1,aa1092~Y).EGFR(ECD!1) -> EGFR(ECD!1,aa1092~pY).EGFR(ECD!1) k1

EGFR(aa1092~pY) -> EGFR(aa1092~Y) k2

EGFR(aa1092~pY) + Grb2(SH2) <-> EGFR(aa1092~pY!1).Grb2(SH2!1) k3,k4

Fig. 8. Representation of protein-protein interactions by using
graphical reaction rules. The reactions illustrated in Figs. 4 and 5
can be generated by rules for the underlying protein-protein interac-
tions, which are illustrated here with the conventions of Faeder et al.
(50) and Blinov et al. (61). The rules define generalized reactions for
1, autophosphorylation of EGFR; 2, dephosphorylation of EGFR
mediated by a phosphatase assumed to be present in excess; 3,
association of Grb2 and EGFR, which depends on phosphorylation
of Y1092; and 4, dissociation of Grb2 and EGFR. Below each
graph-rewriting rule, a corresponding definition in BNGL is given.
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fied explicitly in an expanded set of rules, but this approach
may be laborious, and the problem arises often enough that gen-
eral automatic solutions merit pursuit. The contextual factors
that may necessitate modifications of a rate law for a class of
reactions are numerous: (i) Collision frequency can vary (com-
pare A + A→ and A + B→ reactions); (ii) reaction path degen-
eracy (that is, the number of distinct reaction paths from reac-
tants to products) can vary, giving rise to different statistical
factors (compare A.A→A.B and A→B reactions); (iii) the
turnover frequency of an enzymatic reaction may depend on the
numbers of enzymes and substrates in a complex; (iv) a factor
equal to a volume ratio may arise for reactions in different
compartments; (v) diffusion-limited reactions may be affected by
masses (or equivalently, diffusivities) of reactants (60, 62); and so
on. BioNetGen handles statistical factors, for example, by consid-
ering the symmetries of graphs in reaction rules and the reactions
generated by rules (61). Assigning correct statistical factors is
essential for a self-consistent model. Figure 6C illustrates
reactions of the same class that have different statistical factors.

BioSPI and other tools of process algebra. BioSPI interprets
a model-specification language, a variant of the π-calculus, and
provides the capability to perform a stochastic simulation
(http://www.wisdom.weizmann.ac.il/~biopsi/) (110). Similar
tools, which have also been used to specify models for biologi-
cal systems, include SPiM (111) and the PEPA Workbench
(112). The π-calculus is a general and minimalist model-speci-
f ication language originally designed to capture essential
features of concurrent and distributed systems in computer
science (113). It is one of many process calculi (algebras) stud-
ied in this field (114, 115). These languages are axiomatic,
which allows properties of a model specif ication to be
formally proven and facilitates certain types of model check-
ing (for example, the observational equivalence of two model
specifications can be determined).

Use of π-calculus to model protein-protein interactions was
suggested by Regev et al. (116), who provided, loosely speak-
ing, the following translations of biochemistry to π. Proteins
are mobile processes (meaning agents that exchange messages
that can affect their behavior); protein sites are communication
channels (ports through which messages are passed from
senders to receivers); and protein-protein interactions are com-
munications. The channels of a system and the messages that
can be sent and received along these channels are essentially
rules for protein-protein interactions. The proteins in a com-
plex are linked by a backbone (that is, by colocation in a com-
munication compartment), and the topology of a complex is in-
dicated by pair-wise communications. In this framework, sig-
nal transduction can be viewed as asynchronous concurrent
computation and studied by using pertinent methods from
computer science (117–119).

Because π-calculus is a minimalist language and some of its
notational features are irrelevant and even inappropriate for bio-
logical applications (for example, communication has direction-
ality, whereas physical association does not), researchers have
sought to develop a more congruent higher-level language for
modeling biochemical systems that retains the mathematical
formality of π. One proposal is κ-calculus (120). In this lan-
guage, a protein is represented as a collection of sites, which
can be visualized as a box with nodes, representing sites, on the
border. Coincidentally, the appearance of such a box is much
like that of a state node in a process diagram (49). Also, protein

complexes are represented as graphs, in which edges connect
interacting sites of proteins. For simulation purposes, the 
κ-calculus can be reduced to π-calculus.

Although process algebra has been used to specify biological
processes in some detail, such as cell adhesion (121, 122), it is
unclear at this time whether methods of process algebra can
reach fundamentally beyond the level of understanding provid-
ed by ODEs and stochastic simulations. Process algebra may,
however, provide a formal foundation for rule-based modeling
that enables principled mathematical reasoning about system
behavior and its dependency on interaction capabilities of sys-
tem components.

Pathway Logic Assistant. Pathway Logic Assistant provides
an interface to “Pathway Logic” models of signal-transduction
systems (http://www.csl. sri.com/users/clt/PLweb/pl.html)
(123) def ined by using the Maude specif ication language
(http://maude.cs.uiuc.edu/). Pathway Logic models can for-
mally represent protein-protein interactions at different levels
of resolution, ranging from details about abstract protein
states (124) to details about functional domains and binding
sites (125, 126). Eker et al. (127) proposed conventions for
using Maude to specify term rewriting rules for protein-
protein interactions. Later, conventions for specifying graphs
and graph rewriting rules were introduced (126), which allow the
topology of a protein complex to be explicitly considered. The
models obtained with Maude are essentially unparameterized
chemical reaction networks, meaning that rate laws are not
specified for reactions. With the addition of rate information,
a reaction network can be converted to ODEs, for example,
but this capability is not native to Pathway Logic Assistant.
Instead, this tool, through the formalism of Petri nets, enables
a qualitative analysis of a reaction network, such as visualiza-
tion and interactive exploration of the network. Also, a model-
er can specify a formula in linear temporal logic (LTL) that
defines a putative property, and then evaluate this formula in a
model-checking query to determine whether the property
holds for the system. Properties that can be specified in LTL
are qualitative and relate to stable states of paths. For example,
a query can be specified to determine whether a particular
protein complex is potentially present in a signal-transduction
system and to find a sequence of reactions leading to it. Of
course, the value of qualitative analysis is limited, as the
dynamics of protein-protein interactions are important for
system behavior, for example, dynamics influence which
protein complexes are populated during signaling (42). Still, it
will be interesting to see what biological insights can be
obtained from qualitative analysis alone, because quantitative
rate parameters for protein-protein interactions are often
unavailable or uncertain.

BIOCHAM 2.4. This tool, BIOCHAM 2.4, interprets a
model-specification language in which term-rewriting rules are
used to represent protein-protein interactions (http://contraintes.
inria.fr/BIOCHAM/) (128). Structured strings are used to repre-
sent chemical species. Rules, which may contain string-matching
patterns, indicate how strings representing reactants are rewritten
to obtain strings representing products. As is also true for other
term-rewriting approaches (60, 88, 127), the topology of a
protein complex cannot be explicitly considered in a rule,
which can be a limitation. Unlike the π-calculus or the general
Maude programming language, but like BNGL, the κ-calculus,
and Pathway Logic, the BIOCHAM language has been de-
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signed specifically for the purpose of modeling biological sys-
tems. The language is simple by design but still expressive
enough to specify meaningful models. For example, a model
has been specified for the cell cycle–control system described
by Kohn (32) (103).

Like BioNetGen, BIOCHAM can process a set of rules
associated with rate laws to generate a parameterized reaction
network and the corresponding ODEs, and then perform and
analyze ODE-based simulations. In addition, like Pathway
Logic Assistant, BIOCHAM can evaluate model-checking
queries, which can be specified by using Computation Tree
Logic (CTL) as well as LTL. CTL and LTL are closely related;
however, CTL queries can be specif ied that cannot be
expressed in LTL and vice versa (129). Model checking in the
framework of BIOCHAM is provided through an interface to
the NuSMV model checker (http://nusmv.irst.itc.it/).
BIOCHAM essentially converts a chemical reaction network to
a NuSMV input file. Thus, model-checking capabilities are
likewise accessible, in principle, from any rule-based modeling
tool that generates a reaction network. An intriguing feature of
BIOCHAM is a machine-learning system for modifying rules
or parameters to obtain consistency with behavioral constraints
specified in CTL or LTL (130).

Lessons learned. Many of the software tools discussed above
are based on a formal model-specification language, which has
the desirable property of being application-independent. A stan-
dard language has yet to emerge, but the idea of using rewriting
rules to represent protein-protein interactions has been suggest-
ed multiple times. Likewise, in several approaches, graphs are
used to represent the contact map of protein complexes. One
needs to consider the configuration of a complex when connec-
tivity affects reactivity, as exemplified in Fig. 9. Chemical reac-
tion network models derived from rules tend to be large. It may
therefore be nontrivial to confirm that the model produced by a
set of rules is the one intended. A high standard of software reli-
ability, including careful consideration of physical chemistry, is
essential. To cope with the complexity of models, we need soft-
ware tools that assist in reasoning about a model and that pro-
vide means for automatically monitoring system properties at a
quantitative and qualitative level. For example, BioNetGen pro-
vides output rules for calculating properties of sets of species,
such as a sum of concentrations of species containing a particu-
lar protein. Finally, rules can be used in different ways to study
a system. The different approaches now available appear to be
complementary, and new approaches may be useful.

Extension of SBML for Rules
The Systems Biology Markup Language (SBML) (131), which
is based on XML, is a popular standardized format for the elec-
tronic storage, exchange, and reuse of mathematical models of
biochemical systems. A number of software packages are now
available that import or export models specified in SBML
(http://sbml.org/), and a public repository for annotated SBML-
encoded models has been established (132, 133). However,
SBML, like most SBML-aware software, is based on the as-
sumption that a model can be specified adequately in terms of a
reaction scheme, which is not likely to hold for a model of a sig-
nal-transduction system because of the context-sensitivity and
combinatorial complexity of protein-protein interactions. Ver-
sions of SBML up through Level 2 Version 2, which is presently
being finalized, do not provide direct support for compactly

representing multiple protein complexes or multiple states of
proteins. Likewise, there is no support for defining rules for
protein-protein interactions or other generalized reactions. To
specify a model in strict SBML, one must enumerate all of the
individual chemical species and reactions included in the model.
Rules used to derive these species and reactions could actually
be included in a SBML file as annotation, but such annotation
would be nonstandard. Thus, for interpretability, SBML can only
be used to represent a rule-based model as a list of rule-derived
reactions, which means that SBML encodings of rule-based
models tend to be exceedingly verbose and difficult to compre-
hend or modify (50, 88). In light of this limitation, several
extensions of SBML that incorporate rules have been proposed

(1342–137). It is anticipated that such extensions will be avail-
able with the SBML update to Level 3 (138, 139).

SBML Level 3 is anticipated to introduce a modular lan-
guage extension capability, which will allow different language
features to be added to a common language core, which will be
based on SBML Level 2. Language extensions will add syntax
and semantics for software tools that share a common theme,
such as the tools for rule-based modeling reviewed here.
Models specified in SBML Level 3 will include a declaration of
the feature sets (beyond the core Level 3 features) required for
proper interpretation. The presence of a feature tag will inform a
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Fig. 9. Two protein complexes with identical composition but dif-
ferent connectivity. (A) A chain of bivalent ligands, represented as
ovals, and bivalent receptors, represented as boxes with rounded
corners. Circles represent ligand-binding and receptor-binding
sites, and lines connect sites that are bound to each other. (B)
The ring formed through closure of the chain. The reactivities of
the chain and ring differ. The chain can close through intramolec-
ular binding of ligand and receptor sites at the chain ends or elon-
gate by binding either a ligand or receptor with a free site. In con-
trast, the ring cannot react with ligands or receptors. It can only
break apart through the opening of one of its ligand-receptor
bonds. Thus, tracking the connectivity of proteins in a complex
can be important for modeling protein-protein interactions.
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software tool reading the model that the model uses that partic-
ular feature and will permit the tool to quit gracefully if it does
not have the necessary interpretive capabilities.

The latest proposed Level 3 extensions for rule-based mod-
eling (136, 137), like several of the software tools reviewed
here, are based on the concept of using graphs to represent pro-
teins and graph-rewriting
rules to represent protein-
protein interactions. As dis-
cussed above, such rules are
expressive enough to convey
information about the contex-
tual constraints on a protein-
protein interaction and the
parts of proteins responsible
for and affected by an interac-
tion. The same is not true of
the standardized exchange
format widely used today to
store information about pro-
tein-protein interactions in
electronic databases (140).
Thus, extension of SBML to
incorporate rules for pro-
tein-protein interactions has
the potential to improve not
only our ability to model the
dynamics of protein-protein
interactions, but also our abil-
ity to archive basic knowledge
about them. Rules for large
numbers of protein interac-
tions might be specif ied on
the basis of high-throughput
assays (141), data extracted
with literature-mining tools (142), or statistical analysis of
large data sets (143). An important next step in the develop-
ment of SBML is software for converting a putative SBML
Level 3 specification of a rule-based model into Level 2 form.

Visualization of Rules
A mathematical model provides at least two benefits. Its impli-
cations, no matter how hidden from intuition, can usually be
revealed through computer-aided analysis. A model also con-
stitutes a precise statement of a modeler’s understanding and
assumptions about a system. Thus, it is a powerful tool for
summarizing knowledge about a system, although a model may
be difficult to comprehend. If it is represented as a list of equa-
tions or reactions, the formalism of the model obscures the un-
derlying grammar of protein interactions that generates the
chemical species and reactions included in the model. A widely
used and more comprehensible way of representing knowledge
about a signal-transduction system is a diagrammatic interac-
tion map in which proteins and their interactions (or the func-
tional consequences of these interactions) are indicated by la-
beled cartoons and arrows. Most maps are ambiguous and lack
a mathematical interpretation. However, formal conventions
have been proposed for drawing interaction maps such that
they have precise meanings (144, 145). An example of a simple
map drawn according to these conventions is provided in Fig.
10. It illustrates interactions of EGFR and Grb2. No automatic

procedures for translating this type of map into a mathematical
model are yet available (145), although software intended to
provide such a capability has been developed on the basis of
similar diagrammatic formalisms (146–149). Nevertheless, au-
tomatically translating a map like that of Fig. 10 into a mathe-
matical model remains an open problem when combinatorial

complexity is present.
An alternative to represent-

ing a model as a list of reac-
tions or equations is to express
a model as a set of rules,
which resemble reactions in
many ways but are highly
compressive. If the rules are
graph-based, then they can al-
so be visualized, and therefore,
they provide a new means of
visualizing knowledge of pro-
tein-protein interactions. An
example of rules that repre-
sent interactions considered in
Fig. 10 is shown in Fig. 8.
Similar illustrations would be
obtained by using any of the
other graph-based model spec-
ification approaches discussed
above. An advantage of visual
rules over interaction maps is
that the rules can be evaluated
automatically to obtain a
mathematical model. When
the rules of Fig. 8 are applied
to a seed set of species com-
posed of unphosphorylated
dimeric EGFR and cytosolic

Grb2, they generate the reaction network illustrated in Figs. 4
and 5. Rules can also be made more readable by enhancing
them with graphical notation developed for annotating pro-
tein-protein interactions (49, 53) (http://www.sbgn.org/).

Outlook
New technologies are enabling an increasingly quantitative char-
acterization of signal transduction events at the level of protein
sites. The resultant data streams challenge our capacity to inter-
pret on the basis of intuition alone. Understanding the dynamics
of signaling systems hinges on appropriate mathematical meth-
ods and models. A mathematical model tells a story that con-
verts facts into putative knowledge by animating facts with dy-
namical behavior, making assumptions explicit, and enabling
formal manipulations whose correctness can be assessed. Pre-
sumed knowledge generated in this way is more useful, predic-
tive, and empirically testable. A model is a bookkeeping device
that helps us to assess whether we know enough about a system.

The multiplicity of sites at which a signaling protein can be
modified and a protein’s potential for assembling into diverse
complexes result in a combinatorial explosion of molecular
states that stymies conventional modeling approaches. Models
of signal-transduction therefore require software tools grounded
in a mathematical framework that represents proteins as gram-
matical structures with specific context-dependent actions.
Well-known challenges to modeling include the problem of
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Fig. 10. A diagrammatic interaction map drawn according to the
conventions of Kohn et al. (145). This map illustrates protein-
protein interactions underlying the reaction scheme illustrated in
Figs. 4 and 5.
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compositionality, that is, the need for a framework for growing
models in a cumulative fashion by plugging together indepen-
dently developed models of subsystems. A different composi-
tionality problem arises from the need to juxtapose systems that
operate at different spatial and temporal scales, or at vastly dif-
ferent molecular densities. Some of these challenges are begin-
ning to be addressed with the introduction of rules for protein-
protein interactions and the development of methods for rule-
based modeling, like those reviewed here.

Rule-based modeling is a fundamental departure from tradi-
tional dynamical systems based on ordinary differential equa-
tions (117). Dynamical systems require all possible interactions
to be explicitly specified ahead of time. In contrast, rule-based
approaches can be used to spawn reactions and molecular states
only if the dynamics of the system generates the appropriate
context (on-the-fly operation). Unlike differential equations,
rule-based approaches represent molecules with an internal
structure that encodes potential behavior that may never be trig-
gered in a given system but that could be triggered if the system
were changed. This aspect of rules is what makes rule-based ap-
proaches extensible on the go, much like dropping a new
molecule into a reaction mixture alters the intrinsic possibilities
of that mixture. (Note that a modeler should avoid specifying
rules that are overly general, because such rules may generate
unintended reactions when a model is extended.) Rule-based
approaches do not jettison differential equations. In their sim-
plest mode of operation, they enable the automatic generation
of ODE systems that are too large to be written down by hand.
Although rules have been used to formalize interactions among
objects of various types for over two decades (150), they only
recently have been applied to signal-transduction systems.

General-purpose tools for rule-based modeling would bene-
fit from the adoption of a standard specification language for
defining models in software-independent ways. SBML now
serves as such a standard, but it conceives of a model as an
exhaustive list of reactions. Because this view fails to recognize
the linguistic character of complex proteins and protein com-
plexes, it becomes quickly impractical. In response to this
shortcoming, extensions of SBML consider the adoption of
rules for representing protein interactions. Much remains to be
done to devise languages capable of expressing more fine-
grained aspects of protein structure and contextual constraints,
including those of a geometric kind. Early examples of captur-
ing spatial effects in a rule-based fashion were phenomenologi-
cal models of morphogenesis (151) and models of virus capsid
assembly (152, 153).

There is a clear need for making the modeling process more
accessible to nonspecialists. Likewise, it is highly desirable to
invite exploration of the possible, such as neighboring signaling
networks that are accessible from actual ones by a few shuffling
operations. Deriving mechanistic network models from empiri-
cal observations, evolving or designing networks to behave in
specified ways (154), and predicting the consequences of inter-
ventions are all tasks that depend on efficient ways of exploring
alternative network models. These objectives require the partial
automation of the modeling process. Such automation would be
critically enabled by the adoption of a formal language to
express properties of proteins and their interactions or properties
of whole systems, as extracted from models (via model check-
ing) or empirical observations. This language could be used to
annotate the behavior of a protein or a small system and could

be stored alongside other information in databases. A statement
in a formal language has a well-defined semantics, that is, a
clear and precise interpretation, which could perhaps be quickly
grasped through visualization. At the same time, such a state-
ment would lead a double life as a codelet, a fragment of com-
puter code, which can be downloaded and used as a component
in a model of any system in which the corresponding protein or
protein-protein interaction plays a role. Formal statements about
system behavior (originating in empirical observations or trusted
models) could be used as test-suites for new models or refine-
ments. We believe the progress in rule-based modeling summa-
rized in this review may lead ultimately to a common language
for systems biology, much like the four-letter code for DNA
sequences provides a common language for bioinformatics.
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