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Abstract

We illustrate a minimal version of Genetic Programming operating

with ��calculus by evolving the predecessor function� The expression ob�

tained works di�erently than the original version of Kleene� In those runs

that were successful hundreds of di�erent expressions realizing the pre�

decessor function were found� indicating a large degree of neutrality� We

suggest that the study of the ���calculus landscape� holds promise for

a more rigorous and systematic understanding of the power and limita�

tions of Genetic Programming as they derive from the language that maps

syntactical constructs into functional behaviors�

keywords� genetic programming� ��calculus� predecessor function� landscapes
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� Introduction

The Darwinian principle of adaptation through replication� heritable variation�
and selection is not limited to a population of biological entities� It is applicable
to any object that can be copied and varied� and for which at least some of the
variants are distinguishable �by an arbitrary criterion called ��tness��� Genetic
Programming �GP� applies the logical structure of the Darwinian scheme to
computer programs� searching for those that compute a desired function� In the
realm of computation the �phenotype� corresponds to the behavior of a program
�i�e�� the graph of a function in the set	theoretic sense� and the �genotype�
corresponds to that which behaves �i�e�� a syntactical construct expressing a
function��
Genetic Programming 
Koza� ���� has indeed become a powerful machine

learning method� Its success has been demonstrated in a variety of applica	
tions� such as solving symbolic regression problems 
Koza� ����� discovering
game	playing strategies 
Koza� ����� Angeline� ����� inducing decision trees

Koza� ����� generating controllers �e�g�� for robots� 
Koza� ����� Reynolds� �����
Spencer� ����� Handley� ����� cracking and evolving randomizers 
Koza� �����
Jannink� �����
A question� however� remains� When is the Darwinian process e�ective�

The search for an answer is still a frontier in biology� The question is hard�
because replication and variation apply to the carrier of behavior ��genotype���
while selection applies to the behavior ��phenotype��� and� at least in biology�
we don�t su�ciently understand the mapping between the two�
GP applications typically start with a cleverly crafted representation of a

problem domain from which suitable high	level primitives are inferred� It may
be argued that in such cases GP plays a minor role in �nding the solution
compared to the contribution of the user 
Abbott� ����� Taylor� ����� The
point relevant here is that the problem	speci�c components of applications
make a rigorous and general theoretical exploration of GP nearly impossible

O�Reilly and Oppacher� �����
An analysis is needed of the intrinsic constraints and opportunities of GP

deriving from the speci�c language that maps syntactical constructs �genotypes�
into functional behaviors �phenotypes�� Such an analysis could begin by turn	
ing to an abstract universe of functions that is �i� transparent� �ii� su�ciently
formal to encourage mathematical analysis� and �iii� canonical �i�e�� it should
capture a programming language paradigm�� One such universe is �	calculus�
invented by Alonzo Church 
Church� ����� Church� ���� to study the prop	
erties of functions� As is well known� �	calculus is the syntactically unsug	
ared core of functional programming languages� The notion of �	de�nability is
equivalent to Turing�s notion of computability and the Herbrand	G�odel notion
of general recursiveness� An exploration of the characteristic features of the
���calculus landscape�� that is� the program	to	function mapping in �	calculus�
would greatly help in framing what is possible and what is not with GP within
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the paradigm of functional programming�
This� then� is the motivation for our use of �	calculus� The present paper

by no means characterizes the features of the �	calculus landscape� That is a
long	term challenge� Our contribution merely consists in illustrating GP within
this semantically elegant and minimalist framework� raising a few questions�
and providing support for the claim that the study of the �	calculus landscape
holds promise for a more rigorous and systematic understanding of GP�
As an example we attempt to evolve the predecessor function� Church had

just about convinced himself that there is no �	de�nition of the predecessor
function� when Kleene found a representation for it 
Kleene� ����� Revesz� �����
It was an important result� because otherwise a computable function would exist
that is not �	de�nable� Although the predecessor function seems di�cult to �nd�
there is no particular practical bene�t in �nding it� since it is already known�
Section � brie�y introduces the �	calculus� Section � introduces genetic

operators that naturally �t the syntactical machinery of �	calculus� In Section
� the predecessor function is evolved as an example� In Sections � and � the
in�uence of di�erent parameter settings is discussed� Section � concludes� and
raises a few issues�

� ��calculus

In �	calculus functions are represented as �	expressions� The simplest �	expression
is a variable �without type or sort� of which there is an in�nite supply� To build
more complex �	expressions there are only two constructions� application and
abstraction�
The syntax of a �	expression �following 
Revesz� ����� is�

h�	expressioni ��� hvariableijhabstractionijhapplicationi ���

habstractioni ��� �hvariablei�h�	expressioni ���

happlicationi ��� �h�	expressioni�h�	expressioni ���

Abstraction introduces a formal parameter hvariablei �e�g�� x� and turns a
given h�	expressioni into a unary function� For example� x is a �	expression by
virtue of ���� and abstracting x via ��� yields �x�x which is the identity function
I � de�ned in usual notation as I�x� � x� The x after the dot in �x�x corresponds
to the body of the function �i�e�� the right hand side in the de�ning equation
I�x� � x�� In �x�x the � preceding the x declares it as a formal parameter�
corresponding to the left hand side in the equation I�x� � x�
Of course� we could also abstract some other variable� say� y to get �y�x�

In an expression of the form �hvariablei�h�	expressioni all occurrences of the
hvariablei in h�	expressioni are called �bound�� A variable that is not bound
is termed �free�� Names of bound variables don�t matter� and we identify ex	
pressions that di�er only in the names of bound variables�
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happlicationi is intended to express the application of an operator �here
enclosed in parentheses� to an operand� There is no syntactical distinction
between operator and operand� both are arbitrary �	expressions�

�	calculus is meant to be a theory of the evaluation of functions� This is
achieved by de�ning a reduction relation between expressions that captures the
notion of �substitution��

��x�P �Q � 
Q�xP ���

where P and Q are �	expressions and x is a variable� 
Q�xP means the substi	
tution of Q for all occurrences of x in P � �We assume unique names for bound
variables� distinct from names of free variables�� The situation in equation ���
corresponds to the substitution of the actual parameter Q for the formal pa	
rameter x in the body P of a function �x�P � The reduced form corresponds to

the result of the evaluation� For example� I�y�
def

�� ��x�x�y � 
y�xx � y�
An expression that contains no �sub�	expression to which scheme ��� applies

is called a �normal form�� and the process of rewriting an expression into normal
form is a �normalization�� Not every expression does have a normal form�
One may encounter an in�nite sequence of reductions� corresponding to a non	
terminating computation�
Everything computable can be de�ned with just the syntax ��	�� and the rule

���� Recall� however� that there is no syntactical distinction between functions
and arguments� Natural numbers� for example� are functions too� and they can
be represented in a variety of ways� We will use the Church numerals here� and
henceforth refer to them simply as numerals�

�
def

�� �f��x�x

�
def

�� �f��x��f�x

�
def

�� �f��x��f��f�x

�
def

�� �f��x��f��f��f�x

In general� the numeral representing the number n iterates its �rst argument to
its second argument n times� In the following we use the short	hand notation

n
def

�� �f��x� �f� � � � �f�� �z �
n times

x
def

�� �f��x��f�
n
x� ���

Note that in �untyped� �	calculus every expression can act via ��� as a map
sending any expression into some expression �that may or may not possess a
normal form�� In recursion theory� however� the notion of function is a map
from non	negative integers to non	negative integers� Thus� only the behavior
of �	expressions restricted to a representation of numbers �i�e�� numerals� is
considered� In other words� arithmetic functions are �	expressions whose re	
duced form is a numeral when they are applied to one �or several� numeral�s��
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�	expressions that are arithmetic functions don�t contain free variables� Such
expressions are termed �closed expressions�� also known as combinators�
As an example take the successor function� which increments its argument

by one� succ
def

�� �n��g��y���n�g��g�y� Normalizing the application of succ to
the numeral � yields�

�succ��
def

�� ��n��g��y���n�g��g�y� �z �
succ

��f��x��f��f�x� �z �
�

�

�g��y����f��x��f��f�x�g��g�y �

�g��y���x��g��g�x��g�y � �g��y��g��g��g�y � ��

A more detailed introduction of �	calculus can be found� for example� in

Revesz� ����� Hankin� ����� Barendregt� �����

� Genetic programming in ��calculus

In GP the task is to �nd a program with a prespeci�ed behavior in a given
language� A �tness function is de�ned to grade the actual behavior of a program
with respect to the desired target behavior�
In the present case GP is not operating on conventional programs but on �	

expressions�� Since we want to evolve arithmetic functions� we restrict the space
of �	expressions to closed expressions� and we will use simple genetic operators
that preserve syntactical legality and closure�
GP starts with a population of randomly generated closed expressions� An

expression is chosen for reproduction with a probability proportional to its �t	
ness� The reproduction event produces either an exact copy� a mutant� or a
recombinant with another randomly chosen expression� Selection pressure re	
sults from constraining a population to a constant number of expressions� each
time an expression has been reproduced� another one� chosen randomly� is re	
moved�

��� Mutation

According to the grammar ��	��� a mutation should naturally consist in intro	
ducing or removing the two expression constructors habstractioni and happlicationi�
Our mutation operators are inspired by 
O�Reilly and Oppacher� ����� and are
motivated by minimizing the syntactical change of a �	expression upon mutation
while preserving closure of the expression�
An abstraction of a new variable can be inserted before any �sub	�expression�

Similarly� any unused abstraction �i�e�� an abstraction that does not bind a vari	

�Genetic Programming originally operated on LISP programs which are basically ��

expressions cast in user friendly syntax�
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able� can be deleted� For example� �x��x� and �x���x��x� can be transformed
into one another by insertion and deletion of �x���
The insertion of an application requires two steps� First� a �sub	�expression

is chosen randomly and is determined �randomly� to become the operator or
the operand in the application to be created� Second� the missing operand
or operator expression has to be generated� This happens according to the
following scheme� let V be the set of variables that are bound at the point where
the missing expression has to be inserted� The missing expression is either a
randomly chosen variable in V or� if V � �� the identity function �x�x� For
example� �x��x� can be mutated into �x���x��x� or ��x��x���x�x by insertion
of an application� Similarly� an application can be removed by erasing either the
operator or the operand expression� but only if the expression to be erased does
not contain an application �i�e�� if it is of the form �x���x�� � � ��xn�x� where x
may or may not be one of the xi� For example� �x���x���x��x� can be mutated
into �x��x� by deleting the underlined portion of an application�
To summarize� the most basic scheme allows deletions or insertions of the fol	

lowing underlined constructs in the context of any closed expression� �i� �hxi���
where � stands for an expression� and hxi is a variable� �ii� �hsimplei��� and �iii�

���hsimplei� where hsimplei is the identity function or a bound variable�� These
moves are independent from one another� In our speci�c case we deviate from
the basic moves in two minor ways� we insert a �x�x only if there�s no bound
variable to insert �this minimizes syntactical change due to insertions�� and we
also allow the deletion of compound expressions of the form �x���x�� � � ��xn�x
�this speeds up things by bundling a number of primitive deletions��
Every combinator �closed expression� can be transformed into any other

combinator by a �nite number of mutations� in the worst case �rst delete all
applications and abstractions of one combinator until �x�x is left� then proceed
by inserting abstractions and applications to yield the wanted combinator�

��� Crossover

Crossover of parse trees is usually the exchange of subtrees 
Koza� ����� In
�	expressions this would correspond to the exchange of sub	expressions� How	
ever� the exchange of arbitrary sub	expressions of combinators may lead to free
variables in the o�spring expressions� thus violating conservation of closure�
Therefore� we allow only sub	expressions that are combinators to be chosen for
exchange� A combinator is an �encapsulated� unit whose action is independent
from the context it is in� and thus could be regarded as a �natural� building
block�

�The substitution of a bound variable by another is possible� but not realized here�
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��� Selection

In a population of n �	expressions an expression� expri� is chosen to reproduce
with probability

pr�expri� � f�expri��

nX
k��

f�exprk� ���

where f�expri� is the �tness of expri�
The o�spring of a �	expression is added to the population� To induce a

selection pressure� we maintain a constant population size by removing another
expression from the population 
Moran� ����� We use two slightly di�erent
schemes for removal The so	called non�elitist method chooses the expression to
be removed with an expression	independent probability

pd�expri� � ��n� ���

The so	called elitist method does the same� except that the �	expression with
the currently best �tness is prevented from being removed�

��� Fitness function

Here we are interested in the behavior of a �	expression expr when applied to
the representation of the number i� numerali�

�expr�numerali � resulti� ���

where resulti is the resulting normal form expression�
The �tness function grades the expression�s behavior� resulti with respect to

the desired target behavior� targeti� This can be done only for a �nite number
of ��tness� cases� The �tness function must assign some viability to expressions
that are not solutions� This poses a di�culty� as there are two ways in which a
�	expression can �fail� when applied to a numeral� �i� resulti is a numeral� but
does not match the desired targeti� or �ii� resulti is not a numeral� In fact� case
�ii� is typical� A simple� problem	independent way to deal with this situation
is to reward a �	expression to the extent that its actual resulti is syntactically
�close� to some numeral� We do by using a regular expression to �nd the biggest
numeral expression numi that is contained in resulti� Then we �punish� the
expression expr in proportion to the syntactical �junk� that resulti contains in
addition to the pattern numi �see below�� Next we use the arithmetic di�erence
between the number represented by numi and the desired one represented by
targeti to assess how much the case i is satis�ed� The �tness contributed by
the case i� case� is simply the product of these two factors� Speci�cally�

case�resulti� targeti� �
primitives�numi�

primitives�resulti�� �z �
syntactical distance

�
�

jnumi � targetij� �� �z �
arithmetic distance

���
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primitives�h�	expressioni� denotes the sum of the number of applications� ab	
stractions� and variable occurrences in h�	expressioni� A numeral numi rep	
resenting the number k consists of two abstractions� k applications� and k � �
occurrences of variables� Therefore� primitives�numi� � � � k��� A small con	
stant � avoids division by zero when numi � targeti� The maximum �tness per
case is ���� when resulti � numi � targeti� If the result contains no numeral
at all� the �tness case contributes nothing to the overall �tness� The overall
�tness for expression expr becomes�

f�expr� �

CX
i��

case�resulti� targeti� ����

where C � � is the number of �tness cases and resulti is obtained according to
����
The functions ��� and ���� are applicable to any arithmetic target function�

i�e�� pairs of natural numbers �i� targeti�� i � �� �� � � �� The only aspect in which
the �tness function does more than that� is in keeping expressions viable that
are not functions mapping numerals to numerals� while inducing a selection
pressure towards arithmetic functions in general�

� Example� predecessor function

As mentioned in the introduction� we chose the predecessor function as an ex	
ample for a �	expression to be evolved by GP� The predecessor function has a
historical meaning in �	calculus and seems to be di�cult to �nd 
Kleene� �����
Its behavior is de�ned as

pred�n� �

�
n� � if n � �
� if n � �

We look for a �	expression that has the same behavior when applied to Church
numerals�
A simpli�ed version of Kleene�s representation for the predecessor function

can be found in 
Revesz� �����

�x�����x���x���x	���x	��x
��x���x
����x���x���x�x��x
�x���x���x���x��x��

�x�����x����x����x���x����x�	��x�
�x�
��x����x���x��

The trick of this expression �not easily intelligible when seeing it as it stands�
consists in introducing ordered pairs� Application of this expression to the
numeral n generates n�� ordered pairs iteratively� such that the zeroth pair is

�� � and the i	th pair �� � i � n� is 
i� i� �� It is easy to obtain 
i��� i from

i� i � �� Finally� the second element of the pair 
n� n � � is projected out as
the result of the predecessor function�
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GP was able to �nd predecessor functions� Among almost ��� runs� four of
them were successful� Many more runs were successful� if the requirement was
dropped that pred��� be �� We will return to this point later�
One of the successful runs turned out ��� di�erent predecessor functions

�in normal form� until it was stopped� All the ones we examined are based on
the same principle� which is di�erent than Kleene�s� We will demonstrate this
principle on the shortest predecessor function found �most of them were much
longer� with the longest having ��� abstractions��
The expression reads�

�x����x���x����x���x	�x	��x
��x����x��x
��x
�x�� �z �
S

��x���x���x��x���x��x�� �z �
A

�

which we may write in abbreviated form as

pred
def

�� �x����x��S�A

Applying this expression to a numeral n� see ���� gives

�pred�n � ��x����x��S�A��f��x��f�
nx�

The �rst reduction step produces ���f��x��f�
n
x�S�An with An � �x����f��x��f�

n

x��x��x���x��x�� Note that A depends on n� The next step gives ��x��S�
nx�An�

yielding �nally

�pred�n � �S�
n
An�

When pred is applied to the numeral n� its subexpression S is iterated n times
on An� When n � �� S is not applied to A� � �x����f��x�x��x ��x���x��x� at
all� and A� normalizes to �x���x�x which is the Church numeral for � �modulo
names of bound variables�� Therefore� �pred�� � ��
In the case of n � �� An�� � �x����f��x��f�

n
x��x��x���x��x�� whose

normal form is A� def

�� �x���x��x���x��x� independently of n � �� When
S is applied to A� the result is the numeral representing �� A similar analysis
�left to the reader� reveals that S� when applied to a Church numeral� acts
exactly like a successor function� The mechanism of this predecessor function is
quite elegant� it applies n � � times an expression S to an expression A� that is
not a numeral� The �rst application is� therefore� not a successor action� but it
happens to return the numeral for zero� The next n�� applications of S simply
increment zero to n� �� yielding the predecessor of n�

�pred�n � �S�
n
A� � �S�����S�� �z �

n times

A� � �S�����S�� �z �
n�� times

�S�A� � �S�����S�� �z �
n�� times

� � n� ��

Throughout our experiments we used � �tness cases �numerals � to �� to
test the arithmetic action of a candidate �	expression� and to evaluate its �t	
ness� Fitness was computed as described above with � � ��� �maximum �tness
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is therefore ���� A population size of ���� was used� Usually ��� to � � ��� ex	
pressions were generated during a run� Other parameters� such as the mutation
rate� were varied in di�erent experiments� In the following we brie�y compare
these settings�

� Parameter settings

For each combination of parameter settings � runs were performed� This is
su�cient for a qualitative assessment� but obviously not for a statistical study�
We brie�y summarize our �ndings�

�� Elitist vs� non�elitist selection� With non	elitist removal �Section ����
the temporarily best expression will get lost sometimes� Under these conditions
GP never found a solution� In particular� the highest �tness score did either not
improve at all or only marginally� even when ������� expressions were generated
in the process� In almost all runs the best �	expression present in the initial
population is �x���x���x	�x	� It corresponds to the constant function f�x� � ��
and� thus� solves two �tness cases correctly� as well as returning numerals for the
others� During most runs better �	expressions were generated� but they were
lost before they could proliferate su�ciently� despite their probability of being
chosen for reproduction �proportional to �tness� is higher than their probability
of being removed �independent of �tness��

�� Normal form� When a �	expression is generated �either randomly at
the outset� or by mutation� or by crossover� it is usually not in normal form�
A �	expression can be admitted to the population either �as it is�� or it can
be normalized� While nothing changes semantically ��phenotypically�� during
normalization �that is� both the original expression and its normal form com	
pute the same function�� the e�ects of a genetic operation can be considerably
widened at the syntactical level� This in turn will a�ect future variation�
The populations whose expressions were in normal form performed slightly

better� An advantage of dealing with normal forms could be the enormous
reduction of the search space� because one is moving between equivalence classes
of expressions rather than individual expressions� This seems to outweigh the
loss of redundancy� which is thought to bu�er the disruptive action of crossover

Koza� �����

�� Number of ��expression generated� After ��� �	expression were gen	
erated the runs had usually converged� in the sense that no signi�cant further
improvement in �tness occurred�
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�� Mutation and crossover rates� Only four out of ��� runs found a
predecessor function� In one of these four runs the mutation rate was ����
and the crossover rate was ��� �i�e� � of the �	expressions were generated
using mutation� �� of the �	expressions were generated using crossover the
remaining �� were duplicated by copying�� These rates correspond to those
used by Koza 
Koza� ����� The other successful runs occurred with mutation
and crossover rates of ��� and ���� respectively� as well as ��� and ���� and
��� and ���� However� the other eight unsuccessful runs performed with these
same settings were not signi�cantly better than most runs performed with other
settings�
Experiments with mutation and recombination rates varying from � to ���

and � to ���� respectively� were performed� using elitist selection� keeping the
expressions in normal form� and generating � ���� �	expressions� The only clear
conclusion from these experiments is that runs where either the mutation or the
crossover rate were zero performed signi�cantly worse than runs were both were
operative�
These explorations con�rm the well	known di�culty of determining �good�

parameter settings in Genetic Programming 
Kinnear� ����� p����

� Discussion

With the exception of the four successful runs� almost none found an expression
that computed anything close to the predecessor function� In �� of the runs
no expression was found that returned the correct value for at least three out of
the nine �tness cases� In only � of the runs an expression solved at least four
�tness cases� Why were most runs so unsuccessful�

�� Fitness proportional selection without scaling is problematic�

Early in a run most �	expressions have a very low �tness and the few better
ones will quickly dominate the population� leading to premature convergence�
Later in the run the average �tness is close to the optimal �tness and �tness
proportionate selection degenerates to random selection 
Goldberg� ����� This
may be counteracted by playing with scaled �tness or tournament selection

Koza� ����� However� our point was not to �ne	tune the system�

�� The requirement that pred��� � �� The nature of the natural numbers
requires that the predecessor of zero be zero� Our success rate would have been
more impressive without this requirement� Dropping it� resulted in �� of the
runs �nding a �predecessor� function� compared to the meager ��� that ended
with a genuine predecessor complying with pred��� � ��
The reason for this behavior is not that the �predecessor� functionality with	

out the zero case is so much simpler to realize� As a matter of fact� the distance
between a predecessor expression �with pred��� � �� and a �predecessor� �with
pred��� � something� was at times just one mutation� GP had to generate only
a few hundred �	expressions to �nd a correct predecessor function� when the
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initial population was seeded with a �predecessor� failing on zero� The point is
that when pred��� had to be zero� the constant function f�x� � � was a trap
�returning always a numeral and satisfying two �tness cases�� The population
converged to one of the many realizations of this local maximum�

	 Concluding remarks

In this paper we have shown that an exceedingly simple version of GP is able
to �nd an elusive function like the predecessor function� Moreover� once a pre	
decessor function was found� hundreds of expressions with neutral functionality
were produced� The mapping from expressions to behaviors on numerals is in	
deed many	to	one� and seems to possess some clustered structure� It was an
interesting aside that the evolved predecessor function works with a di�erent
mechanism than Kleene�s version� Yet both mechanisms make use of a succes	
sor function as a component� We have not systematically tried to evolve other
arithmetic functions� but we can report that GP was successful in �nding� for
example� the addition operation� We emphasize once more that the GP com	
ponent used was minimal� implementing only the essential Darwinian scheme�
and that it was problem	independent in the restricted sense of being usable for
any arithmetic function� The example presented indicates that a computational
analysis of the ��	calculus landscape� is feasible�
What would such an analysis be good for� The issue at the outset was to

understand what GP can do� GP�s power may derive not so much from the Dar	
winian search strategy� but rather from the medium in which it operates� i�e��
the speci�c way in which functional action ��semantics�� is expressed by syn	
tactical structure in a programming language� What is �easy� for an unsugared
GP may simply re�ect the characteristic properties and constraints of a syntax
and its operational semantics� A programming language is a device mapping a
space of symbolic expressions �here �	expressions� into a space of possible be	
haviors �here recursive functions�� The set of possible expressions or programs
is structured by a neighborhood relation� Two programs are neighbors if one
is transformed into the other by a single �basic� mutation re�ecting the gram	
matical structure of the language� In �	calculus� basic mutations are insertions
or deletions of the two term constructors �application� and �abstraction� �see
Section ����� The domain of an untyped �	expression comprises the set of all
possible �	expressions� Our interest� however� is restricted to the behavior on
numerals� On this portion of the domain many expressions will coincide in their
behavior! the mapping from �	expressions to functions �on numerals� is many	
to	one� Call a behavior A �accessible� �in one step� from behavior B� if the
programs that realize A are typically neighbors of the programs that realize B�
From this viewpoint� understanding GP means understanding this �accessibility
relation��
This raises a number of issues� Given a particular function� how �dense� in

��



program	space are the expressions realizing it� Is there a notion of a �frequently
realized� function� as opposed to a �rare� one� What characterizes the most
frequent ones� How are their programs distributed in program space� Are
programs with identical behavior accessible from one another by a few basic
mutations� Do they form networks on which a population could evolve neutrally

Kimura� ����� thereby exploring program space while not losing the currently
best function�
We bluntly take this perspective from a quite di�erent case concerning spe	

ci�c biopolymers� RNA sequences �think genotypes� and their folding into struc	
tures �think phenotypes� which determine chemical behavior 
Schuster et al�� �����
In that context it was discovered �i� that there exists a well	de�ned notion of
�frequent� structure� �ii� that almost all frequent structures are realized within
a small �compared to sequence length� neighborhood of any random sequence�
�iii� and that sequences folding into the same structure form extended con	
nected networks that percolate through sequence space� The implications of
these �ndings for the evolutionary adaptation of populations of RNA molecules
are immediate 
Huynen et al�� ����� the process of adaptation by mutation and
selection is not suited for �nding prespeci�ed �rare� structures in a systematic
way� It will �nd� however� without great di�culty any prespeci�ed �frequent�
structure� no matter where the process starts in sequence space�
Although nucleotide sequences and their folded structures are di�erent ob	

jects than programs and their behaviors� the RNA example serves to illustrate
�in a biologically relevant case� that what the Darwinian process can charac�
teristically achieve is tightly constrained by the statistical regularities of the
genotype to phenotype mapping� By analogy� a starting point for a theoretical
analysis of what GP can do� may be provided by a similar statistical study of
a canonical functional landscape� the ��	calculus landscape�� The advantage of
this landscape is its de�nitional transparency and the large body of mathemat	
ical theory available on �	calculus�
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