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Figure 1: A screenshot of the RuleVis interface, depicting a user in the process of building a rule, consisting of two patterns that
describe the ‘before’ and ‘after’ states of the system (separated by an arrow). The editor panel (left) enables users to add and delete
agents, sites, and links in the visualization in the display panel (right). The text and visualization are mirrored, and changes made to

one representation are immediately reflected in the other.

ABSTRACT

We introduce RuleVis, a web-based application for defining and
editing “correct-by-construction” executable rules that model bio-
chemical functionality, which can be used to simulate the behavior
of protein-protein interaction networks and other complex systems.
Rule-based models involve emergent effects based on the interac-
tions between rules, which can vary considerably with regard to the
scale of a model, requiring the user to inspect and edit individual
rules. RuleVis bridges the graph rewriting and systems biology re-
search communities by providing an external visual representation
of salient patterns that experts can use to determine the appropriate
level of detail for a particular modeling context. We describe the
visualization and interaction features available in RuleVis and pro-
vide a detailed example demonstrating how RuleVis can be used to
reason about intracellular interactions.

Keywords: Rule-based modeling, biological data visualization.

1 INTRODUCTION & BACKGROUND

A central challenge in characterizing complex systems, such as cells,
is to understand how a multitude of heterogeneous agents interact
to generate coherent behavior [20]. The individual components
and their continuous interactions often result in an overwhelming
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complexity, frustrating any initial insight needed for guiding the con-
struction of a model [12]. Rule-based models simplify the process of
constructing meaningful models and make it easier to update them if
underlying assumptions change, and to evaluate the consequences of
these updates [5,33]. In this paper, we present a new component of
the Kappa ecosystem called RuleVis. Kappa is a rule-based modeling
language that uses a context-free grammar to formalize biochemical
notation into a standard format for use in computational modeling.
It enables the construction, simulation, and analysis of models that
can capture the combinatorial complexity observed in molecular pro-
cesses, allowing researchers to reason about the statistical dynamics
induced by the interaction of heterogeneous agents [2].

RuleVis enables researchers to a) construct Kappa rules from
scratch, b) import existing rules, c¢) edit rules, and d) export the rules
into other Kappa applications for simulation and analysis [3], as well
export high-quality figures that can be used in publications or for
educational purposes. The GUI editor allows for construction and
editing of rules without explicit knowledge of the underlying textual
Kappa syntax. The textual editor also enables construction and edit-
ing tasks and is essential for importing rules initially defined using
other software and for exporting rules to interface with other Kappa
applications. Fig. 1 shows the RuleVis interface, demonstrating
in-progress rule creation by a user.

There is a rich history of interactive visualization tools to sup-
port system modeling across many domains [7,8,18,21,23,26-28].
Popular platforms for accessing biological pathways, such as Re-
actome [15], provide a curated database of interactive pathway dia-
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grams that summarize the behavior of known biological processes.
Cytoscape [22,30] is a network visualization platform that generates
effective layouts for large biological networks. Yet, as Gehlenborg et
al. [17] articulate, it remains an ongoing challenge in biological data
visualization to create effective visualizations that provide insight
into intrinsically complex data.

Systems biology is a source of complex data, which requires
specialized semantics such as rule-based modeling. Smith et al.’s
RuleBender [31] provides a visual interface for simulating, visu-
alizing, and editing rules in the BioNetGen Language [19]. More
recently, Sekar et al. [29] introduce an alternative representation
of rules that includes a “tunable compression pipeline” to generate
more compact layouts. RuleVis visualizes patterns and rules written
in the Kappa language, and also facilitates the interactive construc-
tion of new rules via a visual interface, leveraging a user’s visual
intuition when generating Kappa expressions. RuleVis was designed
to interface with other software in the Kappa ecosystem, as shown
in Fig. 2, such as KaSim, a stochastic simulator that records the
system’s state as it moves forwards in time, including the rates of
activation of each rule [3, 16].

In addition to facilitating the construction of patterns and rules
to support execution of rule-based models, the RuleVis interface
supports the visual externalization of a user’s mental model of how
the salient features of a given complex system are interconnected,
supporting communication and collaboration. For example, while
biological pathways represent our current understanding of a given
intracellular process, biologists may need to reason about the rele-
vance of a pathway for a particular context, or determine if recent dis-
coveries impact a current research question. RuleVis aims to bridge
the gap between computational and experimental biologists [9] by
making rules visible and editable. Researchers can explicitly de-
scribe their model of the pathway’s salient elements, quickly produce
high-quality figures, and then invite others to validate the model.
Molecular biologists may not be familiar with rule-based modeling,
and our interface hides some of the more technical details of graph-
rewriting, enabling the user to focus on the correctness of the model,
and to make sure that it accurately represents relevant aspects of the
system under investigation.

Using RuleVis in the context of KaSim, a researcher can iterate
between possible solutions, and modify rules to see how that changes
the output of execution. This iterative approach also lends itself to
the classroom, and an ongoing project integrates rule-based models
into introductory systems biology courses. RuleVis simplifies the
construction of rules, and makes it possible for students to quickly
create and test their own models.

2 THE RuleVis APPLICATION
2.1 Kappa Patterns and Rules

RuleVis is an interactive tool for visualizing and editing rules made
out of patterns, which comprise executable models of complex
systems. Rule-based modeling languages such as Kappa represent
the structures organizing macromolecular agents as patterns. In this
formulation, individual agents are analogous to atoms. Just as atoms
have physical properties that allow them to bind into molecules with
other atoms, agents have biochemical properties that allow them
to form larger patterns with other agents. Each agent has “sites”
with some internal state, which can bind to other sites on other
agents, forming a pattern. These links between sites are referred
to as “edges,” which can only be placed once per site and cannot
connect to a site on the same agent. Just as molecules undergo
chemical reactions that cause their bonds to change, rearranging the
atoms, a Kappa rule defines how a pattern can change its internal
state or be transformed in the presence of other patterns [3]. Given
appropriate sets of rules, the Kappa graph rewriting engine is able
to generate coherent oscillatory behaviors that emulate complex
biological behaviors [16].
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Figure 2: RuleVis is situated within the Kappa Language ecosystem,
providing graphical editing capabilities for constructing individual pat-
terns and rules used in different Kappa applications. In this figure,
individual applications are indicated by the boxes with dashed borders.
These applications support a range of analysis tasks (gold), data
processing tasks (navy blue), and visualization outputs (teal).
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Figure 3: Examples of simple Kappa patterns represented both in text
and their associated visual form. Here we show a range of sites in
various unbound and linked configurations.

More explicitly, a pattern is a site graph where multiple types
of the same agent are allowed to occur, but each site can have at
most only one edge [10, 11]. In the Kappa language, an expression
consists of its type, or name, followed by a list of comma-separated
site names, with the state of a site specified after its name. Sites
can be in one of two states: an internal state (usually representing
a modification state) enclosed in curly brackets, and a link state
(usually representing a bond), which is specified as a non-negative
integer written between square brackets. This value determines
when an edge is present between two sites. The link state of a site
that is unbound (free) is indicated with a period in square brackets.
Fig. 3 demonstrates this language structure with a few examples that
map a textual representation of a pattern to its visual representation.

An expression of a rule in the Kappa language consists of two
patterns separated by a right arrow, providing an abstraction of
protein-protein interactions, where specificity of the molecular in-
teractions is not important for the overall model [2]. Fig. 4 depicts
visual representations of rules that transform a pattern on the left
into the pattern on the right. The number of agents on the left and the
right side of the expression must match in order for the expression
to parse correctly. Every rule contains a fixed number of agents on
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each side, each of which has the same number of sites on each side.
However, bond state can vary freely between sides if no one site
possesses more than one bond on either side. RuleVis presents both
the textual representation and the visual representation of each rule
to the user, either of which they can manipulate to receive real-time
feedback. Any valid Kappa expression can be typed into our ap-
plication to visualize it instantly, and any interactive change to the
visual graph will likewise update the textual representation. RuleVis
includes a set of constraints that enforce rules to be “correct-by-
construction,” whereby only valid expressions can be visualized. For
example, when using the GUI editor, invalid operations highlight
links and/or sites in red. Likewise, expressions typed in text editor
will not update the visualization until the syntax entered explicitly
fulfills the requirements of Kappa’s context-free-grammar.

2.2 Application Details

The RuleVis application consists of an editor panel and a display
panel. The editor panel contains three tabs. The first tab provides a
graphical user interface for creating and editing graphs (as shown
in Fig. 1). The second tab provides a text editor where rules can be
created or edited using Kappa language syntax, and then immediately
visualized in the display panel. The third tab provides options for
saving data in different formats. RuleVis supports downloading
an SVG file of the rule diagram (which can be loaded into image
editing software such as Inkscape or Adobe Illustrator), as well
as exporting a JSON file that contains the necessary metadata to
recreate a rule visualization for further editing in a later session.
The display panel takes up the majority of the screen real estate,
and produces a graphical representation of Kappa patterns and rules.
Users can interactively edit these rules and update their layout on
demand.

Every Kappa rule, consisting of two pattern expressions— the
‘before’ and ‘after’— is visualized using two copies of a merged
expression graph, so that initially two copies of a node remain in
the same position on both sides of the rule. Every expression is
visualized as a graph with ‘agent’ nodes directly connected to one
or more ‘site’ nodes, and where site nodes for one agent can bind
to the sites nodes for another agent. Agents are displayed as larger
circles, while each of their associated sites is visualized as smaller
yellow circles. Pressing the ‘Add Agent’ and ‘Add Site’ buttons (in
the editor panel) creates new node elements in the display panel, and
produces a text box for entering a name for the new node. A default
color palette distinguishing agents with different names, and RuleVis
automatically matches the colors of agents given the same names.
A solid gray line is used to indicate that agents are bound together
(via their sites). Anonymous bonds, in which sites are bound, but
not directly associated with a specified agent, are visualized with
a dotted gray line. Sites can also be in an unbound state, which is
indicated with a black dot placed on their edge. Fig. 5 shows an
example visualization that includes each of these visual encodings,
demonstrating the mappings between the textual representation of
the rules and the visual representation.

Agents and sites can be interactively re-positioned in the display
panel. Our layout constrains the position of any agent, site, or link to
within the extents of the canvas, preventing nodes from falling out of
view. Agents, sites, and links can be deleted while still maintaining
the element hierarchy. To preserve the balancing of both sides of the
rule, as well as speed up the creation of the visualization, placing an
agent or site in the canvas populates both the right and left hand side
of the expression, and changes can be made on a single side using a
‘delete’ tool to carve out differences between the patterns on either
side of the rule. We also chose to geometrically link together the left
and right hand sides of the expression, so that, for example, when
a node on one side is moved, the corresponding node on the other
side of the expression also moves simultaneously. This makes it
easy to map between the two sides of the expression, and reflects the

Figure 4: Example rules visualizing ‘transfer of chains, where con-
secutively linked agents (chains) are moved to a different agent in
the graph. (A) shows the transfer of a chain of two U agents from
one agent E onto the end of another U agent chain connected to a
different agent E. (B) shows the transfer of a chain of length 1 onto a
chain of length 3. (C) shows the transfer of one chain onto another
while preserving the information about the tail ends of their chains.
(D) shows a rule for concatenating two chains of arbitrary length [2].

balanced format in which chemical expressions are typically written.

2.3 Technical Implementation

RuleVis is a lightweight web application written in Javascript that
runs in any browser. We use D3.js to manage the interaction with the
dynamic SVG canvas [1] and the the Cola.js library to implement the
constraint-based layout of our visualization [13]. We use Lahodiuk’s
implementation! of an Earley parser in Javascript to implement the

Uhttps://github.com/lagodiuk/earley-parser-js
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Figure 5: Example of a rule with many changing agents and multiple
site states. There are unbound sites with no links, sites bound to
the sites of other agents, and one virtual bond, whose identity is not
necessarily preserved in the context of the rule. The colors in the text
syntax and network visualization are aligned, where blue and green
correspond to agents DNA and POLb and the yellow text corresponds
to the sites.

context-free grammar specified by Kappa documentation, benefiting
from the modularity of mathematical notation [14]. Besides pro-
viding live feedback to experienced rule-writers, the manipulation
of pre-existing example rules is a valuable technique for learning
systems modelling with Kappa. For other visual expressions, this
would be impossible without a robust serialized representation.

3 USAGE SCENARIO

Here, we provide brief examples in modeling DNA repair mecha-
nisms, using RuleVis to understand each step of creating salient rules
for this model. DNA molecules in a living cell are subject to muta-
tion through contact with other chemicals or environmental radiation.
To regulate this process, organisms have several different types of
repair proteins, which can vary species to species. Models of the
functionality of different repair mechanisms are used to understand
the behavior of various diseases, such as cancer, which can result
from mutations to repair protein coding regions of the genome [6].
Fig. 6 shows sets of interactions for two specific DNA repair
proteins, DNA ligase 3 (LIG3) and Apurinic/Apyrimidinic Endo-
deoxyribonuclease 1 (APE1). LIG3 is responsible for repairing nicks
and gaps in double stranded DNA molecules. It is present in both
the mitochondria and nuclei of human cells, catalyzing the reaction
for reconnecting DNA during base excision repair, along with its
cofactor protein XRCC1 [24]. A “nick” is a discontinuity between
two nucleotides in a double stranded DNA molecule, where there is
no phosphodiester bond between them. Nicks can be created inten-
tionally during cellular regulation, or as a stochastic process due to
environmental conditions [4]. A “gap” is a missing sequence of nu-
cleotides on one strand of double stranded DNA molecule [25]. The
protein APE1 repairs nicks and gaps in the DNA as well, but it also
acts as the major apurinic/apyrimidinic (AP) endonuclease in human
cells. In general, APE1 works in conjunction with other enzymes to
repair damaged or missing purine bases on a DNA molecule [32].
These example rules were originally developed over several years
to create simulations of the DNA repair process. Our figures demon-
strate that RuleVis can quickly and reproducibly visualize existing
executable rules, and use them to generate publication-ready figures.
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Figure 6: Subset of rules for DNA repair proteins DNA Ligase 3
(LIG8) and Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1),
as described in the usage scenario in Sec. 3. LIG3 is responsible
for repairing nicks and gaps in DNA molecules. Similarly to LIG3,
APE1 is also responsible for repairing nicks and gaps along a double
stranded DNA molecule, and is also able to repair apurinic sites in
coordination with other proteins. Site names are only shown where
changes occur to highlight differences between sides.

RuleVis can accelerate the iterative scientific process of rule construc-
tion and evaluation, supporting the refining of rules for biological
accuracy, promoting scholarly discussion and peer review, and fos-
tering engagement with members of the broader biological research
community who may not be familiar with rule-based modeling.

4 CONCLUSION

RuleVis is an effective tool for constructing patterns and rules, and
we continue to work with our systems biology collaborators to fur-
ther integrate it into the Kappa software ecosystem. For future work,
we plan to include additional style options, including a range of color,
size, and glyph customization, as well as additional layout choices,
making RuleVis more useful for generating publication-ready fig-
ures. Furthermore, we will explore the use of visual highlighting
to emphasize changes between the two sides of a rule, as well as to
indicate mappings between the visualization and text representation.
RuleVis is available via our open source GitHub code repository
athttps://github.com/CreativeCodingLab/RuleVis, along
with source code, instructions, and additional documentation.
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