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Challenges for semantic information technology in
the life sciences

In each domain, harnessing the opportunities afforded
by the Internet proceeds according to a pattern: connec-
tivity; schematization of data; schematization of process.
The early business-to-business efforts exemplify this; be-
ing connected excited dreams of business efficiencies
achieved through electronic interchange, but invariably
demanded a common understanding of the data being
exchanged. Likewise, such schematization efforts led to
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a recognition of the need to specify (and thence ratify)
protocols by which the schematized data is exchanged.
This history is codified in artifacts and standardization
efforts like EDI, XML [3], XML schema [1] [2], and the
emerging choreography standards [4].

As the Internet becomes increasingly embedded into
daily practice in academic and industrial research, a sim-
ilar development is necessary in making the lab-to-lab
connectivity a productive reality. Very recently, Tur-
ing award winner Jim Gray was instrumental in working
with the astronomy community to help them schema-
tize and then provide web-service-based access to their
data, dramatically increasing productivity in that com-
munity. The geologic and oceanographic communities
are also undergoing this process. Due to the nature of
biological data, however, the life sciences, unlike these
communities, faces particular challenges to realize this
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development.

The first challenge is the volume of data. Projects
at the scale of the Human Genome Project, and cor-
responding technological advances, like high-throughput
techniques, have not only produced an avalanche of data,
but opened the door to methods and further investiga-
tions that will produce even more data. The volume of
the data means that a post-facto annotation effort requir-
ing human intelligence to add semantic data will almost
certainly be impractical. It also presents serious chal-
lenges for existing search technology. Much of the in-
terest and attention on high-performance computing in
application to the life sciences can be seen as a witness
to this fact.

The second challenge is the kind of data. Biological
entities possess at all scales internal structure that en-
genders behavior. When networked together, such enti-
ties assume functional roles towards meeting a multitude
of constraints derived from the need to represent, store
and process biological information. Data about such en-
tities is therefore not only ‘syntactical’, like sequence in-
formation for DNA or structure information for proteins,
but essentially interactional. The high-throughput tech-
niques responsible, in part, for the data volume are also
yielding data about the decentralized, yet highly struc-
tured ways in which the many molecular pieces of a cell
work together in producing ‘organization’. Thus, while
much of genomic data can be thought of as structural
in nature, data in post-genomic biology will be greatly
concerned with behavior, e.g. metabolic and signal path-
ways, and with behavior in context, e.g. gene expression
(as opposed to gene sequences).

While we stipulate that some of these behaviors will
be discovered by human ingenuity through experimen-
tal efforts, others, we submit, will be discovered through
computational methods be they fully or only partially
automated. Naturally, these methods must be kept in
close contact with the established base of trusted fact
and experimental result, but over time should guide the
growth of that base and inform what comes to be taken
for ‘trusted fact’. If these methods are to employ data
and models from multiple different research organizations
(be they academic lab to academic lab, or academic to in-
dustrial or lab to lab within a single large company), they
must rely on a common understanding, i.e. a schema,
of the data exchanged. That is, to say, they must rely
on a schematization of dynamics, behavior and behav-
ior in context. In all likelihood, they will rely upon
such a schematization not only to store and retrieve data
about the behavioral repertoire of biological components
and systems, but also to build up-to-date models on-the-

fly, which may, in turn, amend the semantic information
stored and inform experimental choices.

The schematization problem is thus foundational in at
least two ways. If one takes enterprise efforts at data
integration as a proxy, the story of the tower of babel is
no myth, but a day-to-day reality. In point of fact, in
that domain, the places where schematization amongst
autonomous organizational entities does result in agree-
ment is precisely at points of interchange in protocols the
participation in which is of significant recognized value
to all parties. But, as noted before the problem is much
more serious because post-genomic data will increasingly
be about system dynamics. The likelihood is that along
with the explosion of raw biological data there will be an
explosion of dynamical biological models – after all, it’s
much less costly to generate models than it is data. And,
the point of modeling is to explore the space of possible
systems to be more effective in the way we go about ask-
ing questions that generate real data. In fact, we create
models in the hope that they allow us to transform data
into information. Schematization of dynamics, needless
to say, is notoriously difficult. If our understanding of
computer programs represent any kind of proxy for the
dynamics of these systems then we should expect this
data to be of much greater complexity, and more to the
point to present particular challenges for schematization.
Likewise, semantic-based search on temporal and dynam-
ical data is notoriously difficult and is an active field of
research.

The third challenge is the sensitivity of the data. As
much of this data is directly related to human health,
much of it will be central to commercial interests, na-
tional security and personal privacy concerns. The sensi-
tivity of data means that dependencies amongst semantic
elements may be severed because some portion that data
must be hidden from view. A useful semantic technology
will be able to provide models that remain informative
even when parts of them are intentionally obscured or
under specified.

Behavioral representations

For data about the dynamics of biochemical and bio-
logical systems, such as is captured in Systems Biology
Markup Language (SBML) [7], we think computation it-
self provides a useful proxy to help with a requirements
analysis of the problem of specifying and analyzing se-
mantics. Specifically, in computing dynamics is seman-
tics. The specification of the semantics of a computer
program is a complete account of its dynamics. From this
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point of view, we envision an appropriate specification of
the dynamics of biochemical and biological systems that
need not be laboriously annotated. It will already contain
its semantics. The problem is to extract and manipulate
that semantic information in useful ways.

While dynamics is semantics, in the world we live in,
we are sentenced to syntax. The history of logic and com-
putation is a history of compromising between the neces-
sity for syntax in expressing reasoning about anything
and the annoying interference from spurious syntactical
constructs [6]. A physicist would say the actual mate-
rials matter. A computer scientist would say the code
matters. The best compromises, therefore are those in
which the language employed to specify the behavior of
a system have some immediately recognizable correlation
to the domain to which it refers. In that case, an analy-
sis of the expression representing a system will reveal
something about the system’s dynamical (i.e. semanti-
cal) properties. Classical mathematical models, like or-
dinary differential equations, enjoy this property in some
measure. Mathematical analysis of such systems of equa-
tions can reveal properties of the systems they represent,
e.g. existence or identity of fixed points, limit cycles, sta-
bility properties, etc. In both cases, programs as well as
differential equations, complexity and non-linearity place
limits on the static analysis off dynamics, at which point
one resorts to ‘running’ (simulating) the respective syn-
tactic representations. It would seem, then, that we seek
a language for molecular biology – or segments thereof
– that would contain the semantics of molecular interac-
tions in a fashion amenable to static analysis, e.g. model-
checking, and animation, through execution.

Amongst the various accounts of the semantics of pro-
grams, one stands out as particularly promising, the mo-
bile process calculi [8] [12]. Their formal structure il-
lustrates the requirements for extracting and manipulat-
ing semantics from dynamical specifications. In the mo-
bile process calculi semantics follows from, or is based
upon programs as autonomous interacting entities. The
fact that the mobile process calculi are, to date, the
only family of computational models that exhibit all of
the following properties simultaneously and also have a
track record of successfully modeling chemical, biochem-
ical and biological systems [9] [11] [10] can be traced to
this semantic foundation.

• Completeness – formally, this is Turing complete-
ness; informally, it means the model is expressive
enough to write down any reasonable program.

• Compositionality – formally, the model is an alge-
bra; informally, the model enables building larger
systems out of smaller systems.

• Concurrency – the model has an explicit represen-
tation concurrent execution of autonomous, inter-
acting computational agents.

• Cost – the model has an explicit account of re-
sources like space and time.

Having these properties simultaneously means that dy-
namical data may be manipulated in a modular fashion.
Independent dynamical models may be brought together
to form composite models; and, the dynamics of those
composite models may be analysed, that is semantic data
extracted, in terms of the dynamics (read semantics) of
their components. This gives rise to dramatic gains in
efficiency of representation and calculation.

But, this kind of modularity also provides a framework
in which to control the view of data. Some components
in a modular specification may be opaque, or specified up
to logical properties, without revealing detailed internal
structure. Thus, for many situations it is possible to yield
sensible and informative specifications without revealing
sensitive data.

In this connection it is important to note that dual to
these calculi, in a mathematically precise notion of dual-
ity, are a family of logics including the Hennessy-Milner
Logics [8] and the recently developed Spatial Logics [5],
that allow one to express behavioral and spatial proper-
ties as formulae. As noted above, these formulae serve to
provide abstract specifications of components, allowing
data-hiding. But, they also serve as a natural basis for
a query language, and the corresponding model-checking
algorithms serve as a basis for query and search engines
that may be applied to individual or collections of mod-
els.

Moving from these general observations to applications
in biology we might characterize – in an admittedly sim-
plistic way – a class of work on signal pathways in the
following terms. A (cell’s) surface is submitted to (a bio-
chemical soup constituting) environmental stimulus. Due
to advances in technology we can see how the (cell’s) in-
terior responds (in terms of gene expression). The biol-
ogist’s job in this setting is to propose a mechanism of
the interior that when presented with this environmental
stimulus gives rise to the observed behavior.

We may express such a situation in the process alge-
braic framework as follows. We construct an agent ex-
pression corresponding to the environment to which we
submit the (cell’s) surface, call it E. This is reasonable,
because the environmental stimulus is under experimen-
tal control. Likewise the proposed interior mechanism to
be evaluated is expressed as an agent expression, call it P .
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Finally, we express the observed gene expression as a for-
mulae, say G. We can submit to standard model-checking
techniques the assertion E | P |= G, which states that P
in the environment E respects the observations G.

This calculation may be used by an individual biol-
ogist in evaluating her hypothesis about a mechanism.
But, it may also be used by a biologist searching for a
mechanism (that has already been modeled and stored
in a repository) that responds to an environment in a
way that meets her requirements for observed gene ex-
pression.

conclusion

Biological data are increasingly about the interaction
of components in a network context. Intriguingly, in al-
most every domain of industry and research, the world
wide web is driving interaction amongst individual re-
searchers, organizations, and, increasingly computational
agents. We submit that semantic questions arise at

points where agents, be they molecular, computational
or human, interact. We assert that activities such as

• expressing and publishing a dynamical model;

• investigating whether an expressed dynamical
model enjoys an expressed property;

• search amongst bio-dynamical models for ones en-
joying expressed properties

are instances of communication acts, i.e. of interac-
tion. We argue, therefore, that a computational model
of interaction, as is realized in the mobile process calculi,
provides a powerful proxy for understanding the require-
ments of a useful semantic technology in the world wide
web.
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