
Beyond Digital Naturalism

Abstract The success of Artificial Life (ALife) depends on
whether it will help solve the conceptual problems of
biology. Biology may be viewed as the science of the
transformation of organizations. Yet biology lacks a theory of
organization. We use this as an example of the challenge that
ALife must meet.
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If—as I believe—physics and chemistry are conceptually inadequate as a

theoretical framework for biology, it is because they lack the concept of
function, and hence that of organization.... [Plerhaps, therefore, we should give
the ... computer scientists more of a say in the formulation of Theoretical
Biology.

—Christopher Longuet-Higgins, 1969 [28]

I Life and the Organization Problem in Biology
There are two readings of "life": as an embodied phenomenon and as a concept.
Foucault [20] points out that up to the end of the 18th century, life does not exist: only
living beings. Living beings are but a class in the series of all things in the world.
To speak of life is to speak only in the taxonomic sense of the word. Natural histoiy
dominated the classical age and is foremost a naming exercise: "The naturalist is the
man concerned with the structure of the visible world and its denomination according
to characters. Not with life." (p. 161). There is a concurrent interest in how things
work, but it is an interest that remains disconnected and in tension with the naturalist
tradition.

In the early 19th century, natural history makes a decisive step toward a biology
when the notion of character becomes subordinate to the notion of function, when
classification becomes comparative anatomy. Life is conceptualized as something func-
tionally organized, and organization is foreign to the domain of the visible. A character
is weighted according to the importance of the function(s) it is linked to. In contrast
to the classical age, characters are seen as signs of an invisible deep structure. Causal
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argumentation is reversed: A character is not important because it occurs frequently,
but rather it occurs frequently because it is functionally important. Life as a concept
becomes manifest as organization, organic structure, that is, organism. In the classical
period, living beings were perceived largely as points in a coordinate system of names.
Now they require an additional "space of organizational structure." This sets the stage
for considering the problem of the modification and transformation of organization.

Darwin posited evolution as an effect of what basically amounts to be a force [39]:
natural selection. Natural selection is a statement about kinetics: In a population, those
variants of organisms will accumulate that are better able to survive and reproduce than
others. If there is ongoing variation and if variation is (at least partially) heritable, then
the continuous operation of selection kinetics will lead to the modification of living
organizations. One would like to understand, however, how organization arises in the
first place. Darwin's theory is not intended to answer this. Indeed, this is apparent upon
inspection of the formal structure of the theory. Neo-Darwinism is about the dynamics
of alíeles within populations, as determined by mutation, selection, and drift. A theory
based on the dynamics of alíeles, individuals, and populations must necessarily assume

the prior existence of these entities. Selection cannot set in until there are entities to
select. Selection has no generative power; it merely dispenses with the "unfit," thus
identifying the kinetic aspect of an evolutionary process. The principle problem in
evolution is one of construction: to understand how the organizations upon which the
process of natural selection is based arise, and to understand how mutation can give
rise to organizational, that is, phenotypic, novelty. A solution to this problem will allow
one to distinguish between those features of organizations that are necessary and those
that are coincidental. Such an endeavor requires a theory of organization. Yet biology
lacks a theory of organization. The need for a conceptual framework for the study of
organization lies at the heart of unsolved problems in both ontogeny and phylogeny.
Can Artificial Life (ALife) illuminate biology?

2 Replicator Equations Without Replicators
One way of viewing Darwin's theory is to consider "fitness" (short for "the ability to
survive and reproduce") to be an undefined term, in analogy to an axiomatic structure
[48, 49]. The principle is applicable whenever its conditions are met: autocatalytic
growth kinetics, variation, heritability. At the same time, it leaves open what the subject
entities are. They may be molecules, genes, cells, organisms but also populations,
strategies, or even artifacts—it depends on the question one is asking. What is required,
however, is a coherent development of "fitness" at the chosen level of description.
While Darwin clearly had in mind the individual organism, it is not difficult to see how
to abstract from Darwin's theory a structure capable of different behaviors that some

might even object are "Darwinian."
Darwin's kinetic theory allows for multiple models in which fitness and its referent

are specified. This prompted a debate about whether there is a fundamental referent
and about what it might be: either the gene, or the individual, or the group, or the
species, you name it. There are advocates of a single unit of selection, and others who
claim that a description in terms of multiple units is essential [7].

Among the clearest and sharpest proponents of a single unit view is Richard Dawkins
[11] with his notion of replicator selection. The "fundamental level of selection,"
Dawkins maintains, is "among replicators—single genes or fragments of genetic mate-
rial which behave like long-lived units in the gene pool." More generally, a replicator
is defined "as any entity in the universe which interacts with its world, including other
replicators, in such a way that copies of itself are made" [11] (our emphasis). We next
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exemplify how entities can behave kinetically like replicators without being replicators,
leaving room for more than one "fundamental" level of selection.

Consider a generic balance equation for the concentration n¡ of an object i in an

unconstrained population of n object species: drc,/di = h, 
—

I",, i = 1,..., n, where
T, describes the net growth of object species i. It is convenient to switch to internal
coordinates or relative frequencies, x¡ = n¡f ]jT\ n¡, 0 < x, < 1 and Y1íxí = 1> 'n which
the balance equation becomes:

<dJ2rJ> i=l,...,n. (1)

This can also be viewed as the equation of a flow reactor where objects i are produced,
and a proportional dilution flow compensates for the excess production in the system at
any time. If all T, are just constants, T, = a¡ > 0, then the stationary state of the system
will simply contain all object species sorted according to their relative magnitude of
growth: x, = «, / 57,, aj-

The situation changes with autocatalysis, T, = b¡Xi, as it occurs when objects are

replicated (asexually), that is, are copied,

Xi = Xi I bi — >J bjXj J = Xi (bj
—

(b)), i = 1,..., n. (2)

This is one description of selection. The effect of Equation 2 is competition, as can be
seen from the stationaiy state, which consists of only the object i with the largest ¿>,. ¿>¡
is the "fitness" of object i, and the evaluation of fitness that is implict in autocatalysis is
nicely expressed by Equation 2: At any time, the growth term b¡ is compared against
the average ( b). If it is below (above), the net effect will be a negative (positive) growth
rate of species i. As a result, the average will shift toward higher values until it matches
the maximum b¡: the survivor. This is a choice mechanism that is quite different from
sorting.

The story gets an additional twist when fitness is frequency dependent, that is, when
the (asexual) reproduction of i depends on the composition of the population at any
time: r,- = Xj'57. CijXj. Equation 1 then becomes:

Xi = Xi
•

( 7 CijXj
—

y crsxrxs ) = x, I } CjiXj
—

(c)], i = 1,..., n. (3)ç~ç~Mç~»)
The major difference is that Equation 3 can lead to cooperation. Several mutually de-
pendent species may coexist indefinitely and exhibit complicated dynamical behaviors.
Selection need not be a naive optimization device.

Variants of both Equations 2 and 3 have been widely studied in the context of, for
example, imperfect reproduction (mutation), or genetics with Mendelian as well as non-

Mendelian transmission [10, 12, 13, 16, 42]. (For an overview see Hofbauer and Sigmund
[22]). Equation 3 has been termed the replicator equation [38], and it represents the
essence of replicator selection: Autocatalysis induced by replication (reproduction,
copying) causes the composition of a population to shift based on an endogenous
comparison against the population average. Of course, what is being chosen in this
process is not easy to say when the mutual interdependencies are intricate.

We resume our theme of organization with a simple observation: Autocatalytic ki-
netics can be induced without replication. Suppose that the interaction between two
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object species j and k does not result in the replication of either j or k but in the pro-
duction of a different object species i, as is the case in a chemical reaction. Suppose
further (for the sake of simplicity) that objects j and k are effectively not used up in
the reaction, that is, each time they react we are given back one instance of each (call
it "food"). The overall scheme of this "stylized reaction," then, is:

J+k — i + j+ k. (4)

Notice that this is not autocatalytic in j or k, because they appear on both sides of the
reaction equation with the same stoichiometric coefficients. Let the rate constant of this
reaction be d'k (possibly zero). Equation 1 then becomes [41]:

Xi = Y7 /_, d'jkXjXk
—

Xi 2_\ d'rsxrxs, i — 1, 2,..., n. (5)
j k r.s.t

Consider now a set K of object species such that for each i e K, there exists a pair
/, k e K, which produces i. Such a set maintains itself, but it does not copy itself-—
it only makes more of itself. Consider now a number of disjoint self-maintaining sets
J, K, L,..., which interact with one another in such a way that for each reactive pair
k e K, j e /, the product is in K or / (but distinct from k and j). Now we simply
rearrange Equation 5 by collecting all individual object species i e K into a set with
relative frequency xK = YlkzKxk£K- Let the frequency of i in its own set be y,e^ =

xieK/xK. We obtain:

Xk
—

X/( Y,CKJ(t)xj - (C(t))
.

./
((,)

with the coefficients

ieK jej keK

Equation 6 has the form of a replicator Equation 3- However, the sets K do not replicate
nor do any of their members (by definition). These sets only grow, and they do so

by reflexive catalysis or self-maintenance at the set level. This induces a selection
kinetics identical to the replicator case. (A similar observation is mentioned in Eigen
[12].) However, the relevant units are not replicators. Hence, we cannot refer to this
as "Darwinian selection," because Darwinian selection rests on reproducing entities. It
is a generalization of it, and we will simply call it selection. Hence, we have sorting
when the growth kinetics of entities is not autocatalytic, and selection when the growth
kinetics is autocatalytic. In the special case where entities are replicators, selection
becomes Darwinian selection. In the case where entities are not replicators, selection
can still occur at the level of aggregate entities, but it cannot be Darwinian.

This is our first checkpoint toward a firmer notion of organization. An organization
is a set of entities that continuously regenerates itself by transformation pathways (the
d', k) internal to the set [29, 30], All that is required is sufficient connectivity: The matrix

dik = J2j(d'k + d'k ) must be irreducible. Many researchers noticed the possibility
and the significance of self-maintaining sets of chemicals [8, 12, 23, 24, 35, 37], and
probably many more). The disagreement, however, is over the likelihood of such sets

214 Artificial Life Volume 1, Number 1/2



W. Fontana, G. Wagner, and L. W. Buss Beyond Digital Naturalism

given certain kinds of molecules and their importance in shaping the (early) history of
life. Simple self-maintaining ensembles have recently been obtained in the laboratory
of Luisi [1].

It is important to reiterate the necessity of making a logical distinction between repro-
duction and self-maintenance. There have been occasions where these two orthogonal
concepts were conflated [15, 23], probably because self-maintenance was considered
as an alternative to an origin of life through primitive replicatory elements. It should
be clear so far that self-maintenance has little to do with making two individuals out
of one through transformations internal to the individual. Hence, it cannot be an alter-
native to reproduction. Reproduction does not necessarily require organization either,
as exemplified by simple self-replicating molecules [44, 46] or a viral RNA in the pres-
ence of its replicase in the test tube [40]. This assumes that we are willing to make a
distinction between a molecule or a pair of molecules in complementary association
and an organization. Self-maintenance isolates a different aspect of individuality than
reproduction. The former requires organization, and the latter requires means for its
multiple instantiation, as, for example, by compartmentalization through spatial sepa-
ration, or membrane enclosure, or plain chemical bonds. Clearly, our intuitive notion
of life includes both organization and reproduction. They are conceptually different,
and the implementation of one need not be the implementation of the other.

The main point here was to show that nonreplicatory but self-maintaining sets do
exhibit the kinetics required for selection, though, by definition, not of a Darwinian
kind (provided one accepts [3] as a proper dynamical formalization of selection). The
integration of replicators and primitive organizations leaves room for multiple units of
selection (in the sense of Buss [7]).

Of course, the modification of organizations is hardly identical to the evolution
of replicators. What does it mean, if anything, for nonreproducing organizations to
"vary"? This question cannot be adequately answered within a description where the
micro-entities are atomic structureless units as is the case in the conventional dynamical
systems described earlier. The reason is that the question draws attention to structure-
function relationships.

3 Organizations Must be Constructed

An extensional description is roughly one in which the entire universe of relevant
objects is given at once, in extenso. It is basically a look-up table that may even

be so large that nothing can store it. The modern set-theoretic view of a function
is of this kind: A function is a collection of ordered pairs (in, out), for example,
x2 = {(0, 0), (1,1), (2,4), (3f9), •• } An extensional framework also characterizes
traditional dynamical systems. Their definition requires an extensionally given network
that specifies which variables couple with which other variables in what ways. For a

particular kind of reasoning, this is quite useful. It certainly is adequate in setting up
the gravitational equations of motion for a system of a few planets, where the relevant
knowledge can actually be tabulated. This framework does not easily fit biology,
because the objects denoted by the variables are typically of combinatorial complexity.
If Equation 2, suitably augmented with mutational terms [12], were to describe the
replication, mutation, and selection of RNA sequences of length 100, then we would
have to specify 1060 equations with their corresponding coefficients. The problem is not
so much that this situation forces a stochastic description, because only a vanishingly
small fraction of all these possibilities can be realized. More fundamentally, such a

description is still extensional as long as the relevant properties—the replication rates
bj as determined by the tertiary structure, for example—are not a function of the
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sequences. The major point, the fact, namely, that there is some inner logic that
connects sequences and their replication rates, is lost. It is precisely this logic that
makes the problem an interesting one. The question is how that logic structures a

population under a given dynamics.
The same holds for ecological modeling in terms of Lotka-Volterra equations, or for

game dynamics. In his recent work, Lindgren [27] considers agents with an internal
structure that determines the strategy they play in a given game. The structure of both
opponents i and j, then, allows one to infer the coefficient c,y in Equation 3. As in
the case of RNA sequences, a "strategy-grammar" opens up a space of combinatorial
complexity and permits with finite means the endogenous specification of an infinity
of interaction coefficients.

To summarize, in contrast to extensional models, constructive models are founded
on objects with a grammatical and, therefore, combinatory internal structure. Note,
however, that in the previous examples, the internal structure of agents or objects does
not affect the functional character of their interactions. These always remain copy
actions: i (+ j) — 2 i (+ j), as is evident from the factorization of Equations 2 or

3. The internal structure only codifies the strength of an interaction that is kept fixed
in kind for all agents. This is precisely what changes in going from Equation 3 to 5.
While the dj k may still specify strengths, in addition they require an underlying logic
that specifies which object i is implied by a pair of objects (j, k).

This suggests a distinction. In the previous examples concerning the replication of
RNA sequences or strategies, new entities enter a finite population through mutation.
The cause of a mutation is a chance event, meaning that it stands in no relation to
its effect. We refer to models in which new agents are constructed in an unspecific
(essentially stochastic) fashion as weakly constructive. This is to be contrasted with
a situation in which the encounter of two agents implies a specific third one, as in
Equation 5. Models of this kind will be termed strongly constructive. The prime
example of a strongly constructive system is chemistry. A strongly constructive system
that contains agent A must cope with the network of its implications. But it also must
cope with the implications of the implications—and so on. Organization is here a

network that results from convergence to both relational (logical) and kinetic self-
consistency. The logical component induces a structure that is absent in the weakly
constructive case. Think of a "knowledge system" where the agents A, B, C, etc.
stand for propositions, and where the deterministic construction of new propositions
results from "interactions" that we may call rules of inference. The organizational
analogy between "consistent systems of belief" and metabolisms is, in our opinion, not

completely superficial.
We have reached the next checkpoint toward a firmer notion of organization. An

organization is defined in terms of a strongly constructive model: a system of transfor-
mations [30, 451. This distinguishes it from a weakly constructive version of a Lotka-
Volterra or a replicator equation (Equation 3) describing an ecology of individuals that
only replicate and mutate or undergo recombination. There is no doubt that an eco-

logical population can be highly organized. However, the next section will clarify that
the concept of organization suggested by a strongly constmctive system is different
in kind. Clearly, in real life, weakly and strongly constructive aspects are entangled.
Disentangling them will be an important step in understanding what is necessary and
what is contingent in the history of life.

An extensional system of equations, like Equation 5, is useful to capture some dy-
namical aspects, but useless to capture the constructive nature of organization. If we
were to introduce a new object, say v, into Equation 5, we would have to specify
its constructive interactions with the other objects arbitrarily (e.g., at random [23, 24]).
This, however, eliminates precisely what is interesting about organization. The con-
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structive aspect is essential for addressing both the origin problem of organizations and
the problem of their variation.

4 Organization—De Arte Combinatoria1

Chemistry gave rise to biology. This is an elementary indication that strongly construc-
tive interactions are fundamental to organization. Chemistry, therefore, informs our

attempt of conceiving a formal and transparent model of organization [17-19].
Physics is about mechanisms. So is computation theory. But the latter has a twist that

physics lacks: It is about mechanisms in which things build other things. Such "things"
are processes and functions. As opposed to the clockwork or the steam engine, com-

putation is inherently constructive. Computation need not only be about calculations
that are of interest to a mathematically inclined person. What we emphasize here is
the aspect of computation as a formal system that enables symbolic structures to build
further symbolic structures in a consistent way. A first grip on organization can be
obtained by studying the collective phenomena occuring in a dynamical system con-

sisting of many such interacting symbolic structures. We briefly review such a platform.
Details can be found in Fontana and Buss [18].

4.1 Constructive Part
(1.1) calculus. Our entities are literally functions expressed in a canonical syntactical
framework known as the A.-calculus [4, 9], in which they can be applied to one another
yielding new functions.

The grammar of ^-expressions, E, is

E ::= x I kx.E | (E)E, (7)

where x is a variable. Thus, a variable is an atomic expression. There are two

expression-forming schemes—"combinators"—that define syntax: One, kx.E (termed
abstraction), binds a variable in an expression E making it the equivalent of a formal
parameter in a procedure, that is, E is intended as a function in x. The other, (E)E,
(termed application) expresses the notion of a function being applied to an argument—
except that there is no syntactical distinction between function and argument. While
application and abstraction are purely syntactical operations, they are given an opera-
tional meaning through substitution:

(kx.A)B —> A[B/x], (8)

where A[B/x] denotes the textual substitution of all occurrences of x in A with B. (We
assume unique names for bound variables, distinct from names of free variables.) The
arrow means that the expression on the left-hand side can be rewritten as the expression
on the right-hand side, thereby only replacing equals for equals. The process of carrying
out all possible substitutions within an expression is termed reduction, and the final
stable form—if there is one—is unique and is called a normalform.

(1.2) normal form. In this model universe every expression is reduced to normal
form within preset computational limits. If no normal form is attained, the expression
is not allowed.

4.2 Dynamical Part
À-calculus is now put in the context of a (stochastic) dynamical system that mimics a
constrained flow reactor containing a finite number of "expression-particles."
I Gottfried Wilhelm von teibnlz ( 1646-1716).
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(11.1) initialize. A system is initialized with N particles. These are randomly gener-
ated (usually unique) À-expressions.

(11.2) interact. Two expressions, A and B, are chosen at random (in this order).
Denote this choice by [A, B] and denote the normal form of (A)B by C. Then, the
following "reaction" scheme applies:
LA,B]—fC + A + B. (9)

(11.3) boundary conditions. Apply syntactical or functional boundary conditions to
C to determine whether C is allowed to enter the system.

(11.4) constant size. If C is added to the system, choose one expression particle, D,
at random and remove it:

D— 0. (10)

This keeps the system constrained at N particles at any time.
(11.5) iterate. Continue with (II.2).
The reader will recognize that this is just the description of a discrete stochastic

analogue to Equation 5, where the possible d¿ B are implicitly given by a calculus, in
this case À-calculus:

c J 1 if (A)B=Cd, ,,= \ n ,

.

(11)
• [ 0 otherwise

In section 5 we discuss the motivation for this approach and its basic assumptions. First,
we briefly review some results. The model provides a formalization of our intuitive
notion of organization. It generates organizational levels that can be described without
reference to the micro processes that give rise to them. Organizational levels beyond a

"molecular ecology" (see Level 0) emerge even in the absence of Darwinian selection.
Details can be found in Fontana and Buss [18].

4.2.1 Level 0
Level 0 arises with no specialized boundary conditions (II.3). The system becomes
dominated by either single self-copying functions or ensembles of mostly hypercycli-
cally [12, 14] coupled copying functions (i.e., systems where for each g there is at least
one / such that (f)g = g). Thus, Equation 5 reduces to the situation described by the
replicator framework, Equation 3: the reproduction of an object species, i, depends on

itself and one (or more) other object species, j. From a purely functional point of view
i is a "fixed point" of its interaction with j. Under perturbation, that is, the introduction
of random expressions, Level 0 ensembles frequently reduce to a single self-copying
function, that is, a function / with (/)/ = /.

4.2.2 Level I
Level 1 arises under a variety of conditions, all of which involve a restriction on copy
actions up to their -complete elimination. The reason for the importance of such an

extreme boundary condition is the elimination of Darwinian selection, thereby allowing
one to assess the necessity of Darwinian selection in the generation of organization.
The following features, therefore, need not be the result of Darwinian selection.

Under no-copy conditions, the set of objects in the system changes until it becomes
confined to a subspace of the space of all À-expressions. This (infinite) set is invariant
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under applicative action and is characterized by three properties:

1. Grammatical structure. The objects of the subspace possess a specific syntax
described by a grammar (beyond just conforming with Equation 7). Sometimes the
objects are grouped into several "families" with distinct syntactical structures.
Grammatical closure here defines membership: An object can be unambiguously
assigned to a given organization on the basis of its grammatical specification.

2. Algebraic structure. All relationships of action between objects of the subspace are

described by a (small) set of equations. The system frequently admits
"coarse-grained" identities that emphasize symmetries and particular roles of
objects (like inverse elements, successor functions, neutral elements, etc.). It is
important to emphasize that neither the formulation nor the discovery of the laws
that define an organization require knowledge of the underlying À-calculus. An
organization has a level of description that can be considered independently.

3. Self-maintenance and kinetic persistence. The flow reactor contains a finite
number of objects. Hence, only a small subset "carries" the organization under this
dynamical system. Typically this subset maintains itself in the sense that every
object is produced by at least one interaction involving other objects of the same

set. Notice that self-maintenance is not a statement about kinetics but rather about
the constructive relationships within a set of objects. We also have observed
borderline cases where the objects change constantly (while remaining confined to
their invariant subspace). In all cases, that which is kinetically persistent is the
organization as expressed by its grammatical and algebraic description.

These characteristics endow Level 1 organizations with some interesting properties:

Center. An organization has many generators, that is, subsets of objects capable of
spawning a given organization, if the reactor is intialized only with them. Such sets are

typically small. So far Level 1 organizations were observed to have a unique smallest
and self-maintaining generator set that constructs the organization ab initio. We call it
the center. The center is typically present in the reactor.

Self-repair. Self-repair is a consequence of self-maintenance, kinetic persistence, and
the existence of a center. Organizations can tolerate vast amounts of destruction, while
retaining the capability to reconstruct themselves.

Extensions. The model universe, in its present form, does not provide for "noisy"
interactions. (Products are determined once the reactants are given.) Without functional
perturbations, a Level 1 organization is a monolithic entity: Once attained, all functional
evolution stops. The easiest way out is to provide an exogenous source of noise by
injecting random objects into an established organization. For a novel object to persist,
it must create transformation pathways that sustain it in a kinetically effective manner
within the established network of pathways. The modification of organizations is,
therefore, highly constrained. However, when a novel object does become established,
it imports new syntax elements, thus altering the grammatical structure and the algebraic
laws that characterize the organization. This alteration occurs in a typical way: by
extension. The unperturbed organization still persists as a "smaller" core organization to
which the interactions with the new object have added another "layer." New algebraic
laws are added to the existing ones, and the center of the extended organization is
extended correspondingly. With constant reactor capacity, an organization cannot be
extended indefinitely, and upon several such extensions one observes a displacement
of previous layers. Over several steps this can result in a substantial modification of
the original organization.
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4.2.3 Level 2
Level 1 organizations can be combined. At first one may expect a competitive situa-
tion. This need not be the case, because two organizations can generate novel objects,
through cross-interactions, that are not members of either organization. This "cross
talk" consists in a set of objects that does not constitute a Level 1 organization. (It is
neither self-maintaining nor grammatically closed under interaction.) We refer to this
set as the glue, because it knits both component organizations kinetically and alge-
braically together. The entire structure is a Level 2 organization: a meta-organization
that contains the original organizations as self-maintaining subalgebras. The glue dis-
tinguishes this situation from a plain coexistence. (Indeed, a Level 2 organization is
not described by Equation 6 in terms of multiple component organizations—because
of the glue.) A Level 2 organization is not as easily obtained as a Level 1 organization,
because the kinetic requirements to the glue are severe. Nevertheless, the construction
of Level 2 organizations from scratch has been observed: Two Level 1 organizations
form whose interactions integrate them into a Level 2 organization. Qualitatively the
same properties as for the Level 1 case hold in the Level 2 case, although stability is
not as pronounced.

4.2.4 Biology
The history of life is a history of the emergence of new organizational grades and
their subsequent diversification [7]. A transition in organizational grade occurred when
self-replicating molecules gave rise to (or became incorporated within) self-maintaining
prokaryotic cells, and the origin of procaryotes was itself followed by the emergence
of a hierarchical nesting of different prokaryotic lineages to generate multi-genomic
eukaryotic cells. The À-universe mimics transitions seen in the history of life, that
is, the transition from self-replicating molecules to self-maintaining organizations to
hierarchical combinations of such organizations. We refer to these organizational grades
as Level 0, Level 1, and Level 2, respectively.

Organizations are veiy robust toward functional perturbations. Perturbing objects
are frequently eliminated, otherwise they typically cause extensions to the grammatical
and algebraic structure. Morowitz [35] suggests that the core metabolism derives its ar-
chitecture from the addition of several metabolic "shells" to a basic energy metabolism
such as the glycolytic pathway. A shell attaches to another through only a few "entry
points." These are pathways that introduce novel syntactical and functional elements,
such as nitrogen (with amino acids among its consequences) and dinitrogen heterocy-
cles (with nucleic acids among their consequences).

A Level 2 experiment in which two Level 1 organizations are brought into interaction
can be seen as a massive perturbation of either organization. Frequently the interaction
does not produce a glue that is sufficient to stably integrate both organizations while
maintaining their autonomy. Rather, one organization loses autonomy and becomes a

large extension to the other. This is reminiscent of the well-known pattern wherein an

intracellular symbiont loses functions redundant with those possessed by the host.
The center of a Level 2 organization is just the sum of the corresponding Level 1 cen-

ters. Such a superposition does not hold for the grammatical and algebraic description
of the resulting Level 2 organization, because of the extensions required to describe
the glue. This recalls the general difference between the behavior of genotypes and
phenotypes: Genes combine independently, while the organizations they spawn do
not.

The transition from Level 0 to Level 1 emphasizes the tension between reproduc-
tion and organization. Replicatory elements are clearly kinetically favored over self-
maintaining but nonreproducing organizations. The biological problem connected with
the transition is one of restricting copy actions. The model shows how a new concept
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of organization arises—beyond the engineering of mutual dependencies between repli-
cators (cf. hypercycle [12])—when transformation operations are given the chance to
attain closure.

Nevertheless, in all this we violate mass conservation, do not consider thermody-
namics, assume all rate constants to be equal, do not use up reactants in reactions, have
everything react with everything, and so on. What does such a model really mean?

5 A functional perpetuum mobile

The model explores the consequences of an extremely simple combination of a dy-
namical system with a calculus. With respect to biology, the explanatory power of such
a model comes from defining a level of description. Here it is given by the mathemat-
ical notion of function. The focus is on the expression and construction of functional
relationships rather than on their exact chemical implementation. À-calculus is the
canonical language to express such a consistent universe of construction. À-calculus is
clearly no more than a highly stylized chemistry. In the biological context, it serves the
purpose of a high-level specification language, rather than a full-fledged implementa-
tion language. The image of "organization" suggested by this abstraction is very simple:
a kinetically self-maintaining algebraic structure.

Take a set of two objects, A and B, such that (A)A = B and (B)B = A. (Assume that
cross-collisions are not reactive.) Clearly, the set [A, B] is self-maintaining without con-

taining copy actions, Is this an organization? Our definition suggests it is not, because
the system neither specifies a nontrivial grammar nor a nontrivial algebra. Trivial does
not mean simple; it means that there is no compressed description of the set's compo-
sition and behavior short of listing it. Our definition suggests that an organization be
over an infinite set of objects. Is that reasonable? Yes, because it is not required that
this subspace be realized in its entirety. Only a subset of implicitly determined size
is required to make the organization's specification kinetically persistent. If the size
needed for supporting the organization is too large compared to the reactor's capacity,
the organization disappears.

The mechanics of À-calculus teaches a lesson: construction alone, Equation 7, is
not sufficient; processes must be associated with construction that induce equivalence,
Equation 8. The basic combinators of the chemical grammar are not fundamentally dif-
ferent from those that build À-expressions: A molecule is either an atom or a combina-
tion of molecules. That which makes such a universe capable of constructing networks,
hence of organizing, is a consistent way of establishing that different combinations are

effectively the "same." In chemistry, combinatory structures—molecules—combine into
transition structures that undergo rearrangements. The nature of these rearrangements
establishes which molecular combinations are effectively the same in regard to a par-
ticular product. Construction and equivalence are the essence of chemistry at the level
of description set by the present model. The rest of chemistry is specific to the im-
plementation of construction and equivalence with a given physics. Construction and
equivalence are necessary for organization and, hence, for any life, artificial or natu-
ral. Consequently, the organizational features outlined in the previous section are not
coincidental either, because they follow necessarily.

"Function" is frequently used in a colloquial way meaning different things. These
meanings are disentangled at our level of description. First, there is the unambiguous
mathematical concept of a function. In this sense every object in our model universe
is a function. Then there is a more "semantic" aspect of function: the function of an

organ, the function of a beta-blocker. This notion of function relates to specific roles
within the context of a network. As a simple example, consider a A.-expression, A,
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and certain elements B of its domain that are fixed points of A, that is, (A)B
—

B). If
B happens to be present in the reactor together with A, then A makes B a replicator:
B assumes a specific kinetic role, and A assumes a specific functional meaning for B
in this particular context. Suppose A assumes this role for all C in the system. Then
A is algebraically a "neutral element," but, again, conceivably only for those C that
happen to be present, not for others that may perturb the system. If there is a neutral
element, then this creates a "functional niche" for other objects to be "inverses" of
one another one and so on. Because objects are functions, they construct networks
within which they have functions. There is no need to assume the latter to be given
a priori.

A reactor with many interacting À-expressions is a system of concurrently communi-
cating functions. Application of a À-expression to another one can be viewed as an act
of communication—where a function is communicated to another function via a vari-
able associated with a port named À [5, 6, 33]. Despite Equation 9, communication is
symmetric. Here the "communication operator" is really the "+" symbol in the chemical
reaction scheme. In fact, written as a chemical reaction the interaction scheme (II.2)
just reads:

(A)B + A + B
/

A + B (12)
\

(B)A + A + B

The result of a communication between A and B is a nondeterministic choice between
the process (A)B and the process (B)A. This is manifest in the fact that for all random
encounters between A and B, half of the time A comes from the "right" (chosen second)
and half of the time from the "left" (chosen first). Reaction, or communication, is
clearly commutative in the model. When speaking (somewhat sloppily) of "interaction"
in (II.2), we refer to the application event after a choice in Equation 12 has been
made.2

When interpreting the reaction (or kinetic) scheme, it is imperative to remain consis-
tent with the chosen level of abstraction. A kinetic scheme, like (II.2) and (II.4), serves
two purposes. First and foremost, it defines a communication event between objects.
Second, it summarizes the overall effect of many details whose full specification is
inappropriate at the chosen level of abstraction.

The reason for not using up the reactants in (II.2) is, technically speaking, to induce a
recursion. If no object were removed, the system would generate all possible iterated
communications among the initial objects. The flux (II.4) eventually removes those
communication products that are not sustained at a sufficient rate within the system.
This focuses repeated communication to occur among a kinetically favored set of objects
until structural consistency is attained as well (if it is attained). An organization is plainly
the fixed point of such a recursion. We recently became aware that in the process
algebra literature a similar scheme—called "replication" (no biological connotations)—
conveniently replaces recursion [34].

A more "palatable" kinetic scheme would have been "recursion over food." That is,
specify a certain number of (random) objects which are designated as "food," T. Food

2 Computer scientists should not confuse the "chemical communication operator" "+" with their choice operator denoted by the
same symbol. If we symbolize communication by O. "choice" by the usual +, "Interleaving" by | [6], then Equation 12 reads as

Aoß = (A)ß|A|ß+(ß)A|A|ß.
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is steadily supplied to the system, while reactants are used up. Hence, Equation 12
becomes

(A)B + T
/

A + B (13)
\

(B)A + T

where T stands for an object chosen randomly from the food set. Equation 10 would be
turned off, because Equation 13 preserves particle number. Under such circumstances,
the system is "anchored" to the food source, and any organization would have to
contain pathways linking it to that source. Our original scheme (Equation 12) frees
the system from having to maintain pathways to the initial objects. This is somewhat
more abstract but isolates functional self-maintenance, while Equation 13 generates
structures that need not be functionally autonomous, because they are exogenously
maintained through food.

Of course, real organizations must be fed—but the feeding does not define an or-

ganization. The present system is clearly open and driven in many ways. In a sense,
however, this is beside the point, because the ultimate nature of our model universe
is "informational." (Information is not necessarily destroyed by its usage. Although
the À-mechanics—no matter how remote—remains in a spooky analogy to chemistry.)
The model suggests a view in which the world of thermodynamics gives rise to another
world whose objects are functions (or processes). While there is no perpetuum mobile
in the former, there is plenty of room for a perpetuum mobile in the latter: functional
organization.

There is also plenty of room to improve on this model. For example, the model lacks
a structured notion of communication that determines who communicates with whom
and when. This suggests that formal processes may be more appropriate agents than
functions. Formal processes do by and large not compute functions, but rather they are

characterized by their ability or inability to offer communications at various points in
time [21]. This endows them with different notions of equivalence [32]. The particular
abstractions from chemistry and the biologically motivated boundary conditions em-

ployed thus far informed our modeling platform and, therefore, our understanding of
the emergence of functional organization of the Level 1 and Level 2 type. The proper
abstractions and boundary conditions that may allow one to attain multicellular differ-
entiating organizations, Level 3 say, or Level 4 (brains?), or ... remain to be captured.
While replacing functions by processes may be part of the story, it is evidently an open
question where this framework will lead—as is its applicability outside the biological
domain. In any case,

We shall first have to find in which way this theory of [processes] can be
brought into relationship with [biology], and what their common elements are.

...

It will then become apparent that there is not only nothing artificial in
establishing this relationship but that on the contrary this theory of
[communicating processes] is the proper instrument with which to develop a

theory of [biological organization]. One would misunderstand the intent of our
discussions by interpreting them as merely pointing out an analogy between
these two spheres. We hope to establish satisfactorily, after developing a few
plausible schematizations, that the typical problems of [biological organization]
become strictly identical with the mathematical notions of suitable
[communicating processes], [47]
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The quote has been taken from von Neumann and Morgenstern's Theory ofGames and
Economic Behavior [47], except that we took the liberty to replace "theory of games
of strategy" with [communicating processes] and "economic behavior" with [biological
organization]. The quote characterizes the spirit of the work sketched here quite aptly.
However, it is fair to add that von Neumann and Morgenstern's intentions were not re-

alized. But, then, their "theory of games of strategy" was not even weakly constructive.

6 ALife and Real Life

Our view of ALife relative to biology is perhaps best rendered by an analogy with
geometry. For a long time Euclidean geometry was held to be the "science" of space.
The development of non-Euclidean geometries led to the realization that terms like line
or angle can be given different coherent specifications that result in different models
of space. Geometry is not just one form of space; geometry is an axiomatic structure

organized around undefined terms like line or angle [25]. In a particular model of
space, triangles have an inner angle sum of 180 degrees. If this fails to hold at large
scales in our universe, it does not invalidate the former space as a model of geometry.
Our picture of ALife is that of a variety of specifications and, perhaps, formalizations of
different intuitive notions about what it means to be alive. A notion of "artificial life,"
however, makes sense only if there is an implementation independent definition of life
that informs biology.

Succeeding in this vision means opposing the superficially informative. There is
a risk of ALife becoming predominantly a community of digital naturalists traversing
their classical age. Ultimately, the success of ALife will depend on the extent to which
it succeeds in developing a concept of life that encompasses biology. But to inform
biology means not simply imitating it but understanding it. And understanding it re-

quires identification of the outstanding unsolved problems in biology and seeking their
resolution.

Our work is ultimately motivated by a premise: that there exists a logical deep
structure of which carbon chemistry-based life is a manifestation. The problem is to
discover what it is and what the appropriate mathematical devices are to express it.
ALife started by emphasizing processes rather than that which implements them [26].
We believe this emphasis to be necessary but not sufficient. If the practice of ALife
does not contribute to the solution of the logical problem, ALife will fail. For how can
we discern whether a construct is a manifestation of life or whether it is an imitation
of life? We can't, unless the logical problem is solved. How do we know whether we

have solved it? We know when the solution affects the research agenda of biology—the
science of the instance that we have not constructed. Should the premise turn out to be
wrong, then ALife will fail too. For then ALife becomes ARbitrary. ALife practitioners
must avoid the presumption that bedeviled Artificial Intelligence—that all the needed
concepts were available to be imported from the other disciplines. ALife will find its first
proving ground in real biology, in its capacity for catalyzing the theoretical maturation
of biology.
7 Sources

Similar ideas have certainly occurred to many people. Some contributions we have
mentioned, others we acknowledge here.

A decisive step was undertaken by Bagley, Farmer and Kauffman who devised
probably one of the first strongly constructive dynamical systems [2,31. Their model
is based on simplified polynucleotide sequences that interact through complementary
base pairing, thereby specifically cleaving and ligating one another. Rokshar, Anderson,
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and Stein [36] proposed a model somewhat similar in spirit. Steen Rasmussen and his
group studied self-organization in an ensemble of machine (assembler) code instruc-
tions [50]. Interestingly, in their setting self-maintenance is achieved not by construction
of new instructions (that set being fixed), but by (weak and strong) construction of new

pointers to the locations on which the instructions operate. George Kampis has been
weaving an independent thread of thoughts which seems pertinent to the concerns
addressed in this paper [51]. We were put on track by discussions with John McCaskill
a few years ago. He suggested a model of interacting Turing machines where tapes,
standing for stylized polymeric sequences, encode transition tables that read and write
other tapes [31,43]. It was still a long way to the present framework with its implied
level of description and a formally more robust notion of organization.

Várela and Maturana [29,30,45] were perhaps the first to think extensively about
organization in a new way. Their writings are at times not easily penetrable. However,
building a formal model made us understand that many of the issues raised here were
foreshadowed by their thinking.
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