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SYNOPSIS 

A statistical reference for RNA secondary structures with minimum free energies is computed 
by folding large ensembles of random RNA sequences. Four nucleotide alphabets are used 
two binary alphabets, AU and GC, the biophysical AUGC and the synthetic GCXK alphabet. 
RNA secondary structures are made of structural elements, such as stacks, loops, joints, 
and free ends. Statistical properties of these elements are computed for small RNA molecules 
of chain lengths up to 100. The results of RNA structure statistics depend strongly on the 
particular alphabet chosen. The statistical reference is compared with the data derived 
from natural RNA molecules with similar base frequencies. 

Secondary structures are represented as trees. Tree editing provides a quantitative mea- 
sure for the distance d,, between two structures. We compute a structure density surface 
as the conditional probability of two structures having distance t given that their sequences 
have distance h. This surface indicates that the vast majority of possible minimum free 
energy secondary structures occur within a fairly small neighborhood of any typical (random) 
sequence. 

Correlation lengths for secondary structures in their tree representations are computed 
from probability densities. They are appropriate measures for the complexity of the se- 
quence-structure relation. The correlation length also provides a quantitative estimate for 
the mean sensitivity of structures to point mutations. 0 1993 John Wiley & Sons, Inc. 

INTRODUCTION 

A great variety of natural biopolymers were studied 
extensively by sequence analysis, the x-ray diffrac- 
tion, and spectroscopic techniques. Their molecular 
structures are well known by now. In some cases the 
studies were extended to closely related variants dif- 
fering in one or a few positions from the wild-type 
sequences. Despite the availability of very detailed 
information on many individual biomolecules, very 
little, if anything, is known about the statistics of 

structural features of biopolymers. General infor- 
mation on the sensitivity of structures against 
changes in the sequences is also very rare. In the 
case of RNA, direct interest in the properties of 
molecules with random sequences is steadily grow- 
ing: random RNA sequences are readily available 
by the current synthetic techniques and they are 
frequently used in applied molecular A 
straightforward strategy for gaining knowledge 
about molecules with random sequences is to com- 
pute and analyze the structures of statistical ensem- 
bles of biopolymers. The computation of three-di- 
mensional structures is, however, highly time-con- 
suming, and still encounters substantial theoretical 

The folding of RNA sequences into three-dimen- 

Biopolymers, Vol. 33, 1389-1404 (1993) 
0 1993 John Wiley & Sons, Inc. ccc ooos.3525,93,091389.16 and algorithmic difficulties. 

* Dedicated to Professor Manfred Eigen. 
To whom correspondence should be addressed. sional structures is decomposed into two steps: 
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1. folding of the string of bases into a secondary 
structure by base-pair formation, and 

2. formation of the spatial structure by folding 
the secondary structure into a three-dimen- 
sional object. 

The biophysical rationale for considering RNA sec- 
ondary structures as a first crude approach to real 
RNA structures is based on several facts: RNA sec- 
ondary structure formation covers the major part of 
the folding energy, RNA secondary structures can 
be used successfully to interpret RNA function and 
reactivity, and RNA secondary structures are con- 
served in evolution. 

Secondary structures of RNA molecules, repre- 
sented as the list of Watson-Crick ( WC ) -like base 
pairs, are much easier to predict than three-dimen- 
sional structures. These structures are mainly de- 
termined by the conventional base-pairing rules of 
RNA: ( GEC, A = U, and G - U ) . In this paper we 
also consider the non-natural xanthine-2,6-diami- 
nopyrimidine pair, X=K, which was recently in- 
corporated enzymatically into synthetic RNA and 
DNA  molecule^.^ Base-pairing and base-pair stack- 
ing energies are generally larger than those of other 
interactions involved in the formation of spatial 
structures and arrange the RNA structure in helical 
segments interrupted by various types of loop re- 
gions. In the most narrow sense the term “secondary 
structure” is used to refer to the major list of WC- 
like base pairs that constitute an unknotted struc- 
ture that may be drawn as a planar graph. Thus, 
loop-loop interactions are not included in this def- 
inition. All the remaining WC-like base pairs (e.g., 
those occurring in pseudoknots) and other types of 
interactions are then referred to as “tertiary inter- 
actions” within this concept. Although this classi- 
fication is in a sense arbitrary, in particular with 
reference to pseudoknot  structure^,^'^ it reflects the 
partitioning of the folding process into several 
stages, the first one being the nucleation of double- 
stranded helical regions. It is therefore meaningful 
to consider the folding into a secondary structure 
(even in this narrow sense) as a first step toward 
the formation of the full three-dimensional struc- 
ture. The computational approach used here for the 
analysis of gross features of RNA secondary struc- 
tures is based on this concept of “unknotted” sec- 
ondary structures. 

The predominantly used thermodynamic folding 
algorithm for RNA secondary structures was origi- 
nally conceived by Zuker, Stiegler, and Sank~ff,~.’  
and is based on an application of dynamic program- 
ming to the RNA p r ~ b l e m . ~  It was primarily de- 

signed to compute the minimum free energy struc- 
ture, but derivative algorithms allow to obtain sub- 
optimal foldings as we11.1°-12 Alternatively, one may 
consider suboptimal foldings with the corresponding 
Boltzmann weights and compute partition functions 
for RNA secondary structures dire~t1y.l~ The em- 
pirical parameters used in the folding algorithm were 
obtained some years ag0.14 (For a more recent up- 
dated version, see Ref. 15.) Here we shall be dealing 
exclusively with minimum free energy secondary 
structures computed by a variant of the Zuker al- 
gorithm. The computer code was originally designed 
for fast folding as part of a simulation package for 
molecular e v ~ l u t i o n . ~ ~ , ~ ’  The present version of the 
software package uses the updated version of the 
empirical parameter set, l5 and includes a statistics 
program as well as tree editing routines. For the XK 
base pair we use the GC parameter set, which seems 
to come closest to the base pairing strength of the 
synthetic base pair.4 

In this paper we are concerned with the statistical 
properties of RNA secondary structures and their 
dependence on various base alphabets: the natural 
four-letter alphabet ( AUGC ) , a non-natural GCXK 
alphabet, and the two-letter alphabets (AU and 
GC ) . The GCXK alphabet provides an interesting 
case since it contains two base pairs of approxi- 
mately equal strength, and it is free of complemen- 
tarity violations ( G - U in the natural alphabet). 
Comparison of structures derived from different al- 
phabets allows us to separate effects of different or- 
igin and helps us to understand the complex super- 
position of contributions from the size of the alpha- 
bet, from the pairing rules, and from the strength 
of base pairs in the natural RNAs. 

The statistics of structural elements for small 
RNA molecules (with chain length Y < 100) is pre- 
sented in the next section. These data are considered 
as a statistical reference to be compared with data 
from natural sequences in the third section. In the 
section after that we present a quantitative measure 
for the distance between RNA secondary structures. 
Sequence-structure relations are viewed as combi- 
natory maps (CMs) from sequence space into a 
shape space. The notion of structure density surfaces 
(SDS) is introduced in the fifth section. The SDS 
casts statistical aspects of the relation between se- 
quences and structures into a condensed form, and 
provides a tool to derive and calculate global prop- 
erties for classes of RNA molecules. Autocorrelation 
functions and correlation lengths of structures fi- 
nally characterize the sequence-structure relation 
by a single function or a single number, respectively. 
They provide a useful measure for the sensitivity of 
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RNA structures against point mutations (penulti- 
mate section). 

unique structure for every sequence Ik. An example 
is shown in Figure 1. Many widely different se- 
quences, however, may fold into the same secondary 

STATISTICS OF ELEMENTS OF RNA 
SECONDARY STRUCTURES 

structure. This fact makes the reuerse folding prob- 
lem-the problem to determine all sequences which 
fold into a given secondary structure-a particularly 
hard task. 

A secondary structure is viewed conventionally 
as  a combination of structure elements, which fall 
into Seven 

The folding algorithm is a procedure that converts 
an RNA primary sequence, say 

I k  = { AUGCGUUGGACGUGCAGUCCAGUCAG 

- - * AAACGC } 

into a secondary structure Sk = S( I k )  where S( .) 
stands for the folding algorithm, which computes a 

1. stacks ( S ) ,  which are double-helical regions 
consisting of stacked base pairs; 

2. hairpin loops ( H ) ,  representing stretches of 
unpaired bases that close terminal stacks; 

I t  = AUGCGUUGGACGUGCAGUCCAGUCAGAUGCUAGUGUUAAUUUCGGUGUGAGCGCGCUAGUCU- 
-AGUCGGAAAGGCGCGUCAGAUCUCCAACCAAGCAUGUACGAAACGC 

A 

Tt s k  

Figure 1. An example for folding an RNA sequence I k  into a secondary structure Sk and 
its conversion into a (full) tree Tk. In this tree representation, single-stranded bases are 
shown as open circles (0) and base pairs as a full circles ( 0 )  , respectively. A root (m)  , not 
corresponding to a physical unit of the RNA, is added. The full tree Tk is transformed into 
a homeomorphically irreducible tree (HIT)  Hk by assigning a weight w to every node of the 
HIT, which counts the number of nodes contracted into a single one. 
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3. bulges ( B )  ) which connect two stacks by an 
unpaired stretch; 

4. internal loops ( I ) ,  joining two stacks with two 
single-stranded stretches; 

5 .  multiloops ( M )  ) consisting of several single- 
stranded stretches that connect more than 
two stacks; 

6. joints ( J ) ,  which are stretches of unpaired 
bases joining freely movable substructures; 
and 

7. free ends ( E ) .  

Stacks stabilize secondary structures whereas loops 
have a destabilizing effect whose magnitude depends 
on the size of the loop. Isolated single base pairs are 
considered as stacks as well. The degree of a loop is 
the number of stacks connected to it. It is often use- 
ful to lump loops of all degrees together into one 
class and to consider, for example, the total number 
of loops 

which must be identical to the number of stacks, nL 
= ns. Nucleotides in joints and free ends are often 
termed external bases. 

We generated a statistical reference for RNA 
secondary structures on sequences of length 20 I v 
I 100 built from various alphabets of size K ( K  = 2: 
AU, GC; and K = 4: AUGC, GCXK) . Equal proba- 
bility of digits was assumed and hence the base fre- 
quencies of random sequences lie around the most 
probable distributions, (0.25,0.25,0.25,0.25 ) or (0.5, 
0.5), respectively. In this section we report on the 
average occurrence of secondary structure elements. 

Base Pairs. The mean number of base pairs (ngp)  
increases linearly with the chain length v for suffi- 
ciently long sequences (Figure 2 ) .  Deviations at  
small chain lengths ( v  < 50) are found with AU, 
AUGC, and GCXK sequences. The influence of the 
alphabet is readily interpreted by considering the 
stickiness P of the sequences, which is understood 
as the probability that two arbitrarily chosen bases 
can form a base pair. For the uniform base compo- 
sitions one has P A U  = PGC = 0.5, P A U G C  = 0.375, and 
PGCXK = 0.25. As expected, and as seen in Figure 2, 
the pure GC sequences are leading with respect in 
the number of base pairs since they have the highest 
possible stickiness and form the strongest base pairs. 
Destabilization by loops is more readily compensated 
by GC pairs than by AU pairs, and hence AU se- 
quences form fewer base pairs on the average than 
GC sequences. Sequences derived from four-letter 

"." 
0.0 20.0 40.0 60.0 80.0 100.0 

ChainLengthu - 
Figure 2. The mean number of base pairs ( ngp) as a 
function of the chain length v. Values are shown for binary 
GC sequences ( 0 ) , for binary AU sequences (0) , for four- 
letter GCXK sequences with GC parameters (* ), and for 
natural AUGC sequences ( 0 ) .  Depending on the chain 
length v, the mean values are computed from samples of 
50,000 ( v  = 20) to 500,000 sequences ( v  = 100) that were 
sampled by the technique described in the section on 
comparison with natural sequences. Unstable structures, 
i.e., structures with non-negative free energies ( f 2 0) are 
not considered for structure statistics. 

alphabets are less sticky and form still fewer base 
pairs. That AUGC and GCXK sequences have al- 
most the same mean number of base pairs is for- 
tuitous: the former are more sticky, the latter form 
stronger base pairs and the two effects cancel by 
accident. 

Loops and Stacks. The mean number of loops nL 
per structure, which is identical to the mean number 
of stacks ns, also scales linearly with chain length 
v (Figure 3 ) . Weaker base pairing implies that clos- 
ing of loops is more difficult and hence the structures 
derived from AUCG or AU sequences have fewer 
loops than their GCXK or GC counterparts. Se- 
quences with lower stickiness values have on the 
average more loops than stickier sequences. The ef- 
fect of base pair-strength is apparently stronger than 
that of stickiness. 

Loop Degree. The (branching) degree of a loop is 
the number of stacks that are attached to the loop. 
The average degree of loops (Figure 4)  is in the range 
1 < nLD < 2. It converges to a constant value with 
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0.0 20.0 40.0 60.0 80.0 100.0 

Chain Length Y - 
Figure 5. The mean number of base pairs in one stack 
( nst) as a function of the chain length u. Values are shown 
for binary GC sequences (o), for binary AU sequences 
(0) , for four-letter GCXK sequences with GC parameters 
( *) , and for natural AUGC sequences ( 0 ) .  Computations 
were performed as described in Figure 2. 

0.0 4 
0.0 20.0 40.0 60.0 80.0 100.0 

ChainLengthv - 
Figure 3. The mean number of loops (nL), which is 
identical to the mean number of stacks (%) , as a function 
of the chain length v. Values are shown for binary GC 
sequences ( 0 ) , for binary AU sequences (0) , for four- 
letter GCXK sequences with GC parameters (*),  and for 
natural AUGC sequences ( 0 ) .  Computations were per- 
formed as described in Figure 2. 

increasing chain length v. Structures derived from 
sequences with strong base pairs (GC, GCXK) have 
more higher order branches than those obtained 
from AUGC and AU sequences. 

' ?'/I 

I 

0.5 
0.0 20.0 40.0 60.0 80.0 100.0 

Chain Length Y -+ 

Figure 4. The mean degree of loops ( nLD) as a function 
of the chain length v. Values are shown for binary GC 
sequences ( 0 ) , for binary AU sequences (0) , for four- 
letter GCXK sequences with GC parameters (*),  and for 
natural AUGC sequences ( 0 ) .  Computations were per- 
formed as described in Figure 2. 

Stack Sizes and loop Sizes. Mean stack sizes ( nst) 
and mean loop sizes (nl,) converge to almost con- 
stant values a t  fairly small chain lengths ( v  = 50) 
as shown in Figures 5 and 6. Apparently the con- 
vergence of n,, and nlP in structures of GC sequences 
is slower than in structures from the other three 
alphabets. Stickiness is important for stack sizes: 

0.0 20.0 40.0 60.0 80.0 100.0 

Chain Length Y + 

Figure 6. The mean number of bases in one loop (nip) 
as a function of the chain length v. Values are shown for 
binary GC sequences ( 0 ) , for binary AU sequences (0) , 
for four-letter GCXK sequences with GC parameters ( * ) , 
and for natural AUGC sequences ( 0 ) .  Computations were 
performed as described in Figure 2. 
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on the average the two-letter sequences form longer 
stacks than AUGC sequences. The mean stack 
lengths of GCXK sequences are shortest. Weak base 
pairing makes nucleation of stacks more difficult. 
Stacks are, therefore, on average longer in the AU 
case than in the GC case. Large loops are favored 
by both low stickiness and weak base pairs since a 
weak closing pair is more likely to be destabilized 
by a loop than a strong one. Thus, on average, GC- 
sequences form the smallest loops. 

Components. Components are substructures that 
are connected by joints. The mean number of com- 
ponents nc shows a characteristic lag phase before 
it starts off to increase with increasing chain length 
v. This lag phase reflects the fact that a certain min- 
imum chain length is required in order to form local 
substructures. The lag phase is more pronounced in 
structures built from alphabets with weaker base 
pairs (AUGC, AU). The increase of nc with v is 
much stronger in the case of the four-letter alpha- 
bets. The data shown in Figure 7 suggest that this 
increase is roughly linear. In order to be able to study 
large ensembles of longer sequences, the folding al- 
gorithm was adapted to a parallel computer.18 These 
computations have shown, however, that the chain 
length dependence of the number of components is 
not yet linear a t  chain lengths around v N 500. GC 
sequences are special in a way since there the mean 

0.5 
0.0 20.0 40.0 60.0 80.0 100.0 

Chain Length Y -t 

Figure 7. The mean number of components (%) con- 
nected by nJ = % - 1 joints as a function of the chain 
length v. Values are shown for binary GC sequences (0) , 
for binary AU sequences (0), for four-letter GCXK se- 
quences with GC parameters ( *) , and for natural AUGC 
sequences ( 0 ) . Computations were performed as described 
in Figure 2. 

number of components converges to a value in the 
range 2.75 I nc I 3. 

External Digits. The mean number of external bases 
(next)  shows a rather complex increase with the 
chain length v (Figure 8). It contains two contri- 
butions, the number of terminal free bases and the 
number of free bases in joints. The number of joints 
as we saw before shows a nonlinear increase with 
the chain length in the range in question (Figure 
7) .  The strength of base pairs has a strong influence 
on next: weak pairing implies larger mean numbers 
of external digits. Interestingly, next is almost con- 
stant for GC sequences where the number of com- 
ponents converges to a constant value for longer 
sequences ( v  > 300) too.18 

So far we focused only on mean values. Resolved 
distributions for stack sizes, loop sizes, and loop de- 
grees will be presented in the next section, where 
data from the statistical reference will be compared 
with those obtained from natural sources with sim- 
ilar base compositions. 

COMPARISON WITH NATURAL 
SEQUENCES 

In order to compare data from the statistical ref- 
erence for RNA secondary structures with those 
from natural RNA sequences, samples with base 
distributions as close as possible to the uniform dis- 
tribution, (nA, nu, m, nc) x v(0.25,0.25,0.25,0.25), 
are required. In addition, we expect best agreement 
when the biological function of the RNA demands 
as little secondary structure as possible. A sample 
that meets both requirements consists of 12 full ma- 
ture mRNA molecules, i.e., with the introns re- 
moved, coding for P-globin molecules* from different 
animals. Within this sample the chain lengths vary 
from 534 to 627, the sequence that deviates most 
strongly from the uniform distribution comes from 
Xenopus huh: ( n A ,  nu, m, nc)  = v(0.29,0.26,0.21, 
0.24). The 12 sequences were folded and the five 
structures with lowest free energies were considered 
for statistical analysis (the sample thus contains 60 
structures). The five structures span a energy band 
of about 1-2% of the absolute free energy of the 
optimal structures. Some mean values are shown in 
Table I together with the statistical data for the 

* Genbank names: gothbbaa, hsbgll, hsdgll, hsggl4, lebglob, 
mushbbmaj, ptggglog, rabhbba, rabhbb3, ratglbr, xebbeta, and 
xlbgllr. 
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AUGC, the AU, and the GC alphabet. The mean 
number of base pairs per 100 nucleotides of the 8- 
globin mRNA sequences is 31. It is slightly larger 
than the corresponding quantity derived from the 
statistical reference at approximately the same chain 
length, u = 50018: 29.0 base pairs. The B-globin 
mRNAs are slightly more stable than the statistical 
reference in the sense that they have lower free 
energies in their minimum free energy structures. 
The stability argument has been used previously's 
in sequence and structure comparisons of viroids 
and virusoids that, as commonly assumed, have 
been selected for stability by evolution. There the 
thermodynamically calculated structures from nat- 
ural sequences form indeed more base pairs than 
the corresponding sample of random sequences, for 
example, 35 base pairs per 100 nucleotides in the 
CSV viroid RNA as compared to 29.5 in the random 
standard. The mean loop size (Table I )  is somewhat 
smaller in the P-globin mRNA sample than in the 
reference. The mean branching degrees of loops and 
the mean stack sizes of the two samples agree well. 

In addition to P-globin mRNAs, two samples of 
natural RNA molecules from other sources were 
considered as well: 14 eubacterial 16s rRNAst and 
8 mitochondrial 16s rRNAs.* These two samples 
fulfill the two conditions for a meaningful compar- 
ison with the statistical reference less well: the ri- 
bosomal RNAs show substantially larger deviation 
from the uniform base distribution than the P-globin 
mRNAs and their secondary structures are certainly 
important for biological function. For statistical 
analysis we again choose the minimum free energy 
structure together with the four most stable sub- 
optimal folding patterns (which were again in the 
1-2% energy range, as with the P-globin mRNAs). 
As far as the mean values are concerned, the eu- 
bacterial rRNA sample fits the reference data as well 
as the mRNA sample. There are, however, signifi- 
cant differences with the mitochondrial rRNAs: the 
preference for larger loops is remarkable, and it is 
reflected by the smaller number of base pairs. De- 
spite rather small sample sizes, we also computed 
statistical data for phylogenetically derived second- 
ary structures of rRNAs." In order to be able to 
compare with computed minimum free energy 
structures, only Watson-Crick and GU base pairs 
were considered. Differences between computed and 

~ 

Genbank names: anlmttgrg, bovmt, ceumtfvla, frgmtrcl2s, 
gotmttgrg, hummtgc, hyrmtfvla, mmumtfvla, musmt, odomtfvla, 
palmtcg, ratmtrgpd, trgmttgrg, and xelmtrrza. 

Genbank names: bacrgrrnb, deirgda, hclrgda, mpocpcg, 
m27040, prirrgda, and stmrrnb. 

phylogenetic structures are quite moderate. Devia- 
tions from the statistical reference are smaller and 
larger depending on the quantity considered, but 
they point in the same directions as observed with 
the computed mitochondrial rRNA sample: fewer 
base pairs, shorter stacks, and larger loops. 

In order to make the comparison with the exper- 
imental data more precise, we computed probability 
densities for stack sizes, loop sizes, and loop branch- 
ing degrees. The results are shown in Figures 9-11. 
For stack size frequencies, the agreement between 
the P-globin mRNAs and the statistical reference 
from AUGC sequences is very good. The data com- 
puted from the other two samples from rRNAs fit 
the curve for the reference not nearly as well. 

The distribution of loop sizes for natural se- 
quences are compared with the statistical reference 
( AUGC, u = 500) in Figure 10. In essence, the results 
are the same as with the probability distribution for 
stack sizes: the data from mRNAs of P-globins fit 
the curves computed for the statistical reference 
better than the points obtained from the rRNAs. In 
detail, however, the agreement between the P-globin 
mRNAs and the random RNA sequences is not as 
good as for the stack sizes. The data for natural se- 
quences show much larger deviations. Natural se- 
quences have significantly more loops of size 1 and 
less loops of size 3 than the reference. The samples 

r 
d 

e 

0.0 4 
0.0 20.0 40.0 60.0 80.0 100.0 

C h a i n h g t h v  -+ 

Figure 8. The mean number of unpaired external bases 
(n,*) as a function of the chain length v. Values are shown 
for binary GC sequences ( 0) , for binary AU sequences 
(0) , for four-letter GCXK sequences with GC parameters 
( * ) , and for natural AUGC sequences (0 ) . Computations 
were performed as described in Figure 2. 
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Table I Comparison of Mean Number of Base 
Pairs, Mean Stack Size, Mean Loop Size, and 
Mean Branching Degree of Loops Between the 
Statistical Reference and Samples of Natural 
RNA Sequences 

Statistical reference of RNA sequences" 

AUGC 0.290 4.57 5.42 1.82 
AU 0.354 7.66 4.69 1.78 
GC 0.403 6.46 2.98 1.92 

Natural RNA sequences, minimum free energy 
structuresb 

@-Globin mRNAs 0.31 4.49 4.42 1.89 
Mitochondrial rRNAs 0.26 4.44 6.53 1.74 
Eubacterial rRNAs 0.33 4.59 4.62 1.92 

Natural RNA sequences, phylogenetic structures" 

Mitochondrial rRNAs 0.24 3.76 6.00 1.90 
Eubacterial rRNAs 0.28 4.35 5.81 1.93 
All rRNAs 0.27 4.06 5.88 1.93 

a A sample of about 50,000 structures from sequences of chain 
length v = 500 with different base-pairing alphabets computed 
according to the section on landscapes, combinatory maps, and 
density surfaces." 

Sample sizes: 12 P-globin mRNAs (see asterisked footnote 
in text), 14 mitochondrial 16s rRNAs (see daggered footnote in 
text), and 8 eubacteriall6s rRNAs (see double-daggered footnote 
in text). The sample contains the minimum energy structure to- 
gether with the four suboptimal foldings of lowest free energies. 
' Sample sizes: 2 eubacterial and 2 mitochondrial phylogenetic 

 structure^.'^ The row "all" refers to these 4 structures and, in 
addition, to 2 archebacterial, 2 eukaryotic, and 1 chloroplast phy- 
logenetic rRNA structures. 

of natural sequences are inevitably small and hence 
the deviations at higher loop sizes need not be sta- 
tistically significant. Apparently, loop size is a more 
sensitive parameter than stack size. 

Frequency counts for the branching degree of 
loops (Figure 11) show excellent agreement between 
P-globin mRNAs and random sequences. Substan- 
tial deviations are observed only with the two sam- 
ples derived from mitochondrial and eubacteriall6s 
rRNAs. 

Phylogenetically derived structures of RNA mol- 
ecules are considered biologically more significant 
than minimum free energy structures. For the pur- 
pose of comparison we also analyzed a sample of 
phylogenetically derived 16s rRNA structures2' and 
included the data for the stack size distribution in 
Figure 9. We observe much larger scatter from the 
statistical reference than for the data points from 

minimum free energy structures. One feature seems 
to be of special interest: the phylogenetic 16s rRNA 
structures show a significant local peek for a stack 
size of 7 base pairs which does neither exist in the 
minimum free energy samples nor in the phyloge- 
netic data for 23s rRNAs (not shown here). This is 
a clear hint that there is an unusual favoring of 
stacks with 7 base pairs in the 16s rRNAs, and ac- 
cordingly these stacks may have a specific function. 
Loop size and loop degree distributions of phylo- 
genetic structures also show larger scatter than the 
minimum free enery samples of the natural se- 
quences. 

The results obtained in the comparison of sec- 
ondary structures of natural sequences with the sta- 
tistical reference suggest the proposition that this 
procedure as a tool for testing biological function. 
If a sufficiently large sample of natural sequences 
shows detailed agreement with the statistical ref- 
erence of the same base composition, then it is very 
unlikely that biological function imposes a severe 
constraint on structures. Since the same folding al- 
gorithm is used in the computation of the reference 
and the sample to be compared, the empirical pa- 

+ 
0.25 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 

-+ Stack size tbt [base pairs] 

Figure 9. Probability densities P (  ht) of stack sizes in 
natural RNA sequences compared with the statistical ref- 
erence of chain lengths v = 500. One curve shows the data 
computed from minimum free energy structures for 
mRNAs of @-globins ( 0 )  , and individual points are given 
for eubacterial16S rRNAs ( X ) and for mitochondrial 16s 
rRNAs (+) . Further points are given for the phylogenet- 
ically derived secondary structures' of the eubacterial(8) 
and the mitochondrial (@) rRNAs. The secondcurve refers 
to the statistical reference built from the AUGC alphabet 
with chain lengths u = 50018 (0).  
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0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 

Loop size nip [bases] - 
Figure 10. Probability densities P (  nLp) of loop sizes in 
natural RNA sequences compared with the statistical ref- 
erence of chain lengths Y = 500. One curve shows the data 
computed from minimum free energy structures for 
mRNAs of /3-globins ( 0 )  , and individual points are given 
for eubacteriall6s rRNAs ( X )  and for mitochondrial 16s 
rRNAs ( +) . The second curve refers to the statistical ref- 
erence built from the AUGC alphabet with chain lengths 
v = 500'' (0) .  

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

h p d e g e e n m  -+ 

Figure 11. Probability densities P ( n L D )  of degrees of 
branching in the loops of natural RNA sequences com- 
pared with the statistical reference of chain lengths Y 
= 500. One curve shows the data computed from minimum 
free energy structures for mRNAs of @-globins (0  ) , and 
individual points are given for eubacteriall6s rRNAs ( X ) 
and for mitochondria1 16s rRNAs ( + ) . The second curve 
refers to the statistical reference built from the AUGC 
RNA sequences built from the AUGC alphabet with chain 
lengths v = 500 '' (0). 

rameters and the particular folding routine chosen 
have only minor influence on the result. The com- 
parison is done on the level of ensembles and hence 
individual errors are fairly unimportant. 

DISTANCES BETWEEN STRUCTURES 

RNA secondary structures can be represented as 
trees.8.21'22 A secondary structure Skis converted one 
to one into a tree Tk by assigning an internal node 
to each base pair and a leaf node to each unpaired 
digit (Figure 1 ) . The conversion starts with a root 
that does not correspond to a physical unit of the 
RNA molecule. It is introduced to prevent the for- 
mation of a tree forest for RNA structures with ex- 

Table I1 Interconversion of Secondary 
Structures and Trees 

Accessibility of bases and base pairs': 
The bases are labeled with their position i in the 

sequence. Consider a base pair i - j with i < j in 
the secondary structure graph. A base r is said to 
be accessible from the base pair i - j ,  if there is no 
base pair x - y such that i < x < r < y < j .  A base 
pair r - s is said to be accessible if r and s are 
accessible from the base pair i - j .  

A secondary structure graph (SSG) is converted into a 
tree graph (TG) by the following procedure: 

1. Assign to each unpaired base a leaf node, and to 
each base pair (two SSG nodes) one internal TG 
node. 

2. The parent of each TG node is the internal node 
corresponding to that accessible base pair k - 1 (k 
< 1 )  that contains the smallest k. The parent of 
nodes corresponding to external bases and external 
base pairs is a virtual node representing the root of 
the tree. 

3. Connect each node to its parent. 

A TG is converted into a SSG by the following 
procedure: 

pair of SSG nodes (base pair). The TG edges are 
inherited by the left SSG node of the pair. 

2. For any TG node with a left sibling replace the 
edge to its parent with an edge to its left sibling. 

3. An SSG node that is base paired has three edges 
(two from the backbone, and one from the 
pairing); otherwise it has two. 5' and 3' ends have 
one less. Complete the SSG by inserting all 
missing edges a t  a node as connections to the 
corresponding parent in the TG, proceeding from 
deep to shallow levels. 

1. Replace each internal TG node by a connected 
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ternal elements. For details of the interconversion 
of secondary structures and trees, see Table 11. 

As shown in Figure 1, the trees Tk can be rewritten 
as HITs, which will be denoted by H k .  The appar- 
ently simpler tree structure of the HIT is compen- 
sated by the assignment of weights ( w )  to the in- 
ternal nodes and leaves. A weight reflects the num- 
ber of nodes or leaves in the full tree Tk,  which are 
lumped into a single node or leaf in the HIT rep- 
resentation. The transformation from the full tree 
to the HIT retains complete information on the 

in our tree editing are summarized in Table 111. The 
editing operations preserve the relative traversal or- 
der of the tree nodes. Tree editing can therefore be 
viewed as a generalization of sequence alignment. 
In fact, for trees that consist solely of leaves, tree 
editing becomes the standard sequence alignment. 

Using the parameters of Table I11 for editing op- 
erations on weighted trees, distances between HITs 
can be computed as well: 

d ( H j ,  Hk) = d,'H'T'(j, k )  ( 4 )  
structure. Secondary Structure, full tree as 
HIT, are equivalent: 

as Tree distances between full trees and HITS fulfill 
the general relation 

A proof of the inequality ( 5 ) will be given elsewhere. 
An alternative graphical method for the compar- 

ison of RNA secondary  structure^^^-^^ encodes sec- 
ondary structures as linear strings with balanced 
parentheses representing the base pairs, and some 

Tree editing induces a distance in the space of 
trees, and hence also in the space of RNA secondary 
structures. A tree is transformed into another tree 
by a series of editing operations with predefined 
~ o s t s . ~ ~ - ~ ~  The distance between two trees, 

d ( T j ,  T k )  = d t ( j ,  k )  ( 3 )  

is the smallest sum of the costs along an editing 
path. It can be shown that this tree distance forms 
a metric in the space of trees.24 The parameters used 

other symbol coding for unpaired- positions. Dis- 
tances are computed by direct end-to-end alignment 
of the strings. 

Tree representations in full resolution make it 
often difficult to focus on the major structural fea- 

Table I11 
Representation and the Edit Cost Parameters Used in this Paper" 

Cost Table for Tree Edit Operations in the Full Tree Representation and in the HIT 

Edit Parameters 

Edit Operation Symbolic Notation Symbol cost 

Full tree edit operations 

Single base insertion 
Base pair insertion 
Single base deletion 
Base pair deletion 
Relabel 
Substitution 

Insertion of single bases 
Insertion of base pairs 
Deletion of single bases 
Deletion of base pairs 
Relabel of single bases 
Relabel of base pairs 
Substitution 

0 - 0  
0 - 0  
o+o 
0 - 0  

0-0 

HIT edit operations 

o + o w  
0 - o w  

w o - 0  
w.+O 
w o - o u  
w.-.u I w - u I  * 6. 

umin{w,u} + Iw - U I  w.-Ou 

W 

2W 

2w 
W 

Iw - u1 
2 I w - u l  

6 .  if w > u 
[60 if w < u 

a Weights in the HIT representation are denoted by w and u. 
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tures of RNA molecules since they are often over- 
loaded with irrelevant details. Coarse-grained tree 
representations were invented previously to solve 
this problem.21~22 They are based on plausible ad hoc 
assumptions. The HITS introduced here are partic- 
ularly well suited for unambiguous coarse-graining. 
The weights w allow straightforward definition of a 
resolution parameter: all nodes up to some prede- 
fined value, 0 < w I w,, are omitted, and the sec- 
ondary structure corresponding to the coarse- 
grained tree thus contains only structural features 
above a certain size. 

LANDSCAPES, COMBINATORY MAPS, 
A N D  DENSITY SURFACES 

The notion of landscapes was introduced into biology 
by the pioneering paper of Sewall Wright.28 He vi- 
sualized evolution as an optimization process on a 
fitness landscape. Since fitness is an exceedingly 
complex quantity, and since the occurrence of un- 
constrained optimization is at least debatable, 
Wright’s metaphor turned out to be no more than 
a heuristic principle. The landscape concept in bi- 
ology saw a recent revival in model studies of evo- 
lution and coevolution,29-31 in theoretical immunol- 
ogy, 32,33 and in studies based on RNA structures and 
p r o p e r t i e ~ . ’ ~ J ~ , ~ ~  

Comparison of RNA sequences is standard in 
molecular evolution. The distance between two se- 
quences of the same length v is given by the Ham- 
ming metric dh( k ,  1 )  ,35936 which counts the number 
of different digits in the two end-to-end aligned se- 
quences I k  and Il. The set of all sequences of a given 
length v is of combinatorial complexity: an alphabet 
with K letters yields K ”  different sequences. Embed- 
ding this set in Euclidean space such that pairs of 
sequences with Hamming distance dh = 1 are closest 
neighbors yields the so-called sequence  pace^^,^' for 
which dh is a metric.36 The sequence space of binary 
sequences ( K = 2 )  is a hypercube of dimension v. In 
the case of four-letter alphabets ( K = 4) the sequence 
space is more complex and can be understood as a 
union of two hypercubes with the appropriate con- 
nections. An earlier variant of sequence space is the 
protein space introduced by John Ma~nard-Smi th .~~ 

A landscape is obtained by assigning a scalar 
quantity, for example, a fitness value, a free energy, 
or a rate constant, to every point in sequence space. 
Thus it is a mapping of the sequence space into the 
real numbers: 

In order to point to the combinatorial complexity 
of the support, we refer to such an object as a com- 
binatory landscape ( CL) . 

Secondary structures-or trees-are also ele- 
ments from a space of combinatorial complexity with 
the tree distance d, (k, 1 )  as a metric. The notion of 
a shape space, originally conceived for antibody-an- 
tigen recognition in theoretical immunology, 39*40 

appears to be a useful concept for RNA secondary 
structures as well. The process of folding assigns to 
an element Ik of the sequence space a tree repre- 
senting a secondary structure Sk. RNA folding, 
therefore, is a mapping from a sequence space X 
into a shape space Y :  

The elements of both spaces are discrete structures 
of combinatorial complexity. Both spaces are en- 
dowed with appropriate metrics. We refer to a map- 
ping of this kind as a combinatory map ( CM ). 

As a generic tool for the study of CMs we propose 
the use of a two-dimensional probability density 
P (  . ,h)  . A tree distance density surface, for example, 
expresses the joint probability of two sequences of 
length v, Ii and Ij, to have Hamming distance dh( i ,  
j )  = h ,  as well as folding into secondary structures 
with tree distance d,( i ,  j )  = t .  The surface P (  t ,  h )  
is biased along the Hamming distance axis with the 
distribution 

since there are K ”  - p ( h )  sequences at Hamming dis- 
tance h from a given sequence. In order to compen- 
sate for the bias, we consider the conditional prob- 
ability of finding a tree distance t between two 
structures whose sequences have a Hamming dis- 
tance h : 

t = O  

As indicated in Eq. ( 9 ) ,  the conditional probability 
P(  t I h )  is computed by sampling tree distances of 
pairs of sequences with Hamming distance h .  By 
n(  t ,  h )  we denote the number of pairs of sequences 
in the sample that have Hamming distance h and 
tree distance t ;  t,,, is used for the maximal tree 

distance. The total sample size is N = c 2 n( t ,  h ) ,  
L a x  u 

t=o  h=O 
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and from the definition of conditional probabilities 

it follows that c P(t lh)  = 1 for each h. 
tmlu 

t=o 

We use a sampling technique that directly com- 
putes the conditional probabilities. It may be char- 
acterized as uniform sample statistics and proceeds 
as follows: 

1. we choose a reference sequence at random; 
2. we sample exactly 1 sequences at  each Ham- 

ming distance h = 1, 2, . . . , u from the ref- 
erence sequence; 

3. we fold these sequences into secondary struc- 
tures and compute tree distances relative to 
the structure of the reference sequence; 

4. we bin them in ( t ,  h )  boxes by counting 
numbers of instances; and 

5. continue with item 1 until convergence, or 
some desired accuracy, has been achieved af- 
ter, say, r reference points. 

The sampling procedure directly corrects for the bias 
of the binomial distribution. By definition we have 

The sample size now is N = r - 1 * u. For binary se- 
quences a slight modification of this procedure is 
required since we have only a single sequence at  
Hamming distance u. 

The tree distance probability surfaces represent 
the average distribution of tree distances from a ref- 
erence sequence. In the examples shown in Figure 
12 only 1000 reference sequences and 106 data points 
were already sufficient to yield a roughly constant 
surface. Convergence of this sampling technique is 
remarkably fast. Both surfaces from Figure 12 show 
an overall shape and, superimposed upon it, rich 
and bizarre-looking details. The overall shape of 
density surfaces for binary sequences (e.g., the GC 
surface in Figure 12) is horseshoe-like, and exhibits 
mirror-plane symmetry. This symmetry is only ap- 
proximate. In the binary case a sequence at distance 
u from the reference has a nucleotide arrangement 
that is clearly compatible with the secondary struc- 
ture of the reference. As a matter of fact, such a 
sequence indeed folds into the reference structure 
or into a quite related one. Since for binary alphabets 
there is only one sequence at Hamming distance u 
from a reference, this symmetry shows up. In con- 
trast, AUGC sequences at distance u from a reference 
sequence need no longer be compatible with the ref- 

A 

O.I0 I 

0.06 O . O 8 I  

B 
Figure 12. Probability density surfaces for tree dis- 
tances of secondary structures of AUGC ( A )  and GC se- 
quences (B  ) of chain length Y = 100. In this computation 
r = 1000 reference points and a sample of 1 = 10 sequences 
were used, which amounts to a total sample size of lo6. 

erence structure. The overall shape of the tree den- 
sity surface of AUGC sequences, therefore, looks like 
one half of a horseshoe. The first half of the density 
surface (0 I h I u / 2 )  closely resembles the corre- 
sponding part of the surface of binary sequences. 
The second half ( u/2 I h I u )  , however, is like a 
mountain ridge parallel to the Hamming axis, 
and indicates that the distribution of tree distances 
is more or less independent of the Hamming dis- 
tance h. 

The overall shape of the tree density surfaces does 
not depend on the usage of full trees. Essentially 
the same features are observed with density surfaces 
whose structure distances are computed from HITS 
(Figure 13).  Moreover, the shape of the density sur- 
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A 

B 

Figure 13. Probability density surfaces for tree dis- 
tances of full trees ( A )  and HITS (B)  from structures of 
GC sequences of chain length v = 120. 

face is not altered when the structure distance mea- 
sure is based on the above-mentioned linear encod- 
ing of secondary  structure^.^^ The overall shape of 
distance density surfaces is a robust statistical fea- 
ture of RNA secondary structure folding. It is, 
therefore, appropriate to use the generic term struc- 
ture density surface (SDS) for this object. 

First we interpret the shape of the first half of 
the SDS (0 I h I v / 2 ) ,  which is common to two- 
letter and four-letter alphabets. At very small Ham- 
ming distances from the reference sequence ( dh = h 
= 1, 2, 3) the most probable structures are similar 
to that of the reference, and the probability density 
P(  t I h )  has its maximum at small tree distances. 
With increasing Hamming distance this maximum 
shifts toward larger tree distances, and the proba- 
bility to find the same or a closely related structure 
is already very small at intermediate Hamming dis- 

tances ( 4  I h I her). For Hamming distances h 2 h,, 
the probability densities are very similar and, apart 
from finer details, independent of h. The critical 
Hamming distance lies at the (more or less sharp) 
turn of the horseshoe and represents the change 
from local to global features of the SDS. Thus, the 
value of h,, defines a neighborhood size around an 
average sequence within which secondary structures 
can be effectively randomized. An extension of the 
interpretation of SDS to the second half of the se- 
quence space ( u / 2  I h 5 v )  is straightforward by 
the arguments on structure compatible sequences 
given in the last but one paragraph. 

Shape Space Covering 

Since the above-mentioned aspect of density sur- 
faces does neither depend on the chain length v, nor 
on the base-pairing alphabet, nor on the particular 
measure for structure distances, we turn it into a 
conjecture on RNA shape space covering: almost all 
typical RNA secondary structures-these are struc- 
tures obtained as minimum free energy structures 
on random sequences-occur already within a small 
neighborhood of any random sequence. This con- 
jecture has been strengthened by further indepen- 
dent techniques on which we will report elsewhere. 

Probability density surfaces can be computed for 
any quantity for which a measure of distance exists. 
For example, a free energy density surface may be 
constructed and computed by substituting the ab- 
solute value of the difference in free energies, 

for the tree distance d,( i, j )  . All other scalar prop- 
erties of RNA molecules can be studied analo- 
guously. 

AUTOCORRELATION FUNCTIONS AND 
CORRELATION LENGTHS 

Landscapes and CMs in general can be characterized 
statistically by autocorrelation functions, 37,42 which 
can be expressed in terms of mean square distances: 

( d 2 )  is the mean square distance sampled over the 
entire sequence space, and the mean square distance 
conditioned on sequences with Hamming distance 
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h is denoted by 

( d 2 ( h ) )  := ( d 2 ( i ,  k ( d h ( i ,  k) = h ) )  (13) 

The autocorrelation function of tree distances, 
for example, can be computed from the density sur- 
face P (  t h )  . The conditional mean square distance 
is simply the expectation value of t2  computed for 
a given Hamming distance h 

tm. 

tmax C t 2 n ( t ,  h )  
( d P ( h ) )  = 2 t 2 P ( t l h )  x (14) 

C n ( t ,  h )  t = O  
t=o 

Recalling that the mean square distance on the en- 
tire sequence space can be expressed as a weighted 
sum of the conditional mean square distances 
( d : ( h ) ) ,  we find 

Y 

(&) = C ( & ( h ) ) * p ( h )  
h=O 

tmax 

y C t 2 n ( t , h ) p ( h )  
x C t=o tmer (15) 

C n ( t , h )  h=O 
t=O 

tmai 

For uniform sampling, C n( t ,  h )  = 1 .  r = const, the 

autocorrelation function can now be written in terms 
of elements of the sampling array n ( t ,  h )  , 

t=o  

Equation ( 16) is directly applicable during the com- 
putation of the density surface and hence conver- 
gence of the autocorrelation function can be moni- 
tored at  runtime. 

Computation of autocorrelation functions from 
density surfaces by means of Eq. ( 12 ) represents an 
alternative to the random walk t e ~ h n i q u e . ~ ~ . ~ ~  Since 
the more distant mutant classes are treated with 
higher numerical accuracy by uniform sampling, this 
method has an advantage over random walks. In 
practice, convergence of the computed autocorre- 
lation functions is faster in the uniform sampling 
case. 

Autocorrelation functions of tree distances pt ( h )  
are approximated by an exponential fit in order to 
calculate a correlation length ( l t )  for secondary 
structures in sequence space: lnpt(Zt) = -1. As we 

l.O I 
0.0 I 

20.0 40.0 60.0 80.0 100.0 

Chain Length u - 
Figure 14. Correlation lengths of tree distances ( I t )  of 
RNA molecules in their most stable secondary structures 
as functions of the chain length Y. Values are shown for 
binary GC sequences ( 0 ) , for binary AU sequences (0 )  , 
for four-letter GCXK sequences with GC parameters ( * ) , 
and for natural AUGC sequences (0 ) .  Correlation lengths 
are calculated from [In p t  ( h )  , h] plots by means of a least 
rms deviation fit. 

conclude from Figure 14, the correlation length in- 
creases roughly linearly with the chain length Y. It 
depends strongly on the base-pairing alphabet. The 
correlation lengths of structures from binary se- 
quences, AU or GC, are very similar and substan- 
tially shorter than those derived from GCXK se- 
quences and AUGC sequences. There seems to be a 
trend toward longer correlation lengths with weaker 
base pairing: for sequences of chain lengths v 2 30 
the correlation lengths for AU are slightly longer 
than those for GC, and the It values for AUGC are 
always longer than the values for GCXK. 

The correlation length represents a global char- 
acterization of a CM by a single value. The shorter 
the correlation length, the more complicated the se- 
quence-structure relation, and optimization of 
properties related to structure occurs on a very rug- 
ged landscape. The correlation length provides a 
measure of the mean stability of structures against 
point mutations in their sequences. If the correlation 
length is long, a sequence will tolerate on average 
many point mutations without changing its mini- 
mum free energy structure. Apparently, natural se- 
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quences are least sensitive to point mutations. This 
sensitivity can be changed by variation of the rela- 
tive GC content of sequences: the structures of se- 
quences with predominantly one WC pair have lower 
stability against point mutations. An observation of 
extensive structural variations in 28s rRNAs from 
different vertebrates may be related to this lack in 
resilience against point mutation: GC-rich phylo- 
genetically variable regions show large-scale struc- 
tural variations as detected by electron micro~copy.~~ 

CONCLUDING REMARKS 

A novel approach for investigating biopolymer 
structures that does not focus on the properties de- 
rived from single sequences has been proposed and 
carried out for RNA secondary structures. A statis- 
tical reference is computed for structures with given 
chain lengths and base-pairing alphabets. It provides 
information on the statistics of structural elements. 
These statistics is complemented by SDS, which de- 
scribe local and global features of sequence-structure 
relations in condensed form. Correlation lengths of 
secondary structures in sequence space provide a 
measure for the predictability of structural changes 
as sequences are modified by point mutations. 

Although a particular empirical parameter set had 
to be used in the computation, most of the features 
discussed here are robust with respect to corrections 
in individual parameters. What does depend on the 
choice of parameters are, of course, the predictions 
of structures for single sequences as well as some 
numerical values of the statistical reference. For ex- 
ample, the frequencies of structural elements are 
sensitive to the parameters determining the stability 
of these elements. The results of the comparison 
with natural sequences (whose structures were 
computed with the same folding routine as the sta- 
tistical reference), the shapes of the structure den- 
sity distributions, or the correlation lengths and 
their dependence on chain lengths and base-pairing 
alphabets will be largely independent of parameters 
and other details of the folding algorithms. This has 
actually been tested in one particular case: consid- 
eration of especially stable tetraloops did not sig- 
nificantly change correlation lengths. 

Our approach yields three major results: 

1. Comparison of sequence data a t  the level of 
structures computed for sufficiently large 
samples with the statistical reference is pro- 

posed as a tool for the detection of structural 
features determined by biological function. 

2. Most typical structures are found in close 
neighborhoods of any random sequence. To 
find sequences that fold into predetermined 
structures, only regions of a small size in se- 
quence space have to be searched, and any 
random sequence is an equally valid starting 
point. The size of this region can be read off 
directly from the SDS. 

3. A comparison of correlation lengths for sec- 
ondary structures in sequence space shows 
that structures derived from GC- or AU-rich 
sequences are much more sensitive against 
mutation than those from AUGC sequences 
with uniform base distributions. 
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