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Summary. RNA secondary structures are computed from primary sequences by means of a folding 
algorithm which uses a minimum free energy criterion. Free energies as well as replication and 
degradation rate constants are derived from secondary structures. These properties can be understood 
as highly sophisticated functions of the individual sequences whose values are mediated by the 
secondary structures. Such functions induce complex value landscapes on the space of sequences. 
The landscapes are analysed by random walk techniques, in particular autocorrelation functions and 
correlation lengths are computed. Free energy landscapes were found to be of AR(1) type. The rate 
constant landscapes, however, turned out to be more complex. In addition, gradient and adaptive 
walks are performed in order to get more insight into the complex structure of the landscapes. 

Keywords. RNA secondary structures; RNA free energies; Value landscapes; Autocorrelation func- 
tions; Correlation lengths. 

Statistik yon Landschaften aus freien Energien, Replikations- und Abbaugeschwindigkeitskonstanten 
von RNA-Sekundiirstrukturen 

Zusammenfassung. RNA-Sekund/irstrukturen werden aus den Prim/irsequenzen mit Hilfe eines Com- 
puteralgorithmus berechnet, welcher einem Kriterium minimaler freier Energien folgt. Freie Energien, 
Replikations- oder Abbaugeschwindigkeitskonstanten werden aus den Sekund/irstrukturen berechnet. 
Man kann daher diese Eigenschaften als komplizierte Funktionen der Sequenzen auffassen, deren 
Zahlenwerte durch Vermittlung der Sekund/irstrukturen erhalten werden. Diese Funktionen indu- 
zieren hochkomplexe Bewertungslandschaften im Raum der Sequenzen. Die Landschaften werden 
mit Hilfe von Irrflugtechniken analysiert. Im einzelnen werden Autokorrelationsfunktionen und 
Korrelationsl/~ngen berechnet. Die freien Energie-Landschaften sind vom AR(1) Typ. Die yon den 
Reaktionsgeschwindigkeitskonstanten abgeleiteten Landschaften stellten sich hingegen als komplexer 
heraus. Zus/itzlich werden die Bewertungslandschaften auch noch mit Hilfe von Gradient und Adaptive 
Walks untersucht, um mehr Einblick in ihre komplexe Struktur zu gewinnen. 
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1. Introduction 

Statistical properties of ensembles of random biopolymers became an issue of 
current interest since new experimental techniques aim to exploit the enormous 
capabilities inherent in such ensembles [ 1-4]. Methods combining random assembly 
of biopolymers with selection represent a powerful counterpart to rational design. 
Another new trend in biotechnology produces variation by mutation and makes 
also use of selection to extract RNA molecules or proteins with the desired properties 
from organized mutant distributions. Selection is commonly introduced via rep- 
lication under constraints provided by means of an appropriate setup or essay [5, 
6]. The first in vitro selection experiments on RNA molecules were performed in 
the late sixties [7] and the remarkable capacities inherent in applied molecular 
evolution were discussed already some years ago [8, 9], but successful experimen- 
tation required tools which became available only recently. A third approach in 
biotechnology uses a natural device to carry out both processes of the evolutionary 
approach, randomization and selection: novel catalytic proteins are produced as 
antibodies by the immune system [10, 11]. 

Optimization based on natural or artificial selection is now commonly viewed 
as an adaptive walk on a highly complex rugged landscape. The concept of a fitness 
landscape is due to Sewall Wright [12]. For a more recent use of landscapes in 
evolution see [13-15]. Quantitative studies were almost exclusively performed by 
means of random model landscapes which were derived originally from spin glass 
theory. The N-k model conceived by Stuart Kauffman [14] represents the most 
intensively studied example. It can also serve as an appropriate reference system. 
Exceptions are investigations of value landscapes with a realistic biophysical back- 
ground [ 16-18]. These studies are based on RNA folding into secondary structures. 
Mutant distributions in stationary replicating ensembles- denoted and character- 
ized as quasispecies [ 19-21 ] - generally reflect the structure of the underlying value 
landscapes and one may use populations as experimental probes for the determi- 
nation of the landscape structure [6, 22]. At the present state of the art the 
experimental approach yields important hints, but it is limited to few special cases 
and cannot provide global results on the properties of landscapes. 

All quantitative values which are plotted in value landscapes are derived from 
spatial structures of biopolymers or even more complex entities involving ensembles 
of molecules. Any quantitative representation of realistic value landscapes has to 
deal therefore with the notoriously difficult problem to predict the structures of 
biopolymers from sequence data. Among the various attempts to compute structures 
of proteins or RNA molecules only the calculations of RNA secondary structures 
yield satisfactory results [23] at present. It was obvious therefore to choose this 
case for our studies. 

What are the questions that can be answered by computation of statistical 
ensembles of RNA molecules? Distributions of thermodynamic and kinetic prop- 
erties of structures, as for example free energies, replication and degradation rate 
constants, as well as their dependencies on chain lengths v are of primary interest. 
How likely is it that closely related sequences have similar secondary structures 
and properties? What is the frequency of occurrence as well as the size and length 
distribution of the various structural elements, such as loops, stems, joints, and 
free ends? How do the answers to these questions depend on chain lengths, base 
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compositions, and base alphabets? By base composition we mean the frequencies 
at which the four bases G, A, C and U occur in a particular RNA sequence. The 
base alphabet refers to the number and nature of the bases. In this paper we shall 
exclusively deal with thermodynamic and kinetic properties. The questions directly 
related to secondary structures and their elements will be dealt with in a forthcoming 
paper [-24]. 

2. R N A  Secondary  Structures and Value Landscapes 

The process of folding the primary sequence of an RNA molecule - to be understood 
as a finite string of symbols chosen from an  alphabet of ~: l e t t e r s - in to  a three- 
dimensional tertiary structure can be partitioned into two steps: 

1. folding of the string into a quasi-planar - two-dimensional - secondary struc- 
ture by formation of complementary base pairs, G - C or A = U, respectively, and 

2. formation of a three-dimensional spatial structure from the quasi-planar 
folding pattern. 

Secondary structure formation is modelled much more easily than their trans- 
formation into tertiary structures. At present there are no theoretical models avail- 
able which can predict tertiary structures reliably. An additional problem is related 
to structure storage and handling: three-dimensional structures are very hard to 
encode in compact f o r m - c o m m o n l y  Cartesian coordinates of all atoms have to 
be stored. As opposed to the difficulties in predicting and encoding tertiary struc- 
tures, the computat ion of RNA secondary structures is much simpler and more 
reliable. Secondary s t ruc tures -as  we shall s e e - a r e  readily encoded, stored and 
fairly easy to compare. This is mainly a consequence of the fact that the inter- 
molecular forces stabilizing RNA secondary structures - base pairing and base pair 
s t ack ing-a re  much stronger than those involved in three-dimensional structure 
formation. The dominant  role of RNA secondary structures is also well documented 
in nature by the conservation of secondary structure elements in evolution [25- 
273. 

Several assumptions are built into the folding algorithms through the definitions 
of  RNA secondary structure: 

- the secondary structure is a strictly planar g r a p h - i t  contains no knots and 
hence crossing of strands can always be disentangled by rotation of partial 
structures, 

- pseudoknots are considered as elements of tertiary structures, and 
- RNA secondary structures can be partitioned into elements which contribute 

additively to thermodynamic and kinetic properties. 

All non-additive contributions are assumed to be fairly small, and hence they 
can be attributed to the tertiary structure. Structural elements of  secondary struc- 
tures are: 

1. stems or stacks, which represent the double helical regions of the structure, 
2. loops and bulges consisting of internal unpaired bases, 
3. joints, which are stretches of unpaired bases joining freely movable substruc- 

tures, and 
4. free ends. 
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Nucleotides in joints and free ends are also termed external. Several algorithms 
are available which allow to compute secondary structures from RNA sequences. 
The most widely used among them is based on dynamic programming and computes 
the minimum free energy secondary structure from the sequence [-28]. Derivative 
algorithms allow to compute also suboptimal foldings [29, 30] and partition func- 
tions [-3 iI. 

RNA sequences like other biopolymers are objects of combinatorial complexity, 
for example 

I = {AUGCGUUGGACGAUGCAGUGAAACG . . .  GUAACG} . 

Consequently, we are dealing with ~:v different sequences of length v. These numbers 
are enormous and taking statistically representative samples is not a simple task. 
The concept of a sequence  space  is very useful for representing the ordering of 
sequences. The sequence space is a discrete vector space. It was originally invented 
in information theory [32]. The Hamming distance 

d O. = d ( I i ,  Ij), Ii, l j . . .  strings of chain length v (1) 

counts the number of positions in which the two sequences Ii and Ij differ. It forms 
a metric on the sequence space. The sequence space of binary (G, C) sequences is 
simply a hypercube of dimension v (Fig. 1). Sequence spaces of four-letter sequences 

in,u_, 

00111 

Fig. 1. The sequence space of  binary sequences of  chain lengths v = 3 and v = 5. The sequence space 
is a point space in which every sequence is represented by one point. The points corresponding to 
sequences with Hamming distance d =  1 are connected by a straight line. The object obtained in that 
manner is a hypercube of  dimension v. R N A  sequences in which two complementary bases out of  
the four natural ones are missing represent an example of  binary sequences: G, C or A, U 
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are more sophisticated objects and we dispense here with a detailed discussion. 
There are several examples of applications of the concept of sequence space to 
problems in biophysics and biology [21, 33]. 

Folding the primary sequence of an RNA molecule into its most stable secondary 
structure may be represented formally by the expression 

= k = 1 , 2 , . . . , K  v , ( 2 )  

where N is a function which stands for the folding algorithm. Based on the par- 
titioning into structural elements RNA secondary structures may be encoded in 
compact form. As shown in Fig. 2 a secondary structure is encoded by assigning 
a lower case letter to every base of the primary sequence. The position of a given 
base in the sequence is the same in Ik and in the encoded secondary structure gk. 
In particular we have: 

1. stems, encoded by a a a . . . ,  b b b . . . ,  c c c . . . ,  d d d . . . ,  etc., 
2. loops, encoded by x x x . . . ,  
3. joints, encoded by y y y . . . ,  and 
4. free ends, encoded by zzz  . . . .  

The use of letters is not arbitrary here: the later the letters come in the alphabet, 
the more flexible are the corresponding parts of the RNA molecule. Stem regions 
are more rigid than loops, loops in turn are more rigid than joints and joints are 
less flexible than the free ends. It is not necessary to distinguish between different 
loops or joints in the encoded notation gk since they can be reconstructed from 
the stacks whose positions are specified by denoting the stacks from the 5'- to the 
3'-end in their sequence of occurrence. 

A very convenient and versatile way to represent and compare RNA secondary 
structures uses the concept of trees. A coarse tree representation of secondary 
structures was already suggested by Michael Zuker and David Sankoff in their 
well known paper on the folding algorithm [283. It was resumed and used for 
comparisons of secondary structures on a large scale by Bruce Shapiro [34, 35]. 
As shown in Fig. 2 the tree representation, 

r k = J ( 3 )  

can be easily extended such that it covers all structural details: every base pair is 
represented by an internal node, every single unpaired base by an external node 
or lea f  We add one more node which does not correspond to a physical unit of 
the RNA molecule as the root of the tree in order to avoid that simple secondary 
structures with free ends are represented by forests.  This representation makes 
explicit that the folding process can be viewed as a map between linear and nonlinear 
combinatorial structures: sequences and trees. Tree representations of secondary 
structures provide one important advantage: a distance between secondary struc- 
tures with the properties of a metric, 

A~j= A (F/, Fj) ,  (4) 

is obtained by a tree editing procedure [-36, 37]. Paulien Hogeweg, Ben Hesper 
and Danielle Konings conceived an alternative graphical method for the comparison 
of RNA secondary structures called mountain representation [38-40]. 
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SEQUENCE A 

GGCGGGG~GG~GCCGGCGCGCGCGCGGGCGCG~GCCGG~GGCGCCCGGGCGGCGGGCGCCCCGCCCCGGCGGCGCGC 

zzaaaaaaxxxbbcccccc•ccc•ccxxxxccccccccccc•cdddddddxxxxxdddddddbbxaaaaaaeeexxxeee 

Fig. 2A 

Fig. 2. Different representations of RNA secondary structures. The comparison shows two binary 
(GC) sequences A and B, their secondary structures in the compact encoded version gk, the full 
graphical representation Gk (5'-ends are denoted by arrows, ~ )  and the tree representation F k. In 
the tree representation full circles (O) denote base pairs, open circles (O) stand for unpaired bases 
and the root is symbolized by a full square ( I ) .  Details are given in section 2. Note that the two 
sequences differ only in one position marked by ,11, 
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S E Q U E N C E  B 

l 
GGCGGGCCCC•GGCGC•GGCGCG•GCGCGGGCG•GCGC•GGCGG•G•••GGG•GG•GGG•G••C•G•CC•GG•GG•G•GC 

aaaaabbbxxxbbbccccccccc•ccxxxxccccccccccccddddddddxxxxxddddddddaaaaayyyeeexxxeee 

E r ! 

C G C f f  . . . . . . . . . .  CC C O ~  

Fig. 2 B 

A value landscape is obtained by taking the hypercubical sequence space as the 
support of a function that assigns a value to every sequence. The conventional 
value to be plotted in biology is the fitness of the phenotype that is replicated. The 
analogy to concepts in biology may be carried further: primary RNA sequences 
of Ik are equivalent to genotypes and the thermodynamically most stable secondary 
structures, Gk = ~f (Ik) are the analogues of phenotypes. The process of folding the 
one-dimensional string of symbols into the two-dimensional secondary structure 



802 w. Fontana et al. 

is tantamount  to the "unfolding of the phenotype". The biological concept of a 
fitness landscape is generalized to a value landscape in which an arbitrary scalar 
property of the phenotype is plotted over sequence space. In particular we shall 
deal here with landscapes derived from thermodynamic and kinetic properties of 
RNA molecules in their most stable secondary structures. 

3. Autocorrelation Functions of  Time Series 

The correlation coefficient of two random variables Xi and Xk is defined by 

coy (x,, xk) 
Pik = ~/var (Xi) var (Xk) 

<G>)>  
(5) 

4( (Xi -  <Xi>)2)((Xk - <Xk>)  2) 
Throughout  this paper we use the notation <. > for expectation values, coy is used 
for the covariance matrix and var (Xi) - coy (Xi, Xi) denotes its diagonal terms, the 
variance of the random variable X~. The correlation coefficient apparently fulfils: 
- 1 ~< Pik ~< 1. Let us assume that both random variables, J(i and X~ = Xi+ k are created 
by the same stochastic process yielding the time series 

Y't = (Xo, X1, X2 , . .  . ,Xi ,  Xi+ l , .  . . , X , + k , .  . .) • (6) 

Xi+k  is the value of the random variable ¢r exactly k time steps later than Xi. We 
assume stationarity of the stochastic time series. This condition is readily casted 
in the form: 

(z~fi r ~ j s )  = ( x i r +  k ~j.s+ k )  for all i,j, k,  r, s . 

The correlation coefficient may now be expressed as a function of k thus leading 
to the autocorrelation function 

<(x,- <xi>)> 
(k) = < Xi >)2> (7) 

The denominator becomes simpler because of the stationarity condition: expectation 
values, variances and all higher moments of variables with time offset become 
identical: <X,)= <Xi+k) ,  var (X/)--var (Jf/+k), etc. 

Two variants of Eq. (7) are important for the issues pursued here and in 
forthcoming papers on RNA value landscapes: 

<x?> - <x,x,+ 
p (k) = 1 - <X~) - <X~) a (7a) 

This equation is useful for numerical computat ion and makes the limits of the 
autocorrelation function easily intelligible: limk_,0p(k) = 1, and limk_,o~ 
<XiXi+k)  = ( X i )  < ~ + k )  = <Xi)  2, since the two random variables Xi and Xi+k 
become independent for sufficiently large k. Eventually we find limk__,o~ P (k) = 0. 

Let us assume that Xj is independent of Xi and l(~+k but nevertheless chosen 
randomly from the same time series f Then the autocorrelation function can also 
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be written as [41] 

p (k)  = 1 - x +k)2> 
( ( X - , -  ~ / . ) 2 )  ( 7 b )  

This equation allows to define an autocorrelation function also in cases where only 
distances between objects are meaningful. An example is given by the distances 
between RNA secondary structures (see section 2), 

X i - ~  X o. = A (ri, rj) 

that will be analysed in detail in a forthcoming paper [-41]. 
In the simplest cases autocorrelation functions have the shape of decaying 

exponentials, p (k) = exp ( -  ;~k). They correspond to time series which are created 
by AR(1) processes [42]. The reciprocal value of the decay constant is called the 
correlation length I = )~- 1. It represents that value o fk  at which the autocorrelation 
function has dropped to e-1. Value landscapes on which random walks lead to 
AR(1) processes may be characterized as AR(1) landscapes. In particular random 
landscapes as obtained from Kauffman's N-k model have this property [43]. Other 
examples of AR(1) landscapes are the Sherrington-Kirkpatrick spin-glass [44] and 
the symmetric traveling salesman problem [45]. 

4. Statistical Evaluation of Value Landscapes 

Value landscapes may be explored by random walks in sequence space [-43]. At 
first we consider the free energy autocorrelation function. A series of RNA molecules 
is created by succcessive random single base exchanges: 

I0  ~ I1 ~ I2 ~ . . .  ~ I i  ~ I i +  1 ~ . . .  ~ I i  + k --+ . . . .  (8 )  

The random walk then occurs along the edges of the hypercube (Fig. 2) - or along 
those of a more complex object in case of four-letter sequences, since subsequent 
molecules have always Hamming distance one: d(L,I0) = d ( I>L)  = . . .  = 
d(I;+ 1, Ii) = 1. Planar secondary structures Gi = f~ (Ii) are computed for all RNA 
molecules by means of the algorithm described in section 2. The free energies of 
the RNA molecules in their most stable (0 ° K) structures, f = ~(G~), are readily 
obtained from the structure computation. In essence, the series (8) is mapped onto 
a - time ordered - set of numbers: 

fo --+fl ~ f 2  --+ •. • --+f -+fi+ 1 - ' +  " • • " ' ~  f i +  k " - ~  . . . .  (9) 

The random walk in sequence space thus yields a stochastic process on the free 
energy landscape that can be analysed with the statistical techniques outlined in 
the previous section 3. 

RNA secondary s t ruc tures-  once obtained by the folding a lgo r i thm-  can be 
used to compute other quantities of interest. As opposed to free energies, the kinetic 
constants of replication, ak, and degradation, dk, cannot be computed straightway 
from known secondary structures Gk. There are no satisfactory models available 
which are based exclusively on the knowledge in biophysical chemistry. We use 
therefore a very crude estimate of  these quantities. It is well known from virus 
specific RNA replication by QI3 replicase that only single stranded molecules are 
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accepted as templates. The secondary structure has to melt in order to make 
replication possible. An estimate of the rate constant of melting may be used 
therefore as a simple model for the replication rate constant. The expression given 
below takes care of the cooperativity in the melting process. Degradation on the 
other hand can be modelled by taking into account all possible attacks of a hy- 
drolytic agent or an enzyme with nuclease activity on the single stranded regions 
of the secondary structure Ge. We present here two examples of such model equa- 
tions, one for replication rate constants [16, 17], 

~) 

ak = sd(Gk) = a 0 - a l  ~'2 n}~)(l+n}~))3 k = 1 ,2 , . . . , 2  v 
j= 1 (1 + n}k)) 4 + a2' 

and one for degradation rate 
(k) 

dk = ~ ( a k )  ~--- ~0 + ~1 u "tKUf, exp{(u}k)_U,nax)/U,~ax } + 
j = 1 lXma x V 

The two equations contain six empirical parameters: %, al, R2, [3o, [31, and [32. The 
other quantities are related to the secondary structure Gk. By n~ e) we denote the 
number of base pairs in the j-th stack of the secondary structure G~, s (k) is the 
number of stacks in this structure. In the second equation the number of bases in 
the j-th loop of the secondary structure Gk is denoted by u5 k). This structure has 
u (k) loops and there is a maximum loop size Uma;~ above which loops are considered 
as completely mobile elements like free ends. The total number of bases in large 
loops, joints and free ends is given by z (k). Both expressions were used as model 
equations in a computer simulation of optimization of RNA secondary structures 
by mutation and selection [16, 17]. 

Depending on the quantity plotted on the value landscape we distinguish au- 
tocorrelation functions of free energies, 0f(k), of replication rate constants, O~ (k), 
and of degradation rate constants, pa(k). Since the forthcoming considerations 
apply to all autocorrelation functions we drop the index. Let us first consider the 
nature of the random walk in sequence space. Although every step of the random 
walk is of Hamming distance one the walk length (s) need not coincide with the 
Hamming distance (d) between the first and the last sequence (Fig. 3). Indeed we 
find a probability distribution of Hamming distances covered by a walk of length 
s: ¢Pds (v, to) is the probability that a random walk of s steps ends at a sequence 
with Hamming distance d from the starting sequence. It depends on the chain 
length of the sequence, v, and on the number of letters in the genetic alphabet, K. 
The Hamming distance d can neither be larger than the walk length s nor can it 
be larger than the chain length v and hence 

q) (v, ~:) = 0 if d > min (s, v) . (10) 
ds 

The probabilities fulfil the conservation relation 
min (v, s) 

Z q>ds(v,~)= 1,  
d = 0  

since every walk of length s has to yield some Hamming distance d. The probability 
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0 1 2 3 4 5 

Fig. 3. The relation between the length of a random walk (s) 
and the Hamming distance between the first and the last 
sequence (d). For the purpose of illustration we choose binary 
sequences, ~: = 2, and a walk length of s = 5. In this case we 
have the simple restriction that the sum of s and d has to be 
an even number. Thus, only the Hamming distances d= 1, 
3, and 5 may occur 

d i s t r i b u t i o n  q~d, (V, K) is e v e n t u a l l y  de r i ved  f r o m  the  r e c u r s i o n  

v - d + l  
(Dds (V, K) = (Pd-  1, s -  1 (V, K)"  

V 
d ~ : - 2  

-I- (D d, s - 1  ( V , 142) . . . .  
v ~ - i  

d + l  
+ qOd+ 1,s- 1 (V, ~:) 

V K - 1  
(11) 

wi th  qOds (V, ~:) = 0 i f  d < O, a n d  the  in i t ia l  c o n d i t i o n  %0 (v, ~:) = 1. 
S o m e  use fu l  gene ra l  r e l a t i ons  a re  r ead i ly  der ived :  

%,  (v, ~) -- ( v -  1) ( v -  2 ) . . .  ( v -  s + 1) _ ( s - -  1) ! 
V s -  1 V s -  1 

i f s  = 0,1 

i f  s >  1 . (12) 

In  the  case  o f  b i n a r y  s equences  (~c= 2) the  r e c u r s i o n  (11) s implif ies  to  

v - - d +  1 d +  1 
-J- ~ d +  1,s-- 1 (V, 2 ) ' - -  

V V 
q~as(v,2) = q)d-l,s-1 (V, 2) , ( l l a )  
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and, in addition, every second element of the transformation matrix vanishes: 

q~d~(V, 2) = 0 if d + s = 2 j +  1, j = 0 , 1 , 2 , 3 , . . . .  ( l lb)  

The probability distribution is applied to compute the autocorrelation as a 
function of the Hamming distance, p(d), from the autocorrelation as a function of 
the walk length, p (s), with the latter obtained directly from the random walk: 

min (v, s) 

9(s )=  Y~ q%s(v,~:)'p(d). (13) 
d = 0  

For s ~< v the desired autocorrelation function p (d) is now readily computed by 
recursion from 

and 

p(O) = p(O)= 1, p(1) = p(1), 

(14) 

p (s) qOss (v, ~:) O (s) - a=o~2 (pas (v, ~:) "p (d) , s = 2, 3, . . . .  

In the case s > v of the autocorrelation function p (d) vanishes since the Hamming 
distance can never be longer than the diameter of the sequence space (see also Eq. 
10). 

5. Numerical  Results from Random Walks  

Sampling of RNA structures by means of random walks with step size one in 
Hamming distance seems to be a rather simple task. There are, however, funda- 
mental and technical problems that have to be overcome: 

- Sequence spaces are objects of combinatorial complexity, and taking statistically 
representative samples is a non-trivial problem already at moderate chain lengths 
(v = 40 and larger). 

Consider for example natural (GACU) sequences of chain length v = 40. The 
sequence space comprises 440~ 1.21" 1024 different sequences. Computational re- 
quirements become prohibitive for random walks with walk lengths of s = 106 steps 
or more. We found a workable solution to the problem which consists in the 
accumulation of short random walks each about 1 000 steps long. Every walk is 
started anew by resetting the random number generator. Then a few 105 points 
were found to be sufficient to achieve convergence of the most important statistical 
quantities. 

- Storage of the folded secondary structures provides a formidable memory prob- 
lem. 

Files containing the collection of secondary structures in the compact encoded 
form gk commonly exceed several tens of megabytes and sufficient storage capacity 
is a prerequisite for this type of computations. 

The calculations reported here were performed with the same parameter set as 
used in our previous studies [16, 17]. This choice was made for the sake of con- 
sistency. We mention,, however, that new parameters are also available [46] which 
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Fig. 4. Expectation values of free energies ( < f > )  of RNA molecules in their most stable secondary 
structures as functions of the chain length v. The free energies of binary sequences (GC) are denoted 
by i ,  For those of natural four letter sequences (GACU) the symbol • is used. Standard deviations 
( 3 / ~ - ~ ) -  multiplied by a factor 10-a re  shown as G or as ©, respectively 
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Fig. 5. Expectation values of replication (<  a > )  and degradation rate constants (< d>)  as well as 
excess productivities ( < e > )  of two letter (GC) RNA molecules in their most stable secondary 
structures as functions of the chain length v, Replication rate constants of binary sequences are 
denoted by II. For degradation rate constants and excess productivities the symbols • or O are used, 
respectively 
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Fig. 6. Expectation values of replication (< a >) and degradation rate constants (< d>) as well as 
excess productivities (< e >) of four letter RNA molecules in their most stable secondary structures 
as function of the chain length v. Replication rate constants of natural four letter sequences (GACU) 
are denoted by m. For degradation rate constants and excess productivities the symbols • or © are 
used, respectively 

were derived from a largely extended empirical data base and hence allow more 
precise predictions. 

Free energy, replication and degradation rate constant landscapes of R N A  
molecules derived from a two-letter alphabet (GC) as well as those of  natural  four 
letter sequences (GACU) were explored. The chain lengths were typically varied 
from v -- 20 to v = 140. In Figs. 4, 5, and 6 we show the expectation values, < f ( v )  > ,  
< a ( v ) > ,  < d ( v ) >  and < e ( v ) >  as functions of  the chain length together with 
their standard deviations. Excess productivities, ek = a~-d~  were included in the 
analysis because they represent the quantities which determine the outcome of  
selection in molecular evolution experiments [-21]. 

At first we discuss and analyse the results for free energies. As shown in Fig. 
4 the absolute values of mean free energies increase linearly with chain length. As 
expected GC-sequences are more stable than GACU-sequences since 

(1) G = C  base pairs are stronger than A = U  base pairs, and 
(2) GC-sequences form on the average more base pairs than GACU-sequences. 
In previous papers we found that free energies in random samples of  R N A  

secondary structures follow roughly a normal  distribution [16, 17]. This implies 
that they are well characterized by standard deviations. The distribution of  the 
energies of  four letter sequences is w i d e r -  relative to the mean value - than those 
of GC-sequences and increases more strongly with the chain length v. This implies 
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T 0.0 

-1.0 
log p(s), log p(d) 

-2.0 

-3.0 

-4.0 

-5.0 
O.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 

Distance s, d 

Fig. 7. An analytical approximation to the autocorrelation function p (s) for binary sequences (~ = 2) 
of chain length v = 30 as described in Eq. (15). The points at which the function is defined are denoted 
by O. The straight line represents the autocorrelation function expressed in Hamming distance p (d) 

that the secondary structures of the natural GACU-sequences are richer and more 
variable in the details than those of their two-letter counterparts. 

Autocorrelation functions 9 (s) were computed according to Eq. (7). They yield 
curves ill log 9 (s)/s-plots and hence are more complex than single exponential decay 
functions. A correction for the difference between walk length (s) and Hamming 
distance (d) according to the recursion (11) yields an autocorrelation function which 
can be fitted well by a single exponential (Fig. 7). 

In the case of sequences from a two-letter alphabet (~c = 2) an analytic approx- 
imation can be derived for the transformation 9 (s)*~-p (d). This approximation 
assumes that the random walk in Hamming distance gives rise to an AR(1) process, 
p (d) = exp (-)~d), and neglects terms of order v -  2 and smaller. It is valid for s, d~  v: 

p(s) = (1 + s(S-2v 1) (e2~ - 1) + dO(v-2)) • exp ( - k s )  (15) 

It is easily verified that the correction term accounts for the curvature observed in 
the log p (s)/s-plot mentioned above (see Fig. 7). 

In order to verify Eq. (15) by comparison with a computed ensemble of sec- 
ondary structures we computed 600 000 (GC) sequences in 600 packages to 1 000 
sequences each and sampled with respect to walk length s and Hamming distances 
d [47]. This sample of free energies provides enough material for an appropriate 
test. Numerical data for the autocorrelation functions and their approximations 
are collected in Table 1. As shown in Fig. 8 the autocorrelation function pz(d) can 
be approximated by a single exponential with very good agreement. There is no 
reason, however, that a random walk on an RNA free ennergy landscape should 
exactly meet the conditions of an AR(1) process and indeed careful inspection of 
the computer data shows small systematic deviations from the straight line. The 
nature of these higher order corrections will be analysed and discussed in a forth- 
coming paper on random walk studies with updated parameter sets [47]. 
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Table 1. Autocorrelation functions of free energies and their analytical approximations. Binary (GC)- 
sequences of chain length v = 30 are considered. The computed data were taken from a random walk 
of 600 000 steps. They were collected in 600 packages of 1000 points each and sampled with respect 
to walk length s or Hamming distance d, respectively 

Walk length Hamming distance 

d, s ~, (s) o (s) p (d) p (d) p (d) 
Sample Eq. (15) Sample Eq. (14) exp ( -  d/ l )  

0 1 1 1 1 1 
1 0.700 0.735 0.696 0.700 0.736 
2 0.532 0.557 0.520 0.516 0.541 
3 0.418 0.432 0.393 0.388 0.398 
4 0.336 0.343 0.296 0.293 0.293 
5 0.275 0.277 0.228 0.221 0.215 
6 0.229 0.226 0.173 0.167 0.158 
7 0.192 0.186 0.124 0.124 0.116 
8 0.161 0.154 0.087 0.086 0.086 
9 0.137 0.127 0.058 0.053 0.063 

10 0.115 0.106 0.021 0.030 0.046 

Correlation lengths of free energies are considered now as functions o f  the chain 
length v. In Fig. 9 we show plots of l~ c (v) and /GACU (V). Two features are im- 
mediately evident: 

- the correlation lengths of free energies increase roughly linearly with the chain 
length v, and 

T 0.0~ 

-o.5~ 
log pA~), log PI(d) 

- 1 . 0  - 

-1.~J 

-2.0~ 

-2A 

-3.0 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Distance ~, d -----+ 

Fig. 8. The autocorrelation function of the free energy pf(s) for binary (GC) sequences of chain length 
v = 30 as obtained by sampling 600 000 data points (0). An additional sampling of the same series 
of sequences with respect to Hamming distances d 1-47] yields the autocorrelation function expressed 
in Hamming distance p f ( d )  in direct computation. The individual points (©) fulfil the linear rela- 
tionship, logp (at) = - d / l  with l = 3.256, to a very good approximation 
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Tg 30"01 

25.0 

I0.0] 

0.0 20.0 40.0 60.0 80.0 100.0 120.0 
Chain Length u 

Fig. 9. The correlation length l of free energiesf for four letter (GCAU) sequences (n)  and for two 
letter (GC) sequences (O) in their most stable secondary structures as a function of the chain length 
v 

- free energies of GC sequences have much shorter correlation lengths than those 
of sequences from the natural four-letter alphabet. 

A closer inspection of the curves /f(v) shows a slightly sigmoid shape. This 
behaviour suggests the existence of a limit value of the correlation length for long 
sequences. 

The expectation values of the model rate constants, < a > ,  < d >  and < e > ,  
show non-monotonous  dependence on the chain length v (Figs. 5 and 6). For short 
sequences < a (v) > increases with chain length and - after passing through a max- 
imum - it decreases with increasing values ofv. The mean degradation rate constant, 
on the other hand, shows inverse behaviour: it starts from high values at short 
sequences, passes through a flat minimum and increases then with further increasing 
chain length v. The two opposing dependencies on the chain length are readily 
interpreted by inspection of the corresponding equations in section 4: the replication 
rate constant is mainly determined by the number and the sizes of stacks, and the 
degradation rate constant reflects the number and the sizes of loops. It is easily 
verified that the number of loops equals the number of stacks and the size distri- 
bution become roughly alike by averaging over large samples. The dependence of 
< e > = < (a - d) > on the chain length v is derived readily and apparently parallels 
that of  < a > .  Mean rate constants computed for two-letter (GC) sequences show 
the same qualitative behaviour than those computed for four-letter (GACU) se- 
quences. With the two-letter sequences, however, the extrema occur at substantially 
smaller chain length. 

The models of rate constant landscapes were found to be more complex than 
those of the free energies: after transformation into p (at) the autocorrelation func- 
tions are still curved and this indicates that the stochastic processes corresponding 
to the random walks are not AR(1). Here we shall not investigate the nature of 
these landscapes further. Since the curvature is only moderate we computed ap- 
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proximate correlation lengths by linear interpolation between the two points in the 
neighbourhood of logp (/) = - 1. 

In Figs. 10 and 11 the approximate correlation lengths of  the three rate constants 
a, d, and e are plotted and compared with the correlation lengths of the free energies 
for GC- and GACU-sequences. In general the correlation lengths of  the degradation 
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4.0" 

3.0- 

2,0- 

1.0- 

0.0 
0.0 20.0 40.0 60.0 80.0 100.0 

Chain Length v 

Fig. 10. The correlation length l of free energiesf(m), replication rate constants a (0), degradation 
rate constants d ( ~ )  and excess productions e (O) of binary (GC) sequences in their most stable 
secondary structures as a function of the chain length v I 30.0 ] 

25.0 

:°)o t 
1021 

: °ol 
0.0 20.0 40.0 60.0 80.0 100.0 120.0 

Chain Length v ---+ 

Fig. l l .  The correlation length l of free energies f (B), replication rate constants a (0), degradation 
rate constants d ( ~ )  and excess productions e (©) of four letter (GCAU) sequences in their most 
stable secondary structures as a function of the chain length v 
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rate constants d are much smaller than those of the free energies, and replication 
rate constant landscapes a, in turn, have smaller correlation length than the cor- 
responding d-landscapes. As with the free energies the correlation lengths of GC- 
sequences are much shorter than those of their four-letter counterparts. 

6. Adaptive and Gradient Walks on Free Energy Landscapes 

Two other classes of processes on value landscapes, gradient and adaptive walks, 
were studied in addition to random walks. These processes are created by series 
of sequences of type (8) whose successors have Hamming distance d(Ii+ 1, Ii)-- 1. 

l 0.25- 

P(s) 0.20- 

0.15- 

0.10- 

0.05 - 

0.00 
0.0 2.0 4,0 6.0 8.0 10.0 12.0 14.0 16.0 

A Walk Length s -----* 

T 0.20 

e(~) o.15 

0.I0 

0.05 

0.00 
0.0 4.0 8.0 12.0 16.0 20.0 24.0 

Walk Length s --* 

B 

Fig. 12. Probability densities P (s) of the 
length of gradient (A) and adaptive (B) 
walks on free energy landscapes. The 
data shown in the plot were computed 
for 20000 walks involving GC-se- 
quences of chain lengths v =  30 (e,  O) 
and v = 50 ( E ,  ~ )  
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In contrast to random walks they are restricted to decreasing values of free energies 
in the series 

f0 > f i  >f2 > . . .  > f i  > f + i  >fi+2 . . . .  (9a) 
and end always in local minima of the free energy landscape. Consequently they 
provide direct information on the distribution of minima. We distinguish 

(1) gradient walks-  deterministic walks of step size Hamming distance one in 
which always the highest value of the free energy f i n  the nearest neighbourhood 
of the current sequence is chosen-  and 

(2) adaptive walks which choose at random a sequence in the nearest neigh- 
bourhood which fulfils Eq. (9 a). 

Walk Length s 

0.25- 

0.20- 

0.15- 

0.10- 

0.05- 

0.00 
0.0 2.0 4 . 0  6.0 8.0 10.0 12.0 14.0 16.0 

A 

P(~) 

4.0 8.0 12.0 16.0 20.0 24.0 

0.20 

0.15 

0.10 

0.05 

O.OG 
0.0 

P(8) 

Walk Length s 

B 

Fig. 13. Probability densities P (s) of the 
length of  gradient (0, • )  and adaptive 
walks (O, ©) on free energy landscapes. 
The data shown in the plot were com- 
puted for 20 000 walks involving GC- 
sequences of  chain lengths v = 30 (A) 
and v = 50 (B) 
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Table 2. Fraction of vertices corresponding to local minima of the free energy landscape, Ym, mean 
walk length, (s), and expectation values of the improvements in free energies, (A J)  [kJ tool-  1], for 
gradient and adaptive walks 

Chain length Fraction of minima Gradient walks Adaptive walks 
v 7m 

(s) (Af~ (s) (AZ; 

30 0.0227 3.1 - 16.1 4.4 - 15.7 
50 0.0027 5.5 - 25.6 8.1 - 25.9 

The results of four selected walks on two free energy landscapes derived from 
two-letter (GC) sequences of chain length v = 30 and v = 50 are shown in Fig. 12 
and 13. In order to obtain statistically significant samples 20 000 walks were per- 
formed for each class. 

In Table 2 we summarize the numerical values of mean walk lengths and mean 
free energy gains. Starting from the same point in sequence space the adaptive 
walk is necessarily always longer o r - i n  the l imi t -  as long as the gradient walk. 
The results shown in Fig. 12 clearly demonstrate this fact. An increase in the chain 
length v of the sequences manifests itself in longer walks (Fig. 13). Free energy 
landscapes of longer sequences thus have a smaller fraction of local minima. The 
fraction of vertices representing local minima of the free energy is obtained also 
directly as the fraction of adaptive or gradient walks having zero walk length (Table 
2). It amounts about 2% for GC sequences of chain length v = 30 and decreases 
by one order of magnitude if the chain length is raised to v -- 50. 

Intuitively we would expect adaptive walks to lead to deeper local minima than 
the gradient walks do. According to Table 2 this might be fulfilled at longer chain 
lengths. For v = 30 we even observe an opposite trend indicating that the density 
of local minima is fairly high and thus the longer reach of the adaptive walk does 
not provide any advantage over the gradient walk. 

Gains in free energies during adaptive or gradient walks can be resolved into 
probability densities for individual steps-examples are shown in Fig. 14. As ex- 
pected, the gradient walks show larger improvements than the adaptive walks in 
the first step whereas the opposite is true for later steps. The probability densities 
are rather complex and show series of high peaks. The corresponding preferred 
values of Af are independent of the nature of the walk and reflect regularities of 
RNA secondary structures. 

7. Conclusions 

Free energy landscapes of four-letter (GACU)-sequences are substantially less rug- 
ged than those derived from two-letter (GC)-sequences. This is documented well 
by remarkably longer correlation lengths. The base composition of RNA sequences 
thus represents an interesting tool that allows to tune the structure of landscapes. 
Such a tool might well be important in evolutionary optimization. 

The transition from GC- to GACU-sequences introduces two different, major 
changes into the logic and the physics of polynucleotide folding: 
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- two complementary base pairs instead of  one make it more difficult to find 
matching counterparts  to segments of  the sequence and hence, global refolding 
of  structures after the exchange of  one, two or a few bases is less likely, and 

- weaker interactions between complementary base destabilize short stacks of  
bases pairs, some of  them do not  fold at all and secondary structures become 
less complex. 

Both effects change free energy landscapes in the same direction and it is not  
yet possible to separate the results of  general features like the increase in the number 
of  base pairs from specific effects of  the GACU-system. This question will be 
addressed in forthcoming studies on free energy landscapes of  R N A  molecules and 
model  polynucleotides. 

Correlation length as well as the results of  gradient and adaptive walks dem- 
onstrate that the free energy landscapes of  longer sequences are smoother  than 
those of  their shorter homologues.  The relative number  of  local minima illustrates 
the effect of  increasing chain lengths best. On the average 230 out  of  10 000 vertices 
are local minima of the free energy landscape of  GC sequences with chain length 
v = 30. An increase in the chain length from v = 30 to v = 50 reduces the relative 
number  of  minima by about  one order of  magnitude to 27 minima out  of  10000 
vertices. 

The free energy landscapes can be approximated very well as AR(1) landscapes. 
This implies that a number  of  relations are fulfilled [43]. For  example, the land- 
scapes are statistically i so t rop i c - t h i s  means that all vertices are equivalent for 
statistical a n a l y s i s - a n d  the free energies from randomly chosen samples of  se- 
quences are normally distributed. 

The model  landscapes for replication and degradation rate constants are more 
rugged and more complex. The correlation lengths are smaller and random walks 
lead to stochastic processes more complex than AR(1). It is premature to conclude 
that kinetic value landscapes will generally show higher complexity than their 
thermodynamic counterparts.  Further  studies on more realistic kinetic value land- 
scapes, for example on one that describes melting of R N A  secondary structures, 
are under way. 
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Fig. 14. Probability densities of stepwise improvements of free energies as obtained from 20 000 
gradient (A) and 20 000 adaptive walks (B) on a free energy landscape of binary (GC) sequences of 
chain length v = 30. We show densities for the first and second steps as well as for the sum of all 
remaining steps (s>~ 3) 
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