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A model of an objective function based on polynucleotide folding is used to investigate the dy-
namics of evolutionary adaptation in finite populations. Binary sequences are optimized with
respect to their kinetic properties through a stochastic process involving mutation and selection.
The objective function consists in a mapping from the set of all binary strings with given length into
a set of two-dimensional structures. These structures then encode the kinetic properties, expressed
in terms of parameters of reaction probability distributions. The objective function obtained there-
by represents a realistic example of a highly “rugged landscape.” Ensembles of molecular strings
adapting to this landscape are studied by tracing their escape path from local optima and by apply-
ing multivariate analysis. Effects of small population numbers in the tail of the sequence distribu-
tion are discussed quantitatively. Close upper bounds to the number of distinct values produced by
our objective function are given. The distribution of values is explored by means of simulated an-
nealing and reveals a random scatter in the locations of optima in the space of all sequences. The
genetic optimization protocol is applied to the “traveling salesman” problem.

I. OPTIMIZATION OF COMPLEX SYSTEMS

New optimization algorithms derived from physics and
biology were applied within the past two decades to sys-
tems with highly “rugged cost functions”!—for a recent
review summarizing applications to the “traveling sales-
man” problem see Ref. 2. Methods from statistical phys-
ics of spin glasses—as “simulated annealing”®—from
neural network dynamics* and from the genetic theory of
evolution>® became widely known. These methods—
though being apparently distinct and having their un-
deniable individual advantages and merits—share com-
mon features. To give an example: replication and muta-
tion dynamics in populations multiplying without recom-
bination (i.e., asexually) was shown to correspond to sta-
tistical mechanics of equilibrium spin systems.” ~° An ex-
tremal principle which is formally identical to the minim-
ization of free energy in statistical mechanics holds for
the optimization of replication performance in infinite
populations.”® Techniques originating in the study of
electronic localization in random potentials can be ap-
plied to identify changes in the “‘localization” behavior of
mutant distributions.!®!! “Localization™ refers here to
an abstract space which houses all possible solutions of
the combinatorial optimization problem. For the optimi-
zation of properties encoded by strings of two symbols
this abstract space is known as sequence space. 2

Optimization becomes a hard problem in finite popula-
tions, when available resources—the product of time and
population capacity, so to say—are vanishingly small
compared to the set of possible candidates for solutions
to the problem. This is generally so for combinatorial
tasks. The optimization of properties encoded by the
structure of polynucleotides represents such a task that
also might have played a role in prebiotic evolution. The
evolutionary adaptation of a finite ensemble of molecular
species must be described by stochastic means. Every
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finite distribution of polynucleotides created by replica-
tion and mutation has a periphery of scarcely populated
mutants that forces a stochastic treatment. In addition,
mutation as such is an intrinsically stochastic event.

In this contribution we shall be concerned with an op-
timization technique characterized as “evolution reac-
tor.”'3 It is a variant of conventional genetic algorithms®
and mimics adaptation of viruses in its most simple form.
Experimental efforts to determine distributions of se-
quences in real populations are enormous, not to mention
the formidable task of tracking population dynamics in
phase space. Computer experiments capturing essential
features are an alternative. The usage of config-
uration landscapes reflecting qualitatively correct
features of the realistic cases is crucial for the relevance
of the results. Biological systems typically exhibit rela-
tively simple modular components tied into a web of in-
teractions that result in surprising global properties. On
the scale of cellular regulation such systems might be
modeled by Boolean networks.'* Evolutionary dynamics
on landscapes resulting from such a network'® or from
the more specialized case of a spin-glass function with
binary interactions'® have been studied. On a molecular
scale, which we consider here, modules might be as sim-
ple as monomers whose global interactions produce a
complex two- or three-dimensional structure.

The present contribution is organized as follows. In
Sec. II we introduce the reaction network. Section III
describes the mapping that assigns to each binary string
an integer valued net productivity—defining its
“fitness” —by first computing the string’s secondary
structure. We proceed, then, to derive an algorithm
based on counting partitions of integers for establishing
close upper limits on the number of different fitness
values in our model. This will guide us in discussing the
density distribution of values. However, it is the distribu-
tion of fitness values in sequence space which is pivotal to
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evolutionary dynamics. In Sec. IV we focus by means of
genealogies on two scenarios of optimization dynamics
related to distinct topological features of the fitness
landscape. Effects of low occupation numbers are made
quantitative and result in a threshold below which accu-
rate evaluation of fitness parameters is jeopardized. Sec-
tion V uses tools from multivariate analysis to provide in-
formation of the changes occurring in the distribution of
sequences during the escape from a local fitness trap. In
Sec. VI we present strong evidence for a random scatter
in sequence space of clustered optima. This is in contrast
to ultrametric distributions found in mean-field spin-glass
models!” or in the “traveling salesman” problem.'® Sec-
tion VII reports an application of the evolutionary reac-
tion network to the traveling salesman problem. Section
VIII concludes the paper.

II. AN OPTIMIZATION ALGORITHM DERIVED
FROM MOLECULAR EVOLUTION

Recently, we conceived an evolutionary computer
game!*—for a schematic illustration see Fig. 1—and ap-
plied it to a model of polynucleotide replication. The
model system consists of a reaction network describing

System Realization Process

Digit {0,1}
ll Ligation to String

Binary Sequence {27° ~ 10?' Sequences}

String of v = 70 Digits

Primary Structure I : 011000110100...0
Jl Folding through Base Pairing
Secondary Structure
9(Ix)
\\j//f\/\
Jl Evaluation
Molecular Properties Ar , De

Population {(10“)2000 Distributions}

N = 2000 Sequences

Starting Distribution Xe(0); k=1,2,...,n

ﬂ Evolutionary Optimization
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FIG. 1. A computer model of evolutionary adaptation. The
model mimics RNA folding and evaluation of secondary struc-
tures according to some predetermined rules computing replica-
tion (A4,) and degradation rate constants (D;). Real polynucleo-
tides are replaced by binary sequences which fulfill a comple-
mentary pairing principle, 0=1, in analogy to the base pairing
rules. Secondary structures are formed by means of a minimum
free-energy criterion. Optimization is performed on the level of
populations according to the Darwinian rules of mutation and
natural selection.
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error-free replication, mutation, degradation, and dilu-
tion as parallel processes. It has been introduced by
Eigen'® and was analyzed further by means of determinis-
tic differential equations.'"?°~2> The reaction scheme
provides n? polymerization channels of n polynucleotides

I, (k=1,...,n), n degradation pathways, and the
unspecific dilution flux ¢(z):
A Qpx
Ik —’211\ > (1)
A Qi
Iy — I +1; (2)
Dy
I, ——0, (3)
(1)
I, ——0, jk=1,...,n . (4)

Herein, A4, is the rate constant of replication using I, as
template, D, its degradation rate constant, and Ok
denotes the probability of producing I; as a mutant of I,.
Here we model the polynucleotides as binary strings of
fixed length v,I, € {0,1}", and consider exclusively muta-
tions that interchange digits, hence leaving the chain
length v constant. The probability ¢ of correctly copying
a digit is assumed to be constant along the chain and in-
dependent of the digit type. The mutation probabilities
then take the simple form

ij:qv'*d(j,k)(l_q)d(j,k) , (5)

where d(j,k) denotes the distance in the Hamming
metric of the v-dimensional cubic sequence space. We
define the all-O-sequence to be the origin of the hyper-
cube. The expression ‘“‘k-error class” denotes the set of
(¥) sequences with k 1 digits (“‘errors” with respect to the
origin) and v—k O digits. The expression “k-error envi-
ronment” denotes the k-error class together with neigh-
boring error classes according to context. In order to
achieve canonical selection constraints, the flux ¢(¢) is
adjusted to yield conservation of the number of polymer
molecules. From this it follows that the flux compensates
the mean excess production E(T) of the network,
d(t)=E(1)= 3, Eyx,(t), with E, = A, —D, being the
net productivity of I, and x,(¢) its fraction in the system
— X7=1x;=1. These relative concentrations change ac-
cording to

% (= [wy —EDx (04 3 wyx;(1)
j (Fk)

k,jzl,.‘.,n. (6)

In the deterministic scenario the system (6) relaxes to-
wards a unique stationary sequence distribution, which is
given by the dominant eigenvector of the matrix
W={w}, w,;=A4;0Q,;,—D;5,;. This stationary distri-
bution was characterized as “quasispecies”?® in order to
point at the analogy to the notion of species in biology.
The asymptotic value of the mean productivity
lim, ,  E(t)=¢() matches the corresponding largest
eigenvalue A ,,.

Because of nonzero coupling terms Eq. (6) is nonlocal
in the relative sequence concentrations. It describes the
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selection process and its outcome, the quasispecies in the
limit of infinite populations. It addresses neither the
question of how and under which conditions the fittest se-
quence [I,,, with w,,,, =max; {w;,}, is found in a finite
population, nor the question of how sequence distribu-
tions move in sequence space. In particular, the oc-
currence of local traps and the mechanism by which pop-
ulations escape from them is a typical stochastic feature.

A single stranded RNA sequence is known to acquire a
three-dimensional structure by folding back on itself due
to intramolecular pairing of complementary bases. Here
we restrict ourselves to the two-dimensional folding pat-
tern termed ‘‘secondary structure” (see, for example, Fig.
3). A secondary structure is a planar graph whose ver-
tices are the bases constituting the particular sequence.
The set of edges consists of v—1 “backbone” edges con-
necting adjacent bases in the sequence and a number of
edges that represent hydrogen bonded Watson-Crick
pairs. The structures resulting upon folding display typi-
cal features. Regions of unpaired digits that are closed
by one or more base pairs are termed loops. They appear
in several forms (see Figs. 1 and 3): one-sided bulges,
hairpin loops, and internal loops with more than one
branch emanating from them. Regions of contiguous
base pairs are referred to as stacks or helical regions. In
our figures they are drawn as parallel lines, leaving out
the edges corresponding to the pairings for the sake of
less congested images. Unpaired ends or open junctions
connecting two stacks are denoted as external elements.

RNA secondary structure is known to influence the re-
plication velocity along the strand®® and the overall sta-
bility against hydrolytic degradation. Our interest in
mimicking RNA folding derives from the fact that RNA
is the simplest example for combining the genotypic (se-
quence) level and the phenotypic (structure) level into a
single molecular object. The mapping from one level to
the other is provided by sequence-specific intramolecular
interactions.

Each feature of the secondary structure contributes ad-
ditively an energy increment to the overall free energy of
the folding pattern. Stacks are the only stabilizing ele-
ments. The exponentially many structures that are possi-
ble for a given sequence differ therefore in their thermo-
dynamic stability. To a particular sequence I, (the geno-
type) we assign the energetically most stable secondary
structure (the phenotype), g(I, ), using an energy optimi-
zation algorithm derived from secondary structure pre-
diction.?”?® Ties are resolved deterministically. We con-
sider binary sequences of length v=70 and a single pair-
ing rule, where O is defined to be complementary to 1.
The physical parameters of base pairing and stacking
were adopted from data on G (guanine) and C (cytosine)
containing polyribonucleotides.

The folded sequence is subsequently parsed into its
loops, stacks, and external elements—Ilike junctions and
unpaired ends. This information is then used to build
heuristic replication (A4,) and degradation (D,) parame-
ters (see Sec. III). More precisely, R{’=4,, R}>=D,,
and R/’=¢(t) are parameters of exponential reaction
probability densities P{*(¢), @=1,2,3, for sequence I :

Pi¥(t)=R/%exp(—R*t), t>0, a=1,2,3. (7)
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P.%(t)dt is the probability that sequence I, reacts during
the time interval (¢, +dt) according to the replication
channel [a=1, Egs. (1) and (2)], the degradation channel
[a=2, Eq. (3)] or disappears through dilution [a=3, Eq.
(4)]. The parameters 4, and D, correspond to the aver-
age number of replication and degradation events, respec-
tively, occurring in a unit time interval and determine the
“fitness’” of I;,. Hence, in our stochastic model, fitness is
a property which makes sense only in terms of an expec-
tation value (see Sec. IV). Nevertheless, we refer to 4,
and D, as ‘“rate constant” for convenience.

Evolutionary optimization dynamics is simulated by
means of an algorithm which was designed for stochastic
chemical reactions by Gillespie.?>!? A logistically con-
strained population of © =2000 sequences then reacts ac-
cording to the network described by Egs. (1)-(4), where-
by each currently existing reaction channel is chosen ac-
cording to an exponential density with corresponding pa-
rameter 4,, D;, or

#(1)= 3 N, () A, —D;)/© ,
k

where N, (t) denotes the number of sequences of type I,
at time .

III. THE FITNESS LANDSCAPE

The kinetic assignment defines replication and degra-
dation rate densities separately. Each stacking region is
weighted sigmoidally depending on its length and con-
tributes additively to the overall replication slowdown
due to base pairing,

) n}k)(1+n;k))3 .
Ak=KR—Kl2m,k=1,2,...,2 (8)
whereas each unpaired loop or external region increases
in a noncooperative way the overall degradation rate:
(k)
Di=kp+K, 3
J

U

exp[(u*' ~u,,)/u,, ]+K3% DORY AR
]

k=1,2,...,2". (9

In both Egs. (8) and (9) g, kp, K, Ky, k3, and L are scal-
ing constants, nj“‘) is the number of base pairs in the jth
stack of sequence I, uj(-"” is the number of unpaired digits
in the jth loop of I, u,, is the maximum number of
weighted loop digits, vi¥' is the length of the /th external
element (free end, junction), and v is the length of the se-
quence. In the work reported here, the following numeri-
cal values were used: «z =30, k,=0, «, =30, «,=20,
k3;=40, L =10000, u,, =25, and v=70. These parameter
values were chosen such that they reflect experimental
data when available.

In our implementation A4, is set to zero whenever it
turns out negative, and both 4, and D, are truncated to
integer after shifting two decimal places:

A, =[max(0, 4;)100], D,=[D;100], (10)

where [x] denotes the largest integer less or equal to x.
The density of fitness states was analyzed numerically by
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sampling in different regions of the hypercubical se-
quence space. The density distribution of replication and
degradation rate constants is shown in Fig. 2—as an il-
lustrative example we sampled sequences containing
twenty 1-digits on the average. Note that Fig. 2 is not a
bar chart. The densities of similar values of the rate con-
stants are so irregular that connecting the individual
points results in such a bizarre plot of the function.
Moreover, the densities do not provide any information
about the relative locations of configurations realizing
particular values. The densities of replication rate con-
stants, p( A;), consist of intensive discrete bands and re-
veal vast scatter as a result of their sensitivity to structur-
al details. The densities of degradation rate constants,
p(D,), on the other hand, show roughly Gaussian shapes
and have a significantly more dense support. We proceed
now to develop a simple argument that explains this be-
havior and gives a means for computing upper bounds on
the possible number of distinct fitness values in our mod-
el.

Let S be a multiset (i.e., a set in which elements can
appear in multiple copies) of stacking regions of a given

secondary structure g (I, ) with n base pairs,
(K)— ¢, (k) (k) (k) (k
S={n" Yo nY, ny '>0.

S'®) represents a partition of n: n = 3,n/*. Let U'* be
a multiset of unpaired regions of g ([, ), which sum up to

1073 DENSITY
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f i
‘ im }
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N L L
0 500 1000 1500 2000 2500 3000 3500
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FIG. 2. Distribution of kinetic parameters. (a) Density of re-
plication rate constants A4, obtained by sampling binomially
38000 sequences of length v=70 with on average 20 1-digits.
(b) Corresponding density of degradation constants D, (Ref. 13).
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the corresponding total length of m =v—2n. Clearly,
Ay =f 4S8N, D, =fp(U*), (1)

where f, and f, denote the functions given in Egs. (8)
and (9), respectively. Note that with respect to Eq. (9)
the sum over all free ends and/or junctions is equivalent
to one external unpaired region. By virtue of Eq. (11)
structures with the same number of base pairs (n) have
different rate constants, if they realize different partitions
of n and/or m. For fixed n the total number of possible
partitions p (n) is given by Euler’s recursion

p(n)Z% > on—mp(m),

m(<n)

with o(k) being the sum over all divisors of k and
p(0)=1.

The mappings from sequence I, to 4, and D, contain
the following hierarchical levels of degeneracy.

(1) Many I, lead to the same two-dimensional (2D)
structure g (I ).

(2) Many structures g (I,) containing n base pairs are
characterized by the same S'*’ and/or U'¥'.

(3) Different S'*’, U'¥ are mapped by Egs. (11) onto the
same real-valued A4, and D,, respectively.

(4) The truncation to non-negative integers in Eq. (10)
causes a ‘“‘coarse graining” degeneracy.

(5) Structures are actually mapped on (A4,,D,) pairs
and distinct pairs may result in the same net productivity
E,=A,—D,.

Levels 1 and 2 depend on the folding procedure. This
phenotype function contains an ‘“unpredictable” element,
in the sense that there is no shortcut to the application of
the folding algorithm in obtaining the structure of I.
Levels 3 and 4 depend on the actual implementation of
the functions f, and f,. Their contribution to the
overall degeneracy can be taken into account by explicit-
ly computing f, and fp for all possible arguments S ‘%’
and U'X,

It is therefore sensible to ask how many S*’ and U'¥
for structures with exactly n base pairs do exist, that will
be treated as distinct arguments in the functions f , and
fp.- In other words, how many different 4, and D,
values are possible before entering level 3 as a function of
the number n of base pairs in the structures?

Let b denote the number of bifurcation points in g (1)
[i.e., structural elements where contiguous pairs branch
into more ‘“arms’” without the need of intervening un-
paired digits, see Fig. 5(d) structure C], moreover let
e=1, if g (I;) has any external digits and e=0 otherwise.
Then we have

[S®|—p=|U®|—e Vk . (12)

On large samples in different parts of the sequence space
we found that usually b =0 and in 87-92 % of the cases
e=1, i.e., the number of stacks equals the number of
loops. If Eq. (12) is the only constraint, then—referring
to structures with n base pairs and m =v—2n unpaired
digits—we get for the number of elements in the sets
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(S, and {U®},, which represent arguments to the
f 4 and fp functions, respectively:

! =min(n,m) ,

&, ={s"*) |~2p n,s), (13a)
s=1
I+1 p(m,u)
U,=1{UR},|= 2 pimu+ > 3 t ,
u=1 u=1 i=1
(13b)

where p (k,]) is the number of partitions of k with length /
(e, k=3!_ p(k,k +1)=0, and t;(m,u) is the num-
ber of dlstmct terms in the ith partition of m with length
u.

The function f 4 is symmetric with respect to all terms
of a partition, but f, breaks this symmetry with respect
to terms that represent loops and the one specifying the
size of the external region [ 3;v; in Eq. (9)]. This is the
reason for the second sum in (13b); it refers to e=1, i.e.,
u —1 loops and 1 external region, whereas the first sum
of (13b) refers to e=0, i.e., u loops.

Stacking regions consist of two adjacent base pairs at
least, and since they are the only stabilizing elements a
structure will very rarely contain isolated pairs (this oc-
curred in 1-1.5 % of our samples). Thus the overwhelm-
ing majority of structures realize those partitions p*(n)
of n whose terms are all > 1. This greatly reduces the
number of actually realized partitions. Furthermore, our
model requires at least four unpaired digits in each hair-
pin turn. Taking into account all these constraints we
obtain in analogy to Eq. (13)

$= max s=[n/2],
p*(n,s)>0

<)

= max u=m-—3,
pl”(m,u)>0

I =min(3,0) ,
I

=3 p*(n,s (14a)
s=1
!
U,= 3 pVim,u)
u=1
1+1pVim,u)
+ 3 3 [timu)—H(1-6,(mu))], (14b)

where p'’(m,u) denotes the number of partitions of m
with length u having at least /i terms >4, H(x) is
the Heaviside function—H (x)=1 for x>0, H(x)=0
otherwise—and 6;(m,u) counts the actual number of
terms =4 in the ith partition of m with length u. Equa-
tion (14) is valid independently of the number of hairpins
in the structure, since the D, function does not distin-
guish between hairpin loops and internal loops. Hence b
does not enter Egs. (13) and (14). We cannot express &,
or U, in terms of elementary functions, but it is easy to
generate the required partitions on a computer®® and
hence to obtain p*, p'”, and ;. As an example with
v=70 let us take n=19 base pairs, which is frequently
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realized in the 20-error environment (most of the 1-digits
will pair) of the all-O-sequence (Fig. 2). The number of
possible arguments &,y is 105. They are mapped by f 4
after truncation to an interval ranging from
min, f ,(S*)=29 to max, f,(S'¥)=2815. In this case
all arguments result in distinct replication constants. On
the other hand, we get U,,=25690 arguments U'X’
mapped by fp on an interval of the natural numbers
ranging from min, f,(U'*)=1088 to max,fp(U'X)
=2400. Here the truncation to integers produces a lot
more degeneracy. The 25690 possible arguments result
in 1052 different degradation constants. Equation (14)
represents a very reasonable upper bound with respect to
our model. Some partitions may correspond to structures
that are actually not optimal for any binary sequence I,
of length v=70. This cannot be taken into account be-
cause of the complexity of the interactions that are re-
sponsible for the secondary structure g(I;). However,
the effect is rather small, since it is highly probable that
out of many structures represented by a single partition
at least one will be realized by some 7.

The above argument explains why in Fig. 2 the density
of the degradation constants has a much more dense sup-
port than that of the replication constants. It reproduces
also the difference in the densities of one order of magni-
tude. Clearly, sampling binomially about the 20-error en-
vironment of the all-O-sequence will also produce struc-
tures with more or less than »=19 base pairs. The data
for n=18 or 20 lead to a completely analogous result.
We conclude that in our model two major factors are re-
sponsible for the distinct statistics of replication and de-
gradation constants for long chains.

® Isolated base palrs occur very rarely, thus reducing
the set of possible S'*’ (different replication constants).

® The distinction between unpaired regions due to
loops and due to external digits significantly increases the
number of distinct arguments U'¥’ (different degradation
constants).

We note that the secondary structures of a given se-
quence I and its polarity inverted (indicated by a super-
script dot, which means a swap end for end) and comple-
mented (7) sequence, I, are identical. The same holds
for the polarity inverted sequence I and the complemen-
tary I. Self-complementary regions are palindromes.
They are by definition invariant under complementation
and inversion. If an algorithm claims that a certain heli-
cal region is optimal, then it must also be optimal in the
inverted and complemented sequence. This is clearly val-
id for any sequence alphabet, provided that structures are
constructed by complementarity rules. Thus our fitness
surface contains at most 2"~ ! structurally distinct states,
where every set {I,,I;,1,,I;} with I, %I, contributes at
most two structures. An example is shown in Fig. 3. The
Hamming distance between two sequences I, and I; with
degenerated structures is given by

d(I,,I;)=v—d(I,,I;)=|v—2d (0,1,)| +2A
0,2,4,...,d(0,I;) if vis even
A=10,1,2,...,d(0,I,) if v is odd.
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d (0,I;) defines the error class of I, relative to the all-O-
sequence. Densities in the regions centered around the d-
and (v—d)-error classes are necessarily identical: the
numbers of potential base pairs are the same and so are
the sets of partitions, leading to A, or D, states with the
same realization frequencies—provided the sample was
chosen large enough to represent the error-class properly.

Next we count the maximum number of possible
distinct (S'*, U'®)) combinations—remember that E,
=f (S —fp(U'®). The rate constants of any struc-
ture with more than one hairpin are identical to those of
a suitable single-hairpin structure. Thus it suffices to
consider only the latter. The combinations will depend
on the number of possible bifurcation points, since each
such point adds one term in S'*’ without adding one in
U'™. However, any structures containing bifurcations
splitting into more than two hairpin arms have rate con-
stants that are again identical to suitable structures with
bifurcations resulting in exactly two hairpins. Equations
(8) and (9) do not depend on the types of loops and stacks,
nor on their relative position. This simplifies the count-
ing procedure enormously. Let ¢, denote the number of
possible combinations for structures with n base pairs.
Then

li p”'(m,s+1)
=3 p*ms) [pMims)+ S [, —H(1—6,)]
s=1 i=1
Lis—1)/2 p
+ p 1 (m,s —b)+
b=1

with [ as in Eq. (14) and where the not yet defined to,

denotes the number of distinct terms among those 6,
terms that are =4 (the minimum number of unpaired di-
gits in a hairpin loop). Equation (15) counts all possible
combinations by freely combining stack partitions of
length s,p*(n,s), with partitions of unpaired regions,
p'?(m,u), that belong to structures as classified by (e, b) in
Eq. (12). The four terms multiplied by p*(n,s) corre-
spond to structures with (e =0,b=0), (e=1,b=0),
(e =0,b >0), and (e =1,b >0), respectively. As with Eq.
(14), @, represents a very good upper bound.
C(v)=3 L 1972]@  is the number of all possible com-
binations for chain length v. Figure 4 shows a semiloga-
rithmic plot of G(v) versus v (upper curves). Curve 1is a
calculation of Eq. (15), curve 2 neglects bifurcation points
(i.e., b=0). Computing E, = 4, —D, (truncation to in-
teger) for all partition combinations €(v) we obtain curve
3. In the case v=70 at most 5752290 different
(S'¥) U'™) combinations enter the above-mentioned level
3. Levels 3-5 subsequently lead to an enormous degen-
eracy resulting in at most 4328 different fitness values,
E,, for v=70. Surprisingly, despite this degeneracy, the
resulting fitness landscape is very rugged (see Ref. 13) and
the realization frequencies of similar selective values fluc-
tuate significantly (Fig. 2). For a discussion of the distri-
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FIG. 3. Symmetry of sequence space with respect to secon-
dary structures. Every sequence I at distance d from all-0-
sequence origin has a structure identical to that of the comple-
mented and inverted sequence I at distance v—d from the ori-
gin.

U0 s —b+1)

i=1

> [t,.—H(1+b—9,-)19']'H, (15)

109, Clw)
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FIG. 4. Diversity of values in the model landscape. The log-
arithm of the number of partition combinations ((v) that are
distinguished by Egs. (8) and (9) is plotted vs the sequence
length v. Curve 1 corresponds to Eq. (15), curve 2 neglects the
terms involving bifurcation points (b =0). Curve 3 represents
the number of distinct net productivities E, = 4, — D, obtained
by computing the rate constants from all G(v) combinations.
The bending off to a nearly constant function is due to the trun-
cation to integer [Eq. (10)] and to the fact that most of the par-
titions are mapped via f 4 and f; on a fixed interval determined
by the parameters in Egs. (8) and (9).
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bution of extreme values see Sec. VI.

It is interesting to note that the partition that maxim-
izes E; (no external elements, 12 loops of size 1, 1 loop of
size 4, 12 stacks of size 2, 1 stack of size 3: E;, =2245)
corresponds to a structure that is not realized by any se-
quence. All strings that could fulfill the requirements for
such a partition form other secondary structures on fold-
ing. The phenotype g(I;) is the result of a free-energy
optimization that tends to  minimize  stack
interruptions—a criterion which is exactly opposite to
the E, maximization. This captures a typical situation
arising in the adaptation of complex systems. On the one
side the phenotype is frequently itself the result of an op-
timization process that follows a certain set of rules (cf.
polynucleotide or protein folding). On the other side, the
same phenotype ‘‘codes” for an objective function,
termed fitness, by determining the kinetic or functional
properties of the molecule. This *‘code” is usually estab-
lished by a different set of rules. Both sets often lead to
conflicting goals by competing for available interactions.
In the present case the mapping from sequence to struc-
ture is dominated by the stability of the latter. This is
achieved essentially by seeking to establish as much in-
tramolecular interactions (i.e., base pairs) as possible.
But these interactions must be available during the repli-
cation process and hence stacking regions have to be
opened by the copying machinery thereby causing a slow-
down of the overall replication rate. As in real systems
the phenotype represents a serious constraint with
respect to fitness optimization.

IV. DYNAMICS ALONG GENEALOGIES

An alternate view providing some information on con-
nectivity in sequence space can be obtained by following
population dynamics along individual trajectories of the
evolutionary process. For this goal all genealogies have
been recorded during the computer experiments. In gen-
eral, such genealogies will look more like nets than single
lines, since a given species can be produced by many oth-
ers at different times. For simplicity of presentation we
restrict a genealogy to be a time series,

IL—I,— =L~ — =1,

in which species I ., was not present in the population
at the instant of its production from species I,. In most
of the cases this means that species I, ., has been pro-
duced for the first time during the history of the system
by species I;. However, it may also be the case that I, .,
had been in the system for some time in the past and was
lost thereafter. It is important to keep in mind that the
genealogies we are reporting here record the history of
successful sequences. They show in backwards view how
the ultimate survivors of the ‘‘sequence competition
game” came into existence.

In the following we consider two simulations with sin-
gle digit accuracy ¢=0.999 starting from homogenous
populations of ©=2000 all-0-sequences with chain
lengths of v=70 digits. One of them is the evolutionary
jump reported in Ref. 13 and shown in Fig. 5(a). This
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jump is the consequence of a special rule for large loops
in the degradation function D, (9). Loops with more
than u,, =25 unpaired positions are evaluated as having
exactly u,, hydrolytically accessible digits: the exponen-
tials in Eq. (9) are identical to unity if u;k)> u,. Now
imagine that, due to mutation, a loop with u, unpaired
digits is tied off from a loop having u > u,, free bases. If
the number of digits in the remaining loop, ¥ —u,, con-
tinues to be larger than u,,, the new structure will have a
lower selective value, since the replication rate has been
decreased due to the additional helical region and the de-
gradation rate has been increased due to the new loop.
There is a particular structure which takes full advantage
from the “large-loop rule.” It has exactly three stacked
pairs sticking together the ends and closing a large loop
with u=64 digits. Indeed, three pairs are the minimum
required from the thermodynamic data available to the
folding algorithm in order to stabilize such a large loop.
It is easily seen that every structure derived from the best
large-loop structure by a few mutations must possess a
lower productivity 4, —D,.

The large-loop rule has no biophysical relevance. It is
even somewhat inconsistent to introduce a cutoff into the
loop-size-dependent properties. Smooth bending off to a
linear or logarithmic dependence upon u would be more
reasonable. This inconsistency, however, does not
change the many-valley characteristic of the fitness
landscape and is in line with the naive translation from
structure to kinetic parameters. In our model its purpose
is to create an isolated fitness peak which serves as a po-
tential ““evolutionary trap.”

The ensemble in experiment A evolves from a homo-
genous population of all-O-sequences and is trapped pre-
cisely by the large-loop structure discussed above. By
“master sequence” we denote henceforth the species that
is currently the most frequent. The effectiveness of this
trap—a consequence of its depth—is readily seen in Fig.
6, where we have plotted the changes occurring in the
Hamming distance between the current master sequences
at all times and the virtual consensus sequences, i.e., the
integer valued centers of mass, of the population. The di-
gits of this virtual sequence o,(¢), i =1,2,...,v, reflect
the majorities at the positions 7 in the ensemble at time £

0.5+

= 1 (k)
o,(1) N %al ny (1)

During the 600 time units, which the population spends
in the large-loop trap, the consensus sequence is identical
to the master, indicating the presence of at most a few
low populated neutral mutants and therefore a very nar-
row sequence distribution (see also Sec. V).

Now we focus on the genealogical path from the all-0-
sequence to the trap and the escape from there to the
master sequence at t=960. Figure 7 shows the corre-
sponding evolution of the structures and Fig. 8 displays a
characteristic window in the kinetics of species succes-
sion in a resolution of one time unit. The sequence
representing the large-loop trap is labeled A7 (this label
refers to the simulation run). The complete succession
dynamics of most frequent sequences from A7 to A27 is
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shown in Table I. During the spreading of the initial
population the large-loop master (M1=A7) is produced
and rapidly dominates the population. After M1 is estab-
lished, it lasts 555 time units until a “right” position hap-
pens to be mutated and a structure is built which, al-
though having a lower selective value, is good enough to
reach a significant number of copies for a short time.
During this time many different paths were tried out in
order to get out of the trap, but they led nowhere, one
and all.

The main features of the escape from the large-loop
trap are as follows.
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o

@ Many species of the genealogical path from A7 to the
master at t=960 (M2=A27) are short-living fluctuations.
The lifetime of the third intermediate between M1 and
M2, A10, was even shorter than the resolution. Twelve
of 19 intermediates never reach more than 20 particles.
Six of them remain strictly below 10 individuals.

@ The sharp transition in Fig. 5(a) is a reflection of the
fast takeover of the new advantageous mutant M2 as
soon as it has been produced.

@ A list of the binary strings shows that the whole path
from M1 to M2 has been covered by a series of one-digit
mutations apart from a single event, A9— A10, which in-
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d(0,A)=24

d10,B1=25

dlA,C)=28

FIG. 5. Mean excess productivity during optimization. Three runs (A,B,C) starting all from identical initial conditions (homo-
geneous population of ©=2000 all-0-sequences with chain length v=70, single-digit replication accuracy g=0.999), but controlled by
different pseudo-random-number series, show markedly distinct time evolutions of E(¢). Run A was reported in Ref. 13. The arrows
indicate the times at which a cluster analysis of the population distribution support is discussed in Sec. V. For details see text. (d)
shows the best and most frequent sequences at termination time of the three experiments A,B,C. The three quasispecies centered
about these sequences are pairwise disjoint and localized in completely different regions of the sequence space as indicated by their
Hamming distances.
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FIG. 6. Broadness of distributions. From the Hamming dis-
tance between the actual consensus sequence and master se-
quence we obtain information about the sharpness of a distribu-
tion. Large distances indicate that different species reach popu-
lation levels comparable to the master sequence. Hence the
master sequence no longer coincides with the integer-valued
center of the population.
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AB A7 A8 A A10
2943, 3551 2943, 2000 2927, 2178 2927, 2179 2871, 3704
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2674, 1741 2714, 1882 2714,1796 2629, 1710 2592, 1524
A26 szR
2552, 1449 2557, 1077

FIG. 7. Evolution of structures. The evolution of the struc-
tures encoded by the sequences along the genealogy escaping
successfully the large-loop trap are shown. A7 is the large-loop
master sequence M1 which is displaced by A27. The kinetic pa-
rameters are displayed as A4;,D;.
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volves the change of two digits. Thus a path of length 21
in the Hamming metric has been established stepwise
purely by stochastic noise in the periphery of the
quasispecies, while the latter was sharply localized in the
large-loop trap.

We want to stress that in the present frame of a stochas-
tic reaction network the replication and degradation con-
stants derived from the secondary structures are the pa-
rameters of exponential densities of reaction probabili-
ties,!3 as explained in Sec. II. In the deterministic case
optimization takes place because of the selection term in
Eq. (6), where the selective value of species k,
wy, = Arq”— Dy, is compared against the average pro-
ductivity E(t) of the whole ensemble. The deterministic
rate constants A, and D, that determine the selective
value wy, or the net productivity E;, = A, — D, relate to
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FIG. 8. Dynamics of the escape from a fitness trap. The ki-
netics of selected intermediates along the escape path out of the
large-loop trap, A7, are shown. The resolution is of one time
unit. Each ordinate is blown up to the maximum particle num-
ber reached by the corresponding species—see Table I. The
structures of the binary strings are shown in Fig. 7. Note the
extremely short residence time of the intermediates A9-A2S.
The precursor species A6 and the successor A8, both at distance
1 from the master A7, are continuously maintained in the popu-
lation through back mutation from the master. The same holds
for A26, the distance 1 precursor of the next master A27. They
all disappear together with their “supporters.”
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the parameters 4, and D, in the stochastic version by
representing quantities averaged over many particles po-
pulating species k. Since the probability density that se-
quence I, undergoes a replication event is exponential,
the probability distribution that » replication events oc-
curred up to time ¢ is Poissonian

exp(— A ) A )" /nt .

Hence A, is the average number of replications of
species k per unit time. In the stochastic network selec-
tion operates on the level of expectation values. As long
as a molecular species is populated by a few particles
with finite lifetimes, these averages are not well-defined
quantities within the system. The fluctuations in the oc-
currence of reaction events will dominate, hence estab-
lishing an “‘evaluation threshold” below which no selec-
tion takes place.

More precisely, consider a newly produced mutant
present initially in a single copy. Let this mutant have a
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replication rate parameter 4 below the average E(t) of
the current population ensemble. Without loss of gen-
erality we set its degradation rate parameter D to zero
[otherwise it can be included in E(¢)]. Hence the mutant
duplicates according to an exponential probability densi-
ty with parameter 4 and disappears (dilution flow) ac-
cording to an exponential probability density with pa-
rameter E(t). It is a reasonable approximation to assume
E(t)=E =const during the lifetime of the mutant species
k, provided the time scale for changes in the mutant pop-
ulation is shorter than the time scale for changes in the
bulk population. The stochastic process governing the
dynamics of the mutant species is a linear birth and death
process with birth rate 4 and death rate E, A<E by as-
sumption, and starting with a single copy of I, at time
t=0. Let Ty(n) be a stochastic variable denoting the
time elapsed until the species disappears from the system
under the condition that it began with n copies. By a
tedious calculation®! we obtain in the case 4 <E for the
expectation value E(Ty(n)) in units 1/E:

(16)

TABLE I. Recording of most frequent sequences during the escape from the “large-loop trap” in the
computer experiment A [Fig. 5(a)]. All entries are given in time steps of the simulation and in particle

numbers.
Time of first Maximum Average Cumulative

Species appearance Time span number number number
A6 46 403 20 2.8 1107
AT7* 54 818 1076 646.5 528 800
A8 609 188 79 12.9 2428
A9 658 20 26 10.8 215
Al0° 674 0

All 674 10 12 5.2 52
Al12 678 22 19 6.7 147
Al13 680 20 13 5.7 113
Al4 681 7 6 33 23
AlS 686 2 1 1.0 2
Alé6 686 50 47 12.5 623
Al17 708 23 32 8.8 203
A18 727 16 8 2.8 44
A19 729 49 23 11.2 549
A20 749 2 1 1.0 2
A21 750 20 7 3.0 60
A22 758 34 14 5.6 191
A23 789 69 43 17.1 1182
A24 795 10 12 6.0 60
A25 799 59 62 24.5 1443
A26 808 121 15 3.2 392
A27° 812 274 784 307.6 84282

“Master sequence of a quasispecies.

This species appeared and disappeared between two successive recordings.
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When starting with a single copy, n=1, Eq. (16)
simplifies to

E(Tom):—%m 4

1—= |, A<E. (17
E

As is well known, the mutant faces extinction with proba-
bility one if and only if 4 <E. Note that for 4 =E the
expected time to extinction, E(Ty(n)), is infinite. Indeed,
Eq. (16) diverges for all # in the limit 4 —E.

The point, however, is that the mean time to extinction
becomes relatively large already in the range
0.9=< A/E <1. This implies together with a large vari-
ance of E(T,(1)) in the same range (which we found nu-
merically), that there is a significant probability for the
mutant species to reach a modest number of copies—
even if A < E —before eventually disappearing. It is pre-
cisely this stochastic effect of small population numbers>?
which enables many less advantageous species to estab-
lish a small population and to give rise to further mu-
tants. The same holds for species that drop into the small
population regime from above. In this case Eq. (16) ap-
plies for suitable n. We derived analogous expressions®!
for the expected time until the kth individual of a species
disappears if the initial number of individuals was n. It

becomes apparent that the first copies disappear quite
quickly for 4 <E. However, the last few (2 or 3, say)
copies have long average residence times. Thus there is
an occupation regime, which has to be crossed by every
newly produced species and in which fitness is not a
sharply defined attribute. A realistic quasispecies always
has such a stochastic boundary. The population dynam-
ics of the evolutionary jump (Fig. 8) show that series of
short-living fluctuations in that boundary are able to
bridge very large distances in sequence space, thereby
enabling the population to escape deep local traps.

It is interesting to compare this scenario with the ki-
netic resolution (Table II) of the genealogical path from
the start sequence to the final master sequence at t=3710
of experiment B, shown in Fig. 5(d), which has been ob-
tained with analogous settings to the previous one but un-
der the control of a different random number sequence.
In this run the population is not caught by the large-loop
trap and evolves rather smoothly. The analysis of the
genealogies—partly summarized in Table II—shows the
following characteristics.

® After the initial spreading of the homogenous
population—after t=200, say—the intermediates gen-

TABLE II. Recording of most frequent sequences in the computer experiment B [Fig. 5(b)]. All en-
tries are given in time steps of the simulation and in particle numbers.

Time of first Maximum Average Cumulative
Species appearance Time span number number number
B10 56 57 49 27.8 1586
B11 58 50 53 13.8 688
B12 66 6 6 2.8 17
B13 67 93 122 37.0 3440
B14 93 36 10 3.2 115
B15 99 40 27 10.9 434
B16 114 14 6 2.0 28
B17 117 76 39 12.2 925
B18 129 110 458 148.1 16285
B19 169 101 88 26.7 2692
B20 174 72 28 7.1 509
B21 208 205 208 70.8 14512
B22 237 390 124 20.9 8159
B23 248 692 629 2229 154229
B24 333 376 66 19.7 7388
B25 352 252 195 63.2 15916
B26 485 57 15 2.6 148
B27 489 370 209 76.5 28289
B238 757 150 69 22.1 3312
B29 812 431 77 19.1 8226
B30 909 737 109 21.7 15959
B31 1058 981 263 50.4 49426
B32 1101 1019 292 53.0 53988
B33 1120 2458 965 300.3 738223
B32' 2122 1401 804 206.6 289484
B34 2477 665 147 46.6 31002
B3s 2603 618 260 62.8 38829
B36 2951 665 249 50.0 33234
B37 3132 579 939 577.2 334173
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erally reach higher occupation numbers than in the previ-
ous experiment. The residence time is correspondingly
larger.

® The time lags between the production of successive
intermediates are much larger.

® During the quasistationary phase from z=1100 to
~3000 extensive drift of neutral mutants is observed.
The kinetic of B32' is identical to the last part of B32. In
fact, it is the same sequence that happened to die out just
before t=2000 and shortly after reappears again as the
“successor of its own successor (B33).” Species
B32=B32' and B33 are selectively neutral.

The different dynamics of the two described examples are
due to different topologies of the visited regions on the
fitness surface. In the first case the distribution is trapped
at an isolated fitness peak. There are no high valued
ridges that lead away from there. The metastable
quasispecies remains localized for a very long time, since
it has to wait for a suitable series of fluctuations in its low
occupied periphery that bridge the distance to regions
with higher fitness. In the second case, the evolutionary
trajectory happens to bypass the isolated peak and
proceeds quickly along a connected net of ridges on the
fitness surface. Most of the intermediates do not belong
to the stochastic periphery at the time when they produce
their successors. Nevertheless the chosen route still de-
pends at certain times on species whose occupation densi-
ty is at or below the evaluation threshold.

Figure 5(c) is the record of a third experiment, C, with
the same parameter settings, but differing again in the
random number series. The master sequence at the end
of simulation is shown in Fig. 5(d) together with the most
populated sequences at the termination of runs A and B.
Simulation C is not caught by the deep trap mentioned
above, though it is slowed down by other structures par-
tially taking advantage of the large-loop rule (they hap-
pen to have free ends). The final master sequence of run
C carries a peculiar T-like element (bifurcation point).
This structural feature splits 7 base pairs into 2+2+3
thus reducing the replication slowdown, without the need
of local bulges or internal loops that would score for hy-
drolysis. On the other hand, it forces a second hairpin
turn, hence making four additional positions accessible to
hydrolysis. This type of structure is already present in
the master at time t=447. The sequences sharing this
feature at that time were then steadily optimized in the
two hairpin arms, therefore making the elimination of
this structure type more and more costly, hence “freezing
in” this feature and thereby prejudging the following
route of adaptation. Indeed, the structure that emerged
finally is optimal with respect to the T-like element. This
demonstrates how the outcome of an evolution experi-
ment depends sensitively on its previous history.

The final master sequences of runs A, B, and C [Fig.
5(d)] have almost the same Hamming distances from the
initial all-O-sequence: d(0,A)=26, d(0,B)=25, and
d(0,C)=24. They reside in neighboring error classes
with respect to the starting sequence. Apart from this
“similarity” they are quite different: the three sequences
A, B, and C span an almost equilateral triangle of Ham-
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ming distance d =31 in the sequence space: d (A,B)=33,
d(A,C)=28, and d (B,C)=33. Their quasispecies distri-
butions are pairwise disjoint, hinting to a “‘glassy” behav-
ior of the replication-mutation strategy at a high replica-
tion accuracy. In the context of spin glasses Palmer?*
stressed the fact that some systems may be ergodic in a
technical sense in the limit of infinite times, but are far
from showing this behavior on reasonable physical time
scales.

Lack of localization in sequence space was observed
with less accurately replicating populations. In one par-
ticular computer experiment we started from a homo-
geneous population of the best sequence obtained from
simulated annealing (E=2045, cf. Sec. VI). In the time
interval 0 <t <530 a replication accuracy of ¢g=0.995
was applied and a mutant distribution of quasispecies
type formed. Then, we reduced the replication accuracy
below the threshold,'l'!3 g=0.993, and continued the
simulation for another 500 timesteps. The optimum se-
quence was quickly lost from the population and after
that, a succession of “master” sequences was observed.
These most frequent sequences are hardly more than ran-
dom fluctuations in particle numbers: in a short interval
of 50 time steps (950 << 1000) as many as ten different
master sequences were recorded.

V. PICTURES FROM AN EVOLVING POPULATION

Here we study the microscopic structure of the se-
quence distribution and its changes during the escape
from the large-loop trap using cluster analysis. We look
at the support of a given distribution, i.e., a swarm of
points that occupies vertices of the v-dimensional hyper-
cube. It makes no difference if a given point is heavily
populated or present only in a single copy, since we are
primarily interested in the similarity structure of this
“mutant cloud.”

Let us denote by o,;, € {0,1} the ith digit of the kth se-
quence in cluster t. If we do not distinguish between
clusters we leave off the index r. Let

()=o), {0,),...,{a,))

with (o;)=(1/N)3S¥_ 0. be the real-valued center of
mass of the system consisting of N vertices on the hyper-
cube. Let

N
SZ(SU), S,'j=kzl(a'k,‘_<0',‘>)(0'kj_<0'j>); (18)

be the covariance matrix of the whole system,

!
V;; — ; 2 (Ukil—<0i1))(okjt_<0jl>) s

represents the covariance contribution within the / clus-
ters of a given partition and

B=(b;),

b= i nt(<0',-,>_<0‘,->)((o-jt>—(o-j)) ,

t=1
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is the covariance due to the separation between clusters.
n, denotes the number of points in cluster ¢t. As is well
known in multivariate statistics,

S=V+B. (21)

To achieve an informative partition of the ensemble into
clusters of similar sequences one might minimize TrV,
i.e., the total variance inside the clusters, thereby maxim-
izing TrB, i.e. the separation of the groups.*
Tr¥=3!_,V, with ¥, denoting the variance in a given
cluster ¢,

= S o —n, o)l . (22)

With a little algebra we find that V, depends on the Ham-
ming distances d (i,j) between the sequences of cluster ¢
as

vi=L s di). (23)
ti>j

We partitioned the sequence ensemble according to the
variance criterion®® minimizing Tr¥. The results are in
perfect agreement with a completely different but much
more visual way of looking at the detailed structure of a
sequence distribution consisting in the construction of a
minimum spanning tree (MST). For the ease of presenta-
tion we report only the latter.

Consider the complete graph whose vertices are the N
occupied points in sequence space. The MST is the tree
which connects all vertices and whose total length over
all N —1 edges is a minimum. Of course this is a graph
in a subspace of the v cube and has to be projected onto
some 2D plane, that minimizes the loss of details.

Let s? denote the variance at position i in the sequences
and let N be the size of the sample,

1

N
1
e PACKE RS 2

If a position is conserved throughout the sample, we set
its variance to unity. Let C={c;} be the (symmetric)

covariance matrix of the normalized variables
o¥=(o,—(o;))/s;,
D . A
ci=——— > ofo}, (25)

and let T be the matrix that diagonalizes C, T 'C T=A.
The trace of A is obviously the total variance. Sequence
o*=(ot,0%,...,0%)7, expressed in normalized com-
ponents is written in the new coordinate system,
o'=T 'o0*, and we retain 0, =3} _,0}v}, i=1,2, where
vi,v} are the eigenvectors associated with the two largest
eigenvalues of C. Thus we project onto the hyperplane
that incorporates the two largest variance shares of the
system.

Several snapshots are taken at characteristic times T,
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(k=1,...,5) before, during, and after the transition.
Species are labeled according to their frequencies in the
population: the most frequent species is denoted by ““1,”
the next frequent by “2,” and so on.

(1) T;=300. N=143 different species are present in
the network. Figure 9(a) shows the MST of the distribu-
tion support that includes only the 100 most frequent
species. It is characterized by a few nodes that display a
high degree of branching. These nodes are highly popu-
lated species and thus represent centers of high replica-
tion activity. This in turn implies that they are at the ori-
gin of most of the mutants. The nucleation point at the
center of the tree is sequence 1, the current master se-
quence. The MST visualizes nicely that the overwhelm-
ing part of the exploration activity of the network con-
centrates at the highest populated species, i.e., at the
currently fittest ones.

(2) T,=700. N=220 different species are present at
this time. The distribution has broadened into two clus-
ters a (|a| =142) and b (|b| =78) centered at the sequences
1 and 4, respectively. We report the distance between the
real-valued mass centers of clusters @ and b in terms of
the “city block (L) metric”,

di(a,b)= 3|0}, (o)1 .

This becomes the Hamming distance in the case of single
sequences. The center-to-center distance d,; between
clusters a and b is 3.38. The groups are easily recogniz-
able on the right margin of the MST [Fig. 9(b)]. On the
left at a distance 5 from the bulk we find the sequences 12
and 45 with Hamming distance d(12,45)=4. Sequence 12
is a member of the genealogy towards the future master
sequence. It is the intermediate A16 of Sec. IV.

(3) T;=820. N=279 different species are present.
The system is just before the jump. Figure 9(c) is a
clean-cut example for two totally separated clusters. The
groups a (|a|=98) and b (|b|=181) with center-of-mass
distance d, =16.64 are nucleated by species 1 and 3. The
right island (b) displays three distinct subgroups b,, b,,
and b, (centers: 3, 6, and 12).

(4) T,=840. N=307 different species are present.
The sequence ensemble is in the jump phase just after the
change of the master sequences. The MST [Fig. 9(d)] sig-
nals four clusters a, b, ¢, and d (|a|=66, |b|=126,
le|=76, |d|=39) with centers at 1,5,3,2 and dis-
tances d,(a,b)=10.53, d,(a,d)=20.83, d,(b,c)=9.87,
d(aUb,c)=10.93, and d,(aUbUc,d)=17.61. d is the
local distribution containing the large-loop sequence (2),
while a is centered at the new master. The selective
values (A4,Q; —D;) are w,=1307, w,;=743, w,=1073,
w, = 1044. Inspection of the data allows us to relate the
clusters of the MST at T3 =820 to those at T, =840:

T

T, T
a 3—>d

T T T
4, b13—~>C 4, b23—~>b 4,

b3T3—>(aT“ and b'*) .

T .
The new (current) master sequence 1€a * was assigned
as sequence 45 to cluster b at time T; =820. The ensem-

ble was evolving towards b s and ¢ T", when suddenly the
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(a)

(b)

12

FIG. 9. Cluster analysis of a species distribution. Similarity structure of the distribution of species in run A according to
minimum spanning tree clustering of the 100 most frequent species present. The truncation to 100 merely enhances the details of the
distribution core without affecting its structure. The plots refer to the indicated times in Fig. 5(a). T, =300 (a), T, =700 (b), T, =820
(c), Ty =840 (d), T's =960 (e).
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(c)
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(d)

FIG. 9. (Continued).
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current master sequence appeared leading to a change of
direction.

(5) Ts=960. N=276 different species are present.
The ensemble has condensed around the new master se-
quence [Fig.9(e)]. The support is again localized in a nar-
row region of the sequence space. The new region clearly
has a different topology from the previous one. Many
selectively neutral or quasineutral species share the popu-
lation resources and lead to a broadening of the distribu-
tion. The analysis identifies many modes with dense
centers, all connected with distance 1.

The study of this time series demonstrates that a popu-
lation of mutants and its changes can be analyzed by
focusing on the structure of the distribution support.
The fitness surface is mapped by means of a population
into a probability distribution that controls the allocation
of replication events. The scheme by which the currently
best species get most of the resources implies that the ma-
jority of the mutants are direct relatives of the fittest se-
quences. This population version of a best first search
heuristic is the simplest conceivable evolutionary stra-
tegy. The multivariate cluster analysis thereby provides
an efficient yet simple tool for tracking the motion of
high-dimensional sequence ensembles.

VI. DISTRIBUTION OF MAXIMA

For a better understanding of optimization dynamics
we need information on the distribution of positions and
heights of extreme values in the configuration-space
landscape. Conceptual advances in statistical physics of
systems with quenched-in randomness and frustration, as
exemplified by the paradigm of spin glasses*® and by its
link to optimization theory, 3" 3® stress the role played by
the structure of the system’s objective function in behav-
iors like ergodicity breaking®® or freezing. The ul-
trametric organization of Gibbs states in the long-range
spin glass'? carries over to those combinatorial optimiza-
tion problems that can be mapped onto it. Graph biparti-
tioning>® serves an an example. Some evidence has been
accumulated in favor of an ultrametric structure of equal-
ly weighted locally stable configurations in random sym-
metric “traveling salesman” problems. '*

In this section we proceed along these lines and investi-
gate the distribution of the maxima of the net productivi-
ty, E, = A, — Dy, in our folding based model landscape
(8) and (9). For this purpose we used the simulated an-
nealing technique® to generate a set of structures with lo-
cally optimal E values. As is well known, this strategy
uses a Markov chain to sample configurations according
to a Boltzmann distribution. In the present case a given
sequence is modified with probability p; by a single or
with probability p, by a double mutation. Either both
events occurred with the same frequency p, =p, =0.5, or
each trial configuration was chosen randomly out of all
2485 one- and two-error mutants relative to the actual
one. Runs allocating the same resources but operating
with only single-digit exchanges never reached very high
regions—characterized by E; =2000. Let the net pro-
ductivity of the trial sequence be E, and let E, be that of
the currently valid one. The acceptance probability at
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the ith temperature step then is min {1,exp(E, —E,)/T,}.
T, was decreased by a factor 0.85 whenever either
100-120 configurations were accepted or 20 00040 000
trials had been performed. The dynamic programming
approach to folding is rather time consuming. The im-
plementation of a search tree which continuously memor-
ized the last few thousand generated sequences along
with their selective values (structures) improved in our
case the time performance by a factor up to 10 at low
temperatures. However, the limited resources forced us
to compromise between fast computation and an optimal
annealing schedule.

In 32 runs we accumulated 3921 distinct sequences
with E = 1950. Simulated annealing thus leads to some-
what higher values of the net productivity E than the
evolution reactor, whose best achievement under the
operating conditions described in (Ref. 13) was a master
sequence with E=1919—computer experiment C shown
in Fig. 5(d). When compared with the starting value of
the all-O-sequence, E,= —1000, however, the final
achievement of both techniques differs by less than 10%
only.

The series of all sequences accepted during an anneal-
ing run produces a ‘““trajectory” that can be conveniently
visualized by projection on the hyperplane spanned by
the first two eigenvectors of the corresponding covariance
matrix, as explained in Sec. V for the minimum spanning
tree. A typical result is shown in Fig. 10 where we pro-
jected the history of an annealing run comprising a series
of 2237 sequences. The search path terminates at low
temperature on a high plateau consisting of 121
configurations with E=2019 and one with E=2045.

FIG. 10. Simulated annealing trajectory. The series of se-
quences accepted during the course of a simulated annealing op-
timization is visualized by projection on the plane catching the
largest variance (see Sec. V, minimum spanning tree). The bulk
on the right corresponds to the high-temperature phase. The
frozen optima are visible as an island on the left that has been
reached at low temperatures along a ridge connecting it to the
bulk.
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This set of closely related sequences—seen in the upper
left corner of the figure—is well separated from the re-
gions visited at high temperatures and is connected to
them by a partially visible long ridge. This ridge, pro-
truding out of the high-temperature bulk and leading to
the frozen out optima, was visible very frequently in our
runs. The starting basin consists of 75 configurations
with E=2019, whose location in Fig. 10 is easily
identified by the cubelike loop. Its “city block distance”
from the all-O-corner amounts to 27.03. Forty-six digit
positions are strictly conserved in this basin. The above-
mentioned final set has a distance from the zero corner of
38.13, while 40 positions are left invariant. The walk
bridging the two areas with high E includes 300 distinct
sequences, all having the same E=1993. Along that
ridge only two positions are conserved. The city block
distance between both areas amounts to 25.85, which is
as much as one third of the diameter of the sequence
space.

The example considered here clearly demonstrates the
existence of sets of closely related high-valued config-
urations—corresponding to “valleys™ in the language of
spin-glass physics. These sets are connected by long
channels of slightly less advantageous neutral mutants.

Five sequences, S,,5,,53,5,,55, with E =2045—the
highest value obtained—were found. S, and S, as well
as S5 and S, are close relatives at a Hamming distance 2.
They have been obtained during two runs. The triangle
S,,S5,Ss has edges of length d(S,,S;)=32, d(S;,S5)
=43,and d(S;,5,)=31.

As many as 879 sequences had a net productivity
E 22011. Figure 11 shows the minimum spanning tree

FIG. 11. Clustering of extreme fitness values. The projection
shows the minimum spanning tree of the frozen out optima of
seven annealing runs operating under identical conditions (ex-
cept random number seeds). The optimal regions reached by
each run consist of an ensemble of selectively neutral mutants
and qualify as clusters in the minimum spanning tree. The shor-
test Hamming distances between clusters are indicated.
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of that sample. Again the clustered structure of our
configuration space becomes visible. The MST indicates
seven clearly separated groups, each of which corre-
sponds to a set of maxima produced in a run. Note that
we did not consider the symmetric set of maxima ob-
tained by inversion and complementation. The MST of
the two symmetric sets lumped together shows that the
individual clusters are not affected and do not merge, be-
ing separated by edges of length ranging between 20 and
24.

In order to check whether or not there is some order
underlying the distribution of highly efficient species in
sequence space, we computed pair and triangle statistics.
It seems obvious to compare the distribution of optimal E
values with the ultrametric distribution of the (weighted)
minima of spin Hamiltonians. In a Euclidean space of di-
mension v, at most v+ 1 points can form an ultrametric
set, which is defined by d (i,j) <max{d (i,k),d (j,k)} for
all triples of points (i,j,k). Indeed the metric between
two microconfigurations in the spin glass is expressed in
terms of overlap,

qL,J)=(1/v) 3, 0404 »
k=1
where o, € { —1,1} is the ith spin in configuration k. In
the “{—1,1}" cube” the Hamming distance d(i,j) is
given by J(v—3}-,0404). In sequence space,
the {0,1}" cube, we use the Hamming distance d (i, ;)
=3} _ilow—oyl, 04 €(0,1}. Tts relation to the over-
lap q(i,j)=(1/v)[v—2d(i,j)] holds obviously on both
cubes.

Figure 12 shows the frequency of distances d(i,j) in
several sets of configurations of high E values. The ex-
cess density at low distances is clearly due to the “intra-
valley” contributions, whereas the part centered at dis-
tance 35 stems from the edges between the clusters. If we
draw an edge in the hypercube at random the probability
P(k) that it will have length k is binomial,
P(k)=(})/(2"—1). Thus the most probable distance is

80
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o
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FIG. 12. Pair statistics of optima. The distribution of dis-
tances in the set of optima obtained during annealing runs is
shown. Circles refers to the set of 879 sequences with E >2011,
triangles to the set of 2071 sequences with E > 1955, and squares
to 3921 sequences with E = 1950.
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v/2. The distribution of distances between groups indi-
cates that the optima in our model landscape are scat-
tered at random.

It could well be the case that configurations with op-
timal or near optimal net productivities are concentrated
with a high bias on triangles that are equilateral or isos-
celes with small basis. The reference formulas for ran-
domly distributed triangles are derived in the Appendix.
From the Appendix—Eqs. (A3) and (A4)—we obtain for
v=70 the following probability that an arbitrary triangle
is either equilateral or isosceles with small basis:
P+ P;=0.0052+0.0958=0.101. As much as every
tenth random triangle is expected to be ultrametric. We

FREQUENCY

1073

FREQUENCY

3

10

FIG. 13. Triangle statistics of optima. (a) Probability distri-
bution for drawing a random triangle whose longest sides are k
and / from a hypercube with v=70 using Eq. (A2) (see Appen-
dix). (b) Analogous frequency distribution among all triangles
in the set of 879 optima obtained with simulated annealing.
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computed all 112 805 879 triangles in the sample of 879
maxima and found 11 802278 ultrametric ones, corre-
sponding to a frequency of 0.105. From the equation for
P(m,l, k) we calculate the probability of a random trian-
gle whose longest sides are k and /, 3, P(m <k =I),
which allows us to concentrate the statistics of triangles
on a single plot [Fig. 13(a)]. Figure 13(b) shows the
analogous statistics for our sample. We recognize a ridge
of small triangles along the diagonal which is—as in the
previous analysis—due to contributions inside the
groups, whereas the distribution of intergroup triangles
closely resembles the random case. This indicates that
the best configurations in our value landscape are evenly
distributed throughout the sequence hypercube in accor-
dance with the results derived in Sec. III. The assign-
ment of only 4328 different selective values to 27~ 10%'
sequences according to Eq. (11) produces many regions at
large distances from each other that assume similar
fitness values. Nevertheless the density of maxima is still
too low for providing an appreciable probability of hit-
ting them by chance. These two facts make optimization
on such a surface a nontrivial problem.

VII. THE TRAVELING SALESMAN

During the last years some areas of physics began to
pay much attention to difficult (i.e., NP-complete®) op-
timization problems (NP represents nondeterministic po-
lynomial). This was essentially due to ideas originating in
spin-glass research®*® and neural networks.* It seems ob-
vious to apply the evolutionary strategy to problems of
the “traveling salesman” type, since it makes no
difference if we optimize fitness values of model RNA
molecules or cost functions of other given combinatorial
objects. The approach goes back at least to Rechenberg’®
and has been advocated independently in computer sci-
ence areas, where it is known as “genetic algorithm.”®

We give here simply an example of the evolution reac-
tor acting on the traveling salesman problem (TSP). In
that problem one has to search for the shortest Hamil-
tonian circuit in a set of ‘“‘cities,” i.e., in some distribution
of points i, i =1,2,...,v. Thus an instance of the prob-
lem is represented by a (usually symmetric) distance ma-
trix L=(l;). A circuit is given by a permutation
II,=m(1) - - - w(v) of the points and its length is
L(M)=3% il sxymr +1), where m(v+1)=m(1).

Of course we focus on the (v—1)!/2 permutations that
represent different circuits, since the starting point and
the direction of walk are irrelevant. A permutation II;
now takes the role of a sequence I,. Its “replication rate”
A; is simply defined to be

A;=|c,{c,—L(I1;)} +0.5] ,

with ¢; >0, ¢, > L., as scaling constants, D, =0 V1.
Maximizing A; clearly implies minimizing L (II;). The
replication process is analogous to the sequence case. At
each w(k), k =1,...,v of II, a mutation event happens
with probability 1 —q. As a mutation event we chose the
inversion of a random subtour beginning at (k), i.e., a
transformation exchanging two connections and ap-
proaching a two-optimal solution in the terminology of
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Lin.*! We did experiments with v=136 cities on a regular
grid in the unit square, ¢=0.999, ©=2000 and starting
with a homogenous population of a random
configuration. A grid with an even number of cities on a
side always allows for optimal circuits whose sections are
all parallel to the sides of the lattice, thus having length
L, ..=v/(Vv—1). The ensemble, however, starting with
lengths about 21.2, is caught in a local trap with
L =8.3-8.5 to be compared with the optimal length
L ;.=7.2. It seems not to be easy to remove the “frozen
in” defects of the better tours via inversion moves. Simi-
lar results are obtained with transpositions and/or ran-
dom grids. Improving the power of the evolutionary
strategy implies optimizing the population resources ©,
the replication accuracy g, and the underlying cost topol-
ogy (via different A; functions and mutation operators).
This requires a local stochastic theory of the mutation-
selection model-—a theory that continues to remain a
challenge in this field.

VIII. CONCLUSIONS

A fitness landscape (objective function) based on a
model for folding of RNA molecules and evaluating the
resulting secondary structures has been analyzed by com-
binatorial means and by applying the simulated annealing
technique. The main result is that clusters of high-valued
configurations are evenly scattered throughout the se-
quence space. These clusters are connected by long
ridges of slightly less advantageous mutant configura-
tions.

Adaptive walks of populations of N=2000 replicating
and mutating individuals were studied on this “rugged”
fitness landscape. For this goal we built a computer mod-
el which simulates replication kinetics in a kind of flow
reactor called the “‘evolution reactor.” Optimization dy-
namics in the evolution reactor was analyzed by means of
genealogies. The dynamics along selected genealogies
suggest two basic scenarios for adaptation.

@ Populations may be trapped by isolated fitness peaks.
Escaping from there implies waiting for a suitable series
of fluctuations that percolates through to better mutants.
Our simulations show that fluctuations in the periphery
of a sharply localized distribution are able to bridge long
distances. Isolated traps lead to long-living metastable
states. Fluctuations result in a sudden breakdown of sta-
bility, which is monitored as an evolutionary jump.

® In a second scenario it is the existence of connections
between high-valued regions which enables the popula-
tion to proceed smoothly along these paths. Intermedi-
ates on the trajectory to the final thaster sequence gen-
erally consist of well populated species.

The distribution of finitely many molecular strings always
has a low populated boundary in which stochastic effects
are dominant, hence preventing a reliable evaluation of
averaged quantities like fitness. Below this evaluation
threshold the fate of mutants appears to be weakly depen-
dent on their rate parameters giving rise to fluctuations
that reach out very far in sequence space even when no
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nearby local optima are available.

Simulation experiments show that it may become in-
creasingly costly to eliminate shape features that hap-
pened to be advantageous at an early time instant. This
results in a ‘““decision” for certain structural elements,
thus constraining the subsequent optimization process.

Population dynamics maps the fitness surface into a
probability distribution that controls the allocation of re-
plication events. The Darwinian scheme—by which the
“best” get most of the resources—implies that most of
the mutants are direct relatives of the fittest types, thus
embodying the heuristic of a “best first” search with
some degree of parallelism. Trying to make improve-
ments by modifying the currently best solutions is the
simplest way of dealing with incomplete information
about the underlying quality function. Clearly, it cannot
be guaranteed that an optimal solution will be found on
an accessible physical time scale.

The dynamic allocation of resources is well reflected in
the similarity structure of the distribution support. The
minimum spanning tree is a useful tool for making simple
visual displays of this structure. Conventional cluster
techniques can be used to track the motion and to resolve
the microstructure of a population in the space of se-
quences of constant chain length.

The traveling salesman problem was studied in the evo-
lution reactor in order to obtain information on the per-
formance of this genetic algorithm on a different prob-
lem. Without any special modification the evolution
reactor worked well on this standard study case.

Interestingly, simulated annealing reached higher
peaks on the fitness landscape than the evolution reactor.
The higher optimization efficiency of simulated annealing
came out to our surprise. Accordingly, we searched for
the causes of the different optimization behavior.
“Efficiency” has two different aspects.

® The time required to reach a ‘quasistationary,”
hopefully “near optimal” state corresponding to a max-
imum of the fitness landscape.

@ The fitness value of the ‘“near optimal” state which
can be reached within the disposable time span, or in the
limit of long—but finite—times.

As far as the first point is concerned, the evolution reac-
tor is disfavored by conventional computing techniques.
Genetic algorithms are based on massively parallel pro-
cessing of potential solutions in the population, but the
individual replication steps are excuted sequentially —
one after the other—on the computer. Simulated an-
nealing, however, is not only faster on the computer, but
it proceeds also towards higher peaks. Why does nature
not use a procedure analoguous to simulated annealing
then? Of course we can only give a highly speculative
answer: it seems that variable environments make the
“memory” of the genetic algorithm —achieved by its in-
heritance mechanism—superior to the rather ‘“memory-
less”” simulated annealing procedure. On the other hand,
it might well be the case that nature’s choice of a particu-
lar optimization technique merely reflects the constraints
ultimately imposed by the physics and chemistry of life.
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APPENDIX: TRIANGLE STATISTICS
ON SEQUENCE SPACE

We compute the probability of getting by chance an ul-
trametric triangle (equilateral or isosceles with small
basis) out of all possible ones. Let A4,B,C be
configurations on the {0,1}" hypercube. Let their mutual
Hamming distances be d(A4,B)=I, d(A4,C)=m, and
d(B,C)=k with m =<l 1If | and m are given, then
k =1+m —2g, with g =0,1, ..., m, where g denotes the
number of common positions that have to be changed in
obtaining B and C from A. Then for given g

lellm=el
e

Without loss of generality we can fix A. Then the proba-
bility for a triangle with specifically assigned sides m,/,k
is

Pk =I1+m —2g)= (A1)
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P*(m,Lk) =% [m] [‘;]P(k=l+m —2g)
_1 1 [vl [ v—I

N youm )| 14m—=2g | |m+i—k |°
2 2

m<l, 0<k<v, (A2

where N =(2¥—1)(2¥—2)/2 is the number of triangles
involving point 4. To obtain the probability for choos-
ing at random any triangle whose sides are m,/,k with
m <I, we must sum P* over all distinct permutations
m(1)m(2)m(3) of m,Lk for which #(1)=m(2). If,
for example, m <[ <k, then P(m,lk)=P*(m,l k)
+P*(m,k,)+P*(l,k,m). We note that the side lengths
of equilateral triangles and the small basis of isosceles tri-
angles must be even. The probability P (v) for an equila-
teral triangle in the v cube is then given by

1 v]ld ||v—d
Pplv)=—— [ ] ,
S T = 2, d) |d ||

2 2

(A3)
with G denoting the set of even numbers. For an isos-

celes triangle with small basis we get

Piv)=—1 3 "
(2¥—1)2Y=2) 4€6 d<i<v—ids2)

/

v

[

4
2

X (A4)

!
4
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