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Molecular evolution is viewed as a typical combinatorial optimization problem. We analyse a chemical reaction model which 
considers RNA replication including correct copying and point mutations together with hydrolytic degradation and the dilution flux 
of a flow reactor. The corresponding stochastic reaction network is implemented on a computer in order to investigate some basic 
features of evolutionary optimization dynamics. Characteristic features of real molecular systems are mimicked by folding binary 
sequences into unknotted two-dimensional structures. Selective values are derived from these molecular ‘phenotypes’ by an 
evaluation procedure which assigns numerical values to different elements of the secondary structure. The fitness function obtained 
thereby contains nontrivial long-range interactions which are typical for real systems. The fitness landscape also reveals quite 
involved and bizarre local topologies which we consider also representative of polynucleotide replication in actually occurring 
systems. Optimization operates on an ensemble OF sequences via mutation and natural selection. The strategy observed in the 
simulation experiments is fairly general and resembles closely a heuristic widely applied in operations research areas. Despite the 
relative smallness of the system - we study 2000 molecules of chain length Y = 70 in a typical simulation experiment - features 
typical for the evolution of real populations are observed as there are error thresholds for replication, evolutionary steps and 
quasistationary sequence distributions. The relative importance of selectively neutral or almost neutral variants is discussed 
quantitatively. Four characteristic ensemble properties, entropy of the distribution, ensemble correlation, mean Hamming distance 
and diversity of the population, are computed and checked for their sensitivity in recordmg major optimization events during the 
simulation. 

1. Molecular evolution and optimization 

Conventional population genetics treats muta- 
tion as an external stochastic source. Moreover, 
mutations are considered as very rare events. In 
the absence of genetic recombination populations 
of haploid organisms are expected to be usually 
homogeneous. Experimental evidence on viral and 
bacterial populations is available now and it con- 
tradicts these expectations. Mutations appear 
much more frequently than was originally as- 
sumed. 
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The molecular approach considers error-free 
replication and mutation as parallel reactions 
within the same mechanism. Detailed information 
on the molecular mechanisms of polynucleotide 
replication provides direct insight into the nature 
of mutations and their role in evolution. Several 
classes of mutations are properly distinguished: 
point mutations, deletions and insertions. Point 
mutations are of special importance: they repre- 
sent the most frequent mutations and are easily 
incorporated into theoretical models of molecular 
evolution. This does not mean, however, that the 
other classes of mutations are not important in 
evolution. To give an example: there is a general 
belief that insertions leading to gene duplication 
played a major role in the development of present 
day enzyme families. 

The fist theoretical model of molecular evolu- 
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tion based on chemical kinetics was formulated by 
Manfred Eigen in his pioneering work [15]. This 
approach is based on ordinary differential equa- 
tions derived from chemical kinetics. It has been 
extended and developed further during the past 15 
years [16,17,35]. Experimental studies on RNA 
replication in vitro using a virus-specific replicase 
isolated from Escherichia co/i cells infected by the 
RNA bacteriophage Q/3 [6,7,9] revealed that the 
prerequisites for the theoretical model are fulfilled 
in real systems. The replication-mutation system 
(fig. 1) consists of a network of n x n different 
processes of RNA synthesis and n. degradation 
reactions. Every process is to be understood as an 
‘overall’ reaction of thousands of elementary steps 
of the mechanism of template-induced polymeri- 
zation [7]. In order to facilitate the kinetic analysis 
and the interpretation of experimental data the 
reaction network is run in an ‘evolution reactor’ 
(fig. 2) which provides a particularly simple open 
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Fig. 1. The reaction network. Synthesis on template I, pro- 
ceeds with the rate constant uk and leads with frequency Q,k 
to a new template Ii preserving the old copy. Materials A 
needed for polymerization are assumed to be buffered. 
Degradation to waste products B occurs with rate d, and a 
controlled unspecific flux Q(z) removes templates from the 
system. 
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Fig. 2. The evolution reactor. This kind of flow reactor consists 
of a reaction vessel which allows for temperature and pressure 
control. Its walls are impermeable to polynucleotides. Energy- 
rich material is poured from the environment into the reactor. 
The degradation products are removed steadily. Material trans- 
port is adjusted in such a way that the concentration of 
monomers is constant in the reactor. A dilution flux @ is 
installed in order to remove excess of polynucleotides pro- 
duced by replication. Thus, the sum of the numbers of individ- 
ual particles Z,X,(r) = N(t) may be controlled by the flux @. 
Under ‘constant organization’ 6 is adjusted such that N(I) = 0 
is essentially constant. By this we indicate that fluctuations 
with standard deviation o =@ occur regularly. The regu- 
lation of 0 requires internal control, which can be achieved by 
logistic coupling. 

system as environment for in vitro evolution. The 
kinetic analysis of the replication-mutation system 
yielded two major results: 

(i) There exists a sharply defined minimum 
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accuracy of replication below which sequences are 
dynamically unstable toward successive repli- 
cations. This instability implies that there is no 
long time correlation between sequences in the 
sense of heredity. Replication at low accuracy may 
be characterized, therefore, as ‘random repli- 
cation’. We introduced the notion ‘error threshold’ 
for the transition from regular to random repli- 
cation in order to indicate its sharpness in poly- 
mer sequences. 

(2) Stationary states of a replication-mutation 
ensemble are characterized by distributions of se- 
quences. These stationary distributions were called 
‘quasispecies’ [17] in order to stress the analogy to 
the notion of species in biology. Quasispecies have 
precisely defined internal structures which are de- 
termined by the selective values of individual 
polynucleotide sequences and the mutation fre- 
quencies. 

The conventional concept of natural selection 
has to be revised in the light of molecular biology. 
Not a single fittest type but an ensemble of se- 
quences, the quasispecies, is selected. In this mod- 
ified form the selection concept prevails and 
evolution can be visualized as a succession of 
quasistationary states which are characterized as 
stationary solutions of the kinetic differential 
equations. Rare advantageous mutants eventually 
destabilize the quasistationary states. After a tran- 
sient phase the population reaches a new quasista- 
tionary sequence distribution. The evolutionary 
optimum is approached stepwise. We shall use the 
notion of ‘evolutionary steps’ for this phenome- 
non. 

Some questions remain inevitably unanswered 
by the deterministic kinetic approach. Among 
them are those concerning the role of neutral 
mutations, the influence of population sizes on the 
selection process, and the factors which determine 
whether the evolutionary optimum is approached 
gradually or in steps. Still unsolved is the problem 
of how to predict whether or not a given repli- 
cation-mutation system can approach the global 
optimum of the evolutionary process. 

In order to be able to discuss some of the 
above-mentioned questions by means of a simple 
but as realistic as possible model system, we de- 
signed a computer simulation of optimization in 

an ensemble of replicating RNA molecules. 
Although we intended to model the adaptive 

behavior of a fairly simple and specific chemical 
reaction mechanism, it turned out that our model 
displays features which are very similar to those of 
a wide class of general optimization problems. 
Therefore, we make an attempt to formulate our 
optimization problem in general mathematical 
terms : 

(1) We assume a (finite, nonempty) set E of K 

different symbols, a, with i = I,. . ., K. In the case 
of polyribonucleotides we have K  = 4 and a, E 
{G,A,C,U}; for binary sequences the specifica- 
tions are K = 2 and a, E (O,l}. 

(2) The symbols are combined to strings of 
given length Y (Y t N). The set of all K” strings is 
denoted by 

c’=c-c-c. . ..c. 
These strings represent the polynucleotide or bi- 
nary sequences denoted by I, (k = 1, 2, . . . ,4’ or 
2”, respectively). In the language of biology they 
represent the genotypes. 

(3) Let u be a mapping that assigns a graph g, 
to every string I, = ajk)oJk) _. uJk) according to 
certain rules on the set of vertices { CJ,‘~‘; i = 
1, 2,. . ., P}: g, = ~(1~). The graph g, is the phe- 
notype corresponding to the genotype I,. In the 
case of polynucleotides or binary sequences I, is 
the primary sequence, i.e., the string of symbols 
a(“), and g, a secondary or tertiary structure 
formed according to the rules of base-pairing, in 
general some rules of symbol complementarity. 

(4) Finally, we define a bounded function u( gk) 
which assigns a nonnegative value to every graph: 
wk = u(gk) = u(u{Ik}). In common biological 
terms, wk is the selective value or the fitness of 
the phenotype g,. The function u evaluates the 
phenotype g, which in turn is determined by the 
genotype I,. 

The optimization problem can now be stated in 
the following form: find a string I, E E” such that 
the graph g, assigned to I, by u displays a 
maximum in u: w, = max(wk; k=l,...,~“}. In 
order to make the optimization problem numeri- 
cally tractable the computation of both functions 
u and IJ is assumed to be of polynomial time 
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complexity in v which means that the number of 
individual computational steps is a polynomial in 
V. 

The mapping u ( u { I}) is usually viewed as ‘cost’, 
‘objective’ or potential function in the v-indepen- 
dent variables cri E E. In the relevant and interest- 
ing cases the cost function generates a quite com- 
plicated ‘landscape’ on the discrete polytope C 
which has been characterized as ‘sequence space’ 
[l&33]. In the case of binary sequences the se- 
quence space is simply a hypercube of dimension 
v (fig. 3). 

The cardinality of Y - this is the number of 
possible sequences, 4’ or 2’, respectively - for 
medium and large values of the chain length v 
(v > 200) exceeds by far the capacities of all re- 
sources, natural or artificial, be it a computer, a 
laboratory, a planet or even the physical universe. 
Thus, we are faced with a combinatorial optimiza- 
tion problem that reminds one of those belonging 
to the ‘nondeterministic polynomial time com- 
plete’ (NP-c) class. Any search has to aim at 

‘good’, i.e., useful, solutions in acceptable amounts 
of space and time. A widely applied strategy in 
this context is ‘neighbourhood search’ or ‘best 
first and backtracking’ approach, in which the 
optimization proceeds via local improvements 
upon a restricted set of candidates until it gets 
stuck in a local or possibly global maximum. 

Exactly the same problem arises when we trans- 
late the deterministic kinetic model of molecular 
evolution into a stochastic process on a finite 
population. An iterative heuristic in general opti- 
mization theory has a number of ‘knobs’, in our 
case rules which determine the rate constants, 
population size and replication accuracy, by which 
‘fine tuning’ of the process can be achieved in 
order to obtain satisfactory performance. It is not 
surprising that the observed heuristic which oper- 
ates in the evolution reactor is close to what might 
be characterized as ‘design by variation and natu- 
ral selection’ (251. For example, this approach has 
been applied successfully to the travelling sales- 
man problem [26]. It also recalls ‘simulated-an- 

v=s 
Fig. 3. The sequence space of binary sequences based on the two-letter alphabet (OJ). We present the case Y = 5. All pairs 
sequences, I, and IA with Hammin g distance d(i,k) =1 are connected by a straight line. The graph obtained is a hypercube 
dimension I = 5. 

Of 

of 
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nealing’ techniques as have been proposed by 
Kirkpatrick et al. [22]. The problem which we try 
to approach here has also much in common with 
Anderson’s [2] statistical analysis of spin glass 
Hamiltonians. He himself stressed this analogy in 
applications to polynucleotide replication and 
early evolution [3,32,37]. 

2. The computer model 

2.1. The stochastic reaction network 

The network of chemical reactions which we 
intend to simulate by stochastic events is shown in 
fig. 1. It describes reactions involving n polymers 
I, (k=l,..., n) and consists of n2 synthetic reac- 
tion channels (eq. l), n degradation channels (eq. 
2) and n ‘improper’ reaction channels (eq. 3) 
representing an unspecific dilution flux Q(t): 

Ak. Q,k 
I, - I, + I, 

*cl) 
I, ----i 0. (3) 

The numbers of polymer molecules are considered 
as stochastic variables X,Jr) which are in princi- 
ple related to the conventional concentrations by 
averaging over many individual runs: [lk] = x,(r) 

= {X,(t)). 
Pathway 1 is visualized properly as a succession 

of two different types of processes. The first step 
is the initialization of the polymerization process. 
We assume constant concentrations of all low 
molecular weight materials and we account for the 
stoichiometric kinetic contributions of these con- 
centrations implicitly in the overall rate constants 
A, (k=l,..., a). After a sequence enters reaction 
channel 1 it completes the pathway by copying the 
template molecule. The template sequence I, = 
u1(k)@) ck) . . . a, thereby remains unchanged 
whereas the copy, in principle, may be any se- 
quence I, (i = 1, 2,. . . , n). Here we shall follow a 
model which considers binary sequences of the 
same length Y (Ii E E”) [38]. Accordingly, only 

point mutations are admitted. The copy is synthe- 
sized in many, precisely in V, reaction steps of the 
second type. These reaction steps describe the 
incorporation of individual digits into the growing 
copy chain. As polymerization proceeds along the 
sequence, the decision as to which digit is incorpo- 
rated into the new strand has to be made at every 
position. Accuracy of replication is assumed to be 
uniform along the chain: the probability of mu- 
tation does not depend on the position in the 
sequence. In binary sequences the decision as to 
which digit is incorporated is restricted to two 
possibilities only. Incorporation of the correct 
digit, 0 + 0 or 1 + 1, occurs with probability 4. 
Then an error at a given position, that means 
incorporation of the complementary digit, 0 + 1 
or 1 + 0, occurs with probability 1 -q_ The 
synthesis of a complete polymer is a series of 
simple Bernoulli trials which produces a mutant 
with m errors with a binomial probability density: 

P,(v,q) = (;)@-“(I -q)“= (;jqv( 517 

(4) 

The individual mutation probabilities, which are 
the elements of the mutation matrix Q = { Qik}, 
can be written in the form 

Qik = qy- W,W(l _ q)d(l*k), (5) 

where the Hamming distance of the two sequences 
Ii and I, is denoted by d(i,k). The mutation 
probabilities fulfil the conditions 0 2 Qj < 1 and 

I$Pki = IL- 

Pathway 2 represents a specific intrinsic de- 
struction which corresponds to hydrolytic deg- 
radation. It occurs with a reaction probability Dk 
(k = 1, 2,. _.) n). 

Pathway 3 models a self-controlled removal of 
sequences by an unspecific dilution flux such that 
the average total population number N(t) 
= xXk(t) approaches some fixed constant value 

0 &d fluctuates around it. Then the unspecific 
flux is of the form 

(6) 



12x W. Fontma, P. Schuster/Computer model of optimization 

A flow term as used in the deterministic equa- 
tions, 

k k 

(6’) 

is unstable in the stochastic treatment since it 
would lead to a divergent variance of the total 
population number N [21]. Every N(f) satisifies 
the constraint and hence the system is deprived of 
a regulating force which resets the original value 
of N after small fluctuations. The flow in eq. 6 
instead introduces a self-regulating mechanism of 
the logistic type. 

In essence, the stochastic simulation follows an 
algorithm proposed and applied to chemical reac- 
tions by Gillespie [19,20]. Let us now consider the 
stochastic events which lead to changes in the 
molecular content of the reactor. Each sequence I, 
(k = 1, 2,. _ , n) may enter one of the three reac- 
tion channels (a) with (Y E { 1,2,3}. The number of 
such events (for given k and a) in the time 
interval between t and t + At is counted by 
N,‘*‘(t, t + At). We then characterize all reaction 
channels by constants R, . (a) This means for exam- 
ple: 

R(kl)= A,, RF)= D, and Ri3)= a(t). 

Reaction probability densities P,$“)(t) are related 
to the ‘stochastic rate constants’ Rp’ such that the 
three relations 

Prob{ Nia)(t,t + At) = 0) = 1 - R’,*‘.At + o(At) 

(7) 

Prob{ Nk(“)(t,t + At) = l} = R’,*)*At + o(At) 

(8) 

Prob{N,‘*)(t,t+At)>l} =o{At} (9) 

hold for every reaction channel in the limit At --) 0. 
The stochastic series of events defined by eqs. 

7-9 is a Poisson process and the probability den- 
sity function is the exponential distribution with a 
reciprocal time constant Rp) 

I$“‘( t) = R(kol) exp{ - Rp)t } (t > 0). (10) 

Now we can easily implement the network of 

events in the reactor. Since all choices of reaction 
pathways are independent Poisson processes, the 
whole network constitutes a compound Poisson 
process. By this we mean that the time t between 
two events of the combined process has a 
probability density 

P(t)=R(t)exp{-R(t)t}, t>O 

with 

(11) 

R(t) = c xRp)&(t) = 
k LY 

(12) 

Eqs. 11 and 12 define the internal clock of the 
reaction network. Intervals between successive 
events are independent, but obviously not identi- 
cally distributed because of the time dependence 
of the parameter R(t). 

Given a time t = T at which an event occurs, 
which sequence (Ik) and which reaction channel 
( CX) will be involved? Let Tk(=) be the time at 
which I, reacts according to (a) then we find by 
elementary probability arguments: 

Prob{ 7”@ = t, Tts) >r(jzk, jkY)lT=t} 

= Rj$/R( t). (13) 

The implementation of the stochastic simulation 
on a computer is straightforward. It is described 
in detail in ref. 19. 

2.2. The value function 

The next problem is to define the rules accord- 
ing to which nontrivial sets of rate constants A, 
and D, (k = l,..., n) are generated from given 
sequence data. Thereby we intend to produce a 
value landscape which emulates some characteris- 
tic features of ‘real-life’ situations. According to 
what has been described before, this is done in 
two steps: 

(1) The binary sequences I, are folded into 
secondary structures, which represent the ‘pheno- 
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types’ gk in OUT model. The prediction of sec- 
ondary structures of single-stranded nucleic acids 
has been the subject of numerous mathematical 
and algorithmic investigations since the problem 
was first approached in the early sixties [18]. Sys- 
tematic further studies led to the development of a 
number of elegant techniques which are based on 
dynamic programming [27,28,39-431 (for an ex- 
tensive list of references see ref. 42). The imple- 
mentation used here follows the guidelines given 
in ref. 43. In order to make this contribution 
self-contained we describe the folding strategy in 
the appendix. 

(2) The second step assigns rate constants Ak 
and Dk to the secondary structures, the pheno- 
types (gk) of the sequences I,. We chose two cases 
which differ with respect to sophistication of the 
value function. 

(i) The simplest assignment would take directly 
the absolute value of the free energy of g, to be 
the replication rate constant, eventually after suit- 
able scaling: A, = constant. 1 AG( gk) ( . Degrada- 
tion rates might be neglected: D, = 0. If a struc- 
ture is unstable, AG(g,) > 0, then we set Aj = 0, 

the structure does not multiply and we are dealing 
with a ‘sterile’ variant. Since such a sequence 
would be diluted out of the reactor sooner or later, 
we may consider sterile variants also as ‘lethal 
within our model. The more stable a structure is in 
this simplest assignment, the higher is its selective 
value. The longer the stacking regions, the faster it 
will replicate. Clearly, this is biophysical nonsense 
since it contradicts experimental data on repli- 
cation of single-stranded molecules. From the 
viewpoint of the mapping I, + g, -B (A,,D,), 

however, we are dealing with a problem of the 
same ‘universality class’ [3] as in the biophysically 
more appealing assignment discussed below. 
Moreover, we have the advantage of knowing a 
priori what the ‘fittest’ sequences look like: obvi- 
ously they are the 32 palindromes with complete 
parallel stacks and variations only in the four 
digits of the hairpin turn (see the appendix). One 
series of computer experiments characterized as 
searches on the ‘thermodynamic value landscape’ 
was performed by assignments in this way. 

(ii) The second assignment was chosen in order 
to meet better some biophysical constraints of 

replication. Since up to now nobody knows how 
to calculate replication rate constants from sec- 
ondary structures of single-stranded polynucleo- 
tides our model is only of heuristic value. It is 
based on the fact that replication operates on 
single strands [8] and that unzippering of helical 
regions is cooperative 1311. We assume that every 
stacking region slows down the overall replication 
process in an additive fashion and that the term 
each stack contributes is a sigmoidal function 
which is reminiscent of the Monod-Wyman- 
Changeux model: 

Ak=tcR-tcl~ 
ny (1 + “jL))j 

3 (l+ny))4+L 
(14) 

The sum is to be taken over all stacking regions of 
the sequence Ik_ The njk) values refer to the 
lengths of the individual stacks: PZ~) denotes the 
number of base-pairs in the j-th stack of sequence 
I,. The parameter L is some large positive con- 
stant which determines the detailed shape of the 
sigmoidal curve. The parameters xR and ki repre- 
sent rate constants: ICY is the replication rate 
constant of the linear unstacked chain whereas 
in - K1 corresponds to the limit of infinitely long 
stacks. Should a structure yield a negative rate 
constant A, < 0 then we declare the sequence as 
lethal and put A, = 0. The values of K ~ and K, 
can be used, therefore, to control the fraction of 
lethal mutants. 

The rate constants of the hydrolytic degrada- 
tion, D,, are also made up of additive contribu- 
tions from each unpaired region. Heavier penalties 
are assigned to free ends and joins than to loops. 
There is no cooperativity. 

s(k) 

+‘Cy. 
1 

The first sum herein is taken over all loops, the 
second over all external elements as there are joins 
and tails. Three rate constants, K ~, K ~ and K ~, are 

introduced to determine stability against hydroly- 
sis. The number of unpaired digits in the j-th loop 
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of sequence Ik is denoted by uj”), the length of 
the I-th unpaired element in the same sequence by 
VI (k); U m is a weighting factor and v the length of 
the sequence. 

All we have to do now is to ‘parse’ the folded 
secondary structure g, of the sequence I, into its 
elements in order to obtain the information needed 
in the computation of Ak(gk) and Dk(gk). The 
selective value or fitness factor of the sequence I, 
is then computed from W,, = A,. q” - D,. 

We characterize this second assignment of fit- 
ness factors to the secondary structures gk as 
‘ kinetic value landscape’. Certainly, our evalua- 
tion of rate constants from structural elements is 
naive in the light of modern biophysics but we do 
not aim at a quantitative determination here. In- 
stead, we present an example of an assignment in 
which high fitness is based on a compromise be- 
tween two contradictory trends: long double-heli- 
cal regions stabilize against hydrolysis, but they 
also reduce the rate of replication and vice versa. 
Some details of the value landscapes in the ther- 
modynamic and kinetic case are discussed in sec- 
tion 3. 

2.3. The data structure 

The last question we have to address here is 
that of suitable data structures in order to keep 
track of the current sequence distribution in an 
evolving population. Repeatedly we search the 
population for the appearance of mutants and 
adjust their counters or in the case of new se- 
quences we start the folding procedure. Folding 
has to be kept to a minimum since it represents 
the most time-consuming step of the whole simu- 
lation. Therefore, we need a data structure which 
supports efficient searching and allows one to 
insert and delete specified items. The nature of the 
process suggests, moreover, that insertions of new 
sequences and deletions of obsolete ones occur far 
from random. We have to avoid structures in 
which those operations interfere strongly with their 
search properties. 

An elegant data structure that performs all 
operations required on N items in guaranteed 
O(logN) time complexity was devised in the early 
sixties [l]. It is known as the celebrated balanced 

binary tree method [23]. The search tree is bal- 
anced by a set of rotation operations whenever the 
height differences between right and left subtrees 
exceed some critical value upon insertion or dele- 
tion. We chose the balanced tree especially with 
regard to future experiments with variable chain 
lengths, since many independently growing and 
shrinking trees can easily coexist in one large 
internal storage pool. 

3. Value landscapes 

Before we discuss the results of computer simu- 
lations we present some data on general structures 
of the two types of value landscapes. First, we 
consider the distribution of selective values and 
explore the value landscape by a Monte Carlo 
search. We begin from the ‘all-zero’ sequence I, of 
chain length v = 70, the sequence which consists 
of seventy digits 0 exclusively, and replace the 
digits 0 by digits 1 at every position with a given 
constant probability 4. Thereby we obtain a ran- 
dom distribution of sequences of almost Gaussian 
shape which is centered around the (70 X q)-error 
mutants of the reference sequence I,. Apart from 
some minor details a random sample of 38000 
different sequences was sufficient to reflect the 
general features of the fitness landscape. Repeats 
with 76000 trials showed almost no detectable 
differences. 

The distributions of selective values were 
calculated for three different q values, ql = 0.2857, 
q2 = 0.5 and q3 = 0.7143, which led to mutant 
distributions centered around the 20-, 35- and 
50-error mutants of the all-zero sequence I,,. Three 
different parts of the sequence space were ex- 
plored in such a way. The value landscape for the 
thermodynamic assignment differs significantly 
from that of the kinetic model (fig. 4). 

The selective values in the thermodynamic as- 
signment show roughly a ‘noisy’ Gaussian distri- 
bution. The mean selective values for q1 and q3 
me about the same: p= 500 (t-i) (Selective val- 
ues are rate constants by definition [16,17] and 
therefore are given in reciprocal arbitrary time 
units here). The distribution around the 35-error 
mutants is significantly superior: W= 750 (tt’). 
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Fig. 4. Distribution of selective values in sequence space. 38ooO different sequences of length Y = 70 were generated by introducing 
digits 1 at random with probability q1 = 0.2857, qz = 0.5 and q3 = 0.7143. This produces samples of Gaussian shape centered around 
the 20., 35- and SO-error mutants of the ah-zero reference sequence. The distributions of the free energy AGk and the excess 
production A, - D, are shown for the regions located at mean Hamming distances 35 (upper plots) and 20 (lower plots) from the 
all-zero vertex of the hypercube. Apart from a scaling factor the free energy distribution constitutes the thermodynamic fitness 
landscape. For high-accuracy replication (e.g., for all runs reported in the text) the kinetic fitness landscape retains the same shape as 
the (Ak - 4) distribution. The densities in the surroundings at distance 50 (not shown) are essentially the same as those at distance 
20. They contain the direct (i.e., unchanged polarity or folding direction; the common plus-minus complementarity is inverse 
complementarity, since the polarity of the minus strand is opposite to that of the aligned plus strand) complementary sequences. 
Although the secondary structures of sequences directly complementary to each other differ in general, the pools of configurations 
derived from them behave in the same way with respect to evaluation. 

lnterpretation of this observation is straightfor- 
ward. The 35-error mutants have as many digits 0 
as digits 1 and, provided the primary sequence 
admits it, they form more base-pairs than the 20- 
or SO-error mutants do. In essence, therrnody- 
namic stability counts the number of base-pairs 
and hence, the 35-error mutants of the all-zero 

sequence I, are the most stable on average. A plot 
of the distributions on the kinetic landscape is 
shown for the case 4 = 1 where the selective value 
becomes identical to the excess production E, = 
A, - D,. In the case of the distributions around 
20- and 50-error mutants we observe an interest- 
ing bimodal shape. Bimodality is here a result of 
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the relation between A, and D, values as regu- 
lated by eqs. 14 and 15 and will be discussed in 
detail in a forthcoming paper. 

It is useful to split the kinetic landscape into 
the different contributions resulting from repli- 
cation and degradation rate constants (fig. 5). The 
distribution of the degradation rate constants and 
the thermodynamic value assignment have much 
in common. Degradation rate constants also re- 
semble noisy Gaussian distributions. This is no 
surprise since both functions roughly count the 
numbers of base-pairs, eventually with slightly 
different weightings. Obviously the dependence on 
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the number of base-pairs formed is opposite: many 
base-pairs imply high thermodynamic stability but 
low rate of degradation. By the same token the 
35error mutants hydrolyse less readily than the 
20- or 50-error mutants do. 

The distribution of replication rate constants, 
shown in fig. 5, differs rather drastically from the 
other two. It looks bizarre and determines the 
overall shape of the total kinetic value landscape. 
Due to the sigmoidal contribution of the lengths 
of double-helical regions replication rates are ex- 
tremely sensitive to minor details of the structure 
and this leads to an enormous scatter in the distri- 
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Fig. 5. Splitting of selective values on the kinetic surface into replication rates A, (upper plots) and degradation rates Dk (lower 
plots). Parts A and B show the distributions sampled from the 35- and 20-error environments, respectively, as explained in the 
caption to fig. 4. Note that in the upper plot of (A) the high density (0.18) at A, = 0 has been cut off to show the details of the 
surface at positive rates. 
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bution. Long base-paired regions are a disad- 
vantage for replication and therefore, 20- or 50-er- 
ror mutants of the all-zero sequence I,, replicate 
faster on average than the 35error mutants do. 
The latter region of the sequence space bears 
many structures with some stacks above the criti- 
cal length of four to five base-pairs. Due to our 
particular choice of the constants K ~ and K~ in eq. 
14 the contributions of these stacks cumulate to a 
negative replication rate constant which is set at 
zero, thus establishing a nonviable mutant. The 
fraction of nonviable sequences in the sample 
centered around Hamming distance 35 is therefore 
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Fig. 6. The local fitness landscape. The selective values of the 
70 nearest neighbours surrounding a given reference sequence 
I, are shown. (Upper curve) Kinetic evaluation, (middle curve) 
thermodynamic evaluation, (lower curve) changes in the num- 
ber of base-pairs upon single-digit mutation. The thermody- 
namic evaluation pronounces the changes in the pairing num- 
bers, whereas the kinetic value behaves in a roughly opposite 
way. 

higher than in the other regions of sequence space. 
It amounts to 0.18. Clearly, our choice is arbitrary 
but we believe it reflects the well-known, naturally 
arising situation where parts of the sequence space 
are particularly rich in lethal mutants. 

Overall scans of this kind can reveal only gen- 
eral trends persisting in certain regions of the 
value landscape. Nothing is said about the relative 
locations of high-value configurations and their 
connectivity. Investigations aiming at a better un- 
derstanding of the detailed topological features 
are feasible through our evolution experiments on 
the computer. Such studies are presently under- 
way. A simple hint on this topology can be easily 
obtained, however, by exploring the local shape of 
the fitness surface. For that goal we calculated the 
selective values of all sequences surrounding some 
reference sequence with Hamming distance 
d( k, j) = 1. The local scan through the sequence 
space reflects the bizarre structure of realistic value 
landscapes (fig. 6). Nearby sequences may have 
very different or almost the same selective values. 
From molecular genetics we know that this is also 
the case in real biology. A point mutation might 
be lethal or harmless, since the translation into 
phenotype may depend crucially on single digits. 

4. Mean excess production 

The mean excess production of a replicating 
ensemble of polynucleotides is easily determined 
experimentally. It is simply the normalized amount 
of polymer produced per time unit by the system. 
Under the conditions of the reactor shown in fig. 
2 the expression derived by conventional chemical 
kinetics is of the form [16,17]: 

kj 

k 

The deterministic concentration of the polymer I, 
is here denoted by x,; 6;k is the Kronecker sym- 
bol. Selection of a master sequence (I,) and its 
mutant distribution is usually accompanied by an 
increase in the mean excess production, but there 
are also conditions, maybe somewhat exotic, such 
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as commencing with the pure master sequence I,,,, 
for which E(t) decreases or does not even behave 
monotonically [34]. In any case it approaches a 
well-defined asymptotic value which is determined 
by the inequality 

A,-D,,,> lim~(t)=E,z-A;Q,,-D,,,. 
I-+W 

(17) 

The difference between the selective value of the 
master sequence and the asymptotic mean excess 
production is a measure of the total fraction of 
revertants; these are mutations leading from 
mutants back to the master: 

08) 

The master sequence is well defined in a sta- 
tionary mutant distribution as the most frequent 
sequence which is commonly characterized by the 
largest selective value. In the stochastic computer 
simulations we are not dealing with stationary 
populations and therefore we have to generalize 
the concept. The notion master sequence is re- 
tained for the most frequent type irrespective of 

selective value. 

The results of seven typical selected runs are 
shown in figs. 7-9 and 11. In order to facilitate 
reading the individual runs are denoted con- 
sistently by letters: A-G. Ail computer experi- 
ments reported here use a chain length of v = 70, 
an average population size of F= 2000 and start 
from a homogeneous population. There is a rather 
fast initial period during which a first mutant 
distribution is formed. Then optimization starts. 
When a simulation starts from a very inefficient 
initial sequence it turns out to be necessary to 
evaluate selective values in the first phase differ- 
ently from the genuine simulation experiment in 
order to avoid negative mean excess production. 
This has been done by generally slowing down 
degradation without altering the shape of the fit- 
ness surface. 

First we consider two simulations of the opti- 
mization process on the kinetic value landscape 
using different single digit accuracies of q = 0.999 
(A) and 4 = 0.997 (B). Both computer experiments 
start from a homogeneous population consisting 
of the all-zero sequence only. The two runs (fig. 7) 
differ characteristically. The approach towards a 
near optimum solution lasts longer in the simula- 
tion with higher accuracy. Less mutants are formed 

Fig. 7. Mean excess production during optimization. Evolution experiments are run on the kinetic landscape. The total population 
N(I) fluctuates with $qq around 8 = 2000 individuals with chain length P = 70. The single-digit replication accuracy q is chosen 
to be 0.999 (A) and 0.997 (B). The initial conditions were in both cases 2000 copies of the all-zero sequence. Monitoring occurred at 
each time unit in run (B) and at every second time unit in (A). The system excess production is accompanied below by a recording of 
the selective value A,Q,, - 0, of the currently leading sequence and above by their excess production A, - D,. For details cf. section 
4. 
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and optimization is less efficient. In the high-accu- 
racy case we also observe quasistationary state 
which lasts roughly from f = 200 to r = 800. Sub- 
sequently, the mean excess production increases 
instantaneously. We observe an evolutionary step. 
In the low-accuracy simulation such a step is 
vaguely indicated only between t = 100 and t = 
200. Another obvious consequence of the muta- 
tion rates concerns the difference E- W,, in the 
stationary state which is a measure of the relative 
importance of revertants. This difference is sub- 
stantially larger in the run at lower accuracy where 
the frequency of mutation is higher. 

Next we consider two computer experiments on 
the kinetic value landscape, C and D, starting 
from a sequence (fig. 10) which is less far away 
from a ‘near-optimum’ solution than the all-zero 
sequence. The results are shown in fig. 8. Clearly, 
a nearly optimal sequence is approached faster 
than in the two previous runs. Again, the simula- 
tion with higher replication accuracy (C: 9 = 
0.999) shows a detectable evolutionary step in the 
optimization process, whereas the other run (D: 
4 = 0.997) approaches the optimum gradually. The 
asymptotic value of the difference E- W,, be- 
haves as expected: it is larger for D (4 = 0.997) 
than it is for C (4 = 0.999). 

Two other simulation experiments (E and F) . 

were carried out on the thermodynamic landscape 
(fig. 9). Both commence from the same sequence 
(fig. 10) and use the same q values as the previous 
sets of experiments. On the whole optimization is 
somewhat faster on the thermodynamic landscape 
than it is on the kinetic one. It is also ‘smoother’ 
in the sense that practically no evolutionary steps 
can be detected. The less accurate simulation 
reaches a near-optimum sequence faster than the 
more accurate computer experiment does. In this 
particular example we are in the position to pre- 
dict the sequence with maximum selective value 
(fig. 10). It is a perfect hairpin, a hairpin with the 
maximum number of base-pairs, here 33, with ‘0 
digits on one side and ‘1’ digits on the opposite 
side. Changes within the four digits of the loop 
give rise to a family of selectively neutral variants. 
The simulation at lower accuracy (4 = 0.997) re- 
aches a perfect hairpin within the time spent in 
the run. It is not yet the global optimum but it 
contains the maximum number of base-pairs. The 
high-accuracy run (q = 0.999), however, becomes 
stuck in a nonoptimal hairpin with one base-pair 
less. 

Let us now consider a ‘downhill’ computer 
experiment on the thermodynamic landscape (G) 
where we start from the optimum sequence and 
follow the decay of the population due to mu- 

Fig. 8. Mean excess production during optimization. The recordings of runs with q = 0.999 (C) and q = 0.997 (D) under reactor 
conditions as described in fig. 7 are shown together with the selective values of the leading sequences. We started from a 
homogeneous population of the sequence shown in fig. 1OA. 
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Fig. 9. Mean excess production during optimization. These experiments were done on the thermodynamic surface with 4 = 0.999 (E) 
and 4 = 0.997 (F) starting with 2000 copies of the sequence shown in fig. IOB. The net production of the reactor is again delimited 
above by the excess production of the dominating sequences and below by their selective valuea. 

Fig. 10. Special sequences. (A) Start sequence of runs C and D, (R) start sequence of runs E and F, (C) mater sequence of the 
quasispecies hit by run F (4 = 0.997), (D) master sequence of the quasispecies hit by run E (4 = 0.999). 
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G I 

Fig. 11. ‘Melting’ of a homogeneous population of the themo- 
dynamically hxghest valued configuration (perfect hairpin with 
parallel stacks). An accuracy of 4 - 0.996 is sufficient to lose 
that sequence from the population. 

tation and random drift (fig. 11). We chose a low 
accuracy of replication (4 = 0.996) which is about 
the error threshold for our chain length and popu- 
lation size. The mean excess production decreases 
first because the mutant distribution is formed. 
Then the original master sequence is lost and the 
mean excess production decreases further until it 
approaches an average value which is characteris- 
tic for an area of sequence space which can be 
covered by a population of about 2000 individu- 
als. The replicating ensemble drifts in the se- 
quence space and we observe a rapid succession of 
master sequences. 

5. Distribution of sequences 

For an understanding of the dynamical details 
of evolutionary optimization we need more infor- 
mation than just the mean excess production. In 
addition, we have to consider the time develop- 
ment of the distribution of sequences. How to 
characterize efficiently the changes in adapting 
populations is still an unsolved problem. We shall 
consider here several functions which appear to be 
useful candidates for the recording of evolutionary 
changes. 

First, we consider the ‘microscopic’ structure of 
the population as a function of time. Definitely it 
contains all available information but it is un- 
wieldy and hard to analyse. Therefore we have to 
condense data for practical use. 

In fig. 12 we show successions of master se- 
quences for four runs (A, B, D and F). They 
represent molecular recordings of the paths along 
which the populations approach the near-opti- 
mum solutions. On the kinetic landscape popula- 
tions get stuck more easily in local optima or 
evolutionary ‘traps’. This is shown nicely by simu- 
lation A which ‘sits’ in the large loop trap from 
t = 100 to about t = 800. Simulation experiments 
apparently keep some memory of the starting se- 
quence: a comparison of runs B and D shows that 
the ‘T’-shape element is not lost in the latter 
simulation despite the fact that it leads to some- 
what less efficient sequences. The recording of run 
B is a typical demonstration of the long time 
behavior of small populations: fluctuations are 
large and near-optimum master sequences may be 
replaced by slightly less efficient ones. The run on 
the thermodynamic landscape shown here (F) re- 
flects different topology from the kinetic lands- 
cape: the approach towards the near-optimum 
sequence is more straightforward, or less ‘erratic’ 
than in the comparable run B, since the thermody- 
namic value landscape is smoother. 

Next, we characterize a population by the ‘ top 
twelve sequences’ as we characterize the sequences 
with the largest numbers of copies. In fig. 13 we 
show two different examples taken from run A at 
times t = 830 and t = 1600. The latter case repre- 
sents a distribution which is characteristic for a 
quasistationary phase of evolution. It closely re- 
sembles a true quasispecies. The most efficient 
sequences are present in high numbers of copies 
when they are close relatives to the master. The 
first case in contrast is typical for a major re- 
arrangement of the sequence distribution between 
two quasistationary phases. We realize vast scatter 
of sequences. The most frequent sequence is not 
the most efficient: the new master and several 
frequent mutants which were necessary to popu- 
late the ‘path’ between old and new master are 
present in substantial fractions as well. 

A series of snapshots of the major rearrange- 
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ment of the sequence distribution at the evolution- 
ary step in run A is shown in fig. 14. The sequence 
distribution centered around the new master builds 
up as the old quasispecies-like distribution decays. 
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Moreover, we realize intermediate sequences posi- 
tioned on an ‘island’ in sequence space which has 
to be populated before the evolutionary jump of 
the ensemble becomes possible. 
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Fig. 12. Selected recordings of the successions of master sequences along the path to the final distribution. A, B, D and F denote the 
corresponding runs reported in the text (T = time, E = A - D = net production). 
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Fig. 12 (continued). 

We next computed four scalar functions which 
are suitable for a recording of the changes going H(t) = +XkInXk+lniV (1% 
on in the evolving population. The Shannon en- k-l 

tropy is commonly used to characterize distributions 
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Fig. 13. The twelve most frequent types (‘top twelve’) at times T = 830 and T = 1600 of run A. At T = 830 the ensemble is 
rearranging internally for the jump shown in fig. 7 (A); at T = 1600 a typical quasistationary state is achieved. U, Selective value; c, 
number of copies; d, Hamming distance from the most frequent type. 

and has also been applied to molecular popula- 
tions [lO,ll]. Characteristic examples are shown in 
fig. 15. As expected the entropy is larger if repli- 
cation is less accurate. The perfect evolutionary 
step of the high-accuracy run (A) shown in fig. 7, 
however, is not well documented by the entropy 
function. We realize the spontaneous increase after 

t  = 800 but then the function settles at a value 
which is almost as large as that during the major 
rearrangement. 

The second function to be considered here is a 
kind of autocorrelation function of the (nonsta- 
tionary) sequence distribution. We call it ‘ensem- 
ble correlation’ since it represents a measure for 

~- _.-~~- 
Fig. 14. Rstabilization of a quasispecies and building up of a new quasistationary state. The optinwation jump in run A is resolved 
into frequencies of selective values at different Hamming distances computed from the new outgrowing master sequence. At time 
T = 700 the ‘newcomer’ has not yet appeared in the system, but 120 time units later a path to it has been established. The resolution 
along the value axis is of 10 units, i.e., the frequencies of types with values u E (u k ~ 5, ok + 5), for some IJ~, are cumulated. Clearly, 
care has to be taken in inferring the relative distances in the Hamming metric between peaks not involving the new master at d = 0. 

The btghest peak at time T = 700 amounts to 0.29. It was cut off at 0.2 in order to make the smaller peaks better visible 
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c?(t, At) = {J?(r + At) *z(t)) 

= + &t+At).x,(lj. (20) 
k L 

in contrast to an ordinary autocorrelation func- 
tion, we consider a fixed time increment (At) and 
analyse the ensemble correlation as a function of 
t. We calculated C(t,At) for several choices of At 
but it turned out that the correlation function is 
not at all sensitive to this choice. Clearly, the 
ensemble correlation is unity in a stationary (de- 
terministic) population. Any real population, how- 
ever, is always ‘quasistationary’. By this we mean 
that only the master sequence and the most fre- 
quent mutants are present in constant fractions of 
the total population. There will be rearrangements 
at the periphery of the quasispecies-like distribu- 
tion. Therefore, c( t, A t) will be less than unity. 
The quantity 1 - c( t, At) is a direct measure of 
the importance of fluctuations at the periphery. In 
fig. 16 we show two characteristic examples of 
ensemble correlation functions. They turn out to 
be a useful diagnostics for major rearrangements 
of sequence distributions occurring at evolution- 
ary steps: C(t,At) drops before the midpoint of 
the rearrangement. The two correlation functions 

0 200 400 600 a00 1000 1200 1400 ,600 ,800 
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15. The Shannon entropy (eq. 19) of runs A and B. The 
recording for run A shares some vague shape features with the 
mean Hamming distance of fig. 17 (A), whereas the upper 
curve for the less accurate run B lacks the ability to monitor 
the adaptive behavior of the system. 

rearrangements of the distribution within a given 
time interval At. We describe the seauence distri- 
bution by a vector T(t) = (X,(t), X2(t), . . . , X, 
(t >}. Then, the ensemble correlation is defined as 
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Fig. 16. The ensemble correlation (eq. 20). The series of projections between states At = 2 time units apart from each other is shown 
for run A (left) and for run B (right). For details cf. section 5. 
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for runs A and B with different accuracy differ 
characteristically. There is almost no change in the 
population during the early period (200 -C t -C 800) 
of the high-accuracy simulation. Then we observe 
three noisy drops corresponding to evolutionary 
steps before the population settles around a mean 
value of c(t, At = 2) = 0.97. The run at lower rep- 
lication accuracy shows only one drop before it 
settles at a mean value of C(t,At = 2) = 0.89 re- 
flecting higher mutational activity. 
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Fig. 17. The mean Hamming distance (eq. 21). This measures 
sensitively the width of the current state in the appropriate 
metric of the hypercube. The upper part has been traced 
during run A, the lower one during run B. For details cf. 
section 5. 

Another global function of sequence distribu- 
tions which turned out to be useful here is the 
mean Hamming distance defined by 

so 
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Fig. 18. The diversity {eq. 22). This measures the support on 
which a sequence distribution is built. Inheritance keeps a 
kernel of the sequence distribution away from dropping below 
the threshold of stochastic noise. This implies a restriction 
upon the band width of the variability that can be sustained in 
a given evolutionary system under defined conditions. The 
diversity obviously depends upon the replication accuracy 4, 
but it also depends on the topology of the fraction of the 
fitness surface that is occupied instantaneously by the ensem- 
ble. We observe a characteristic grouping of the diversities 
according to the chosen simulation conditions. High-accuracy 
runs (A, C, E) show a lower diversity than the low-accuracy 
experiments (B, D, F, G). Simulation G is just below the error 
threshold, which is reflected by a fraction of sequences differ- 
ing from each other as high as 0.44 on average. Runs C and D 
start from a different region in sequence space than A and B 
and settle on a different diversity. The same holds for a 
comparison between the runs on the kinetic surface (A, B, C, D) 
and the experiments with the thermodynamic evaluation (E, F). 
The latter landscape seems to produce more variability under 
comparable conditions. This may be due to a higher density of 
neutral mutants resulting from the smoother surface. This is 
viewed as a hint that the error threshold depends in fact on the 
actual value landscape. The pronounced evolutionary step in 
run A swaps the ensemble from a location near the all-zero 
vertex of the hypercube to another far away from the starting 
point. The corresponding change in the otherwise constant 
diversity hints at a different topology of the value surface in 
that region. In addition, the diversity also depends on popula- 
tion size. 
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Two typical examples of mean Hamming dis- 
tances in simulations with different accuracies are 
shown in fig. 17. The mean H amming distance 
increases sharply at evolutionary steps. In quasi- 
stationary populations it fluctuates around mean 
values which are measures of the widths of mutant 
distributions. In our particular examples we found 
3 = 7 in the more accurately replicating popula- 
tion with q = 0.999 and B = 11 in the population 
with q = 0.997. The last of the four global quanti- 
ties of sequence distributions which we discuss 
here is the diversity V(f). It is a measure of the 
width of distributions and simply counts the num- 
ber of mutants present: 

V( t ) = $ . (number of mutants present at time t ) . 

(22) 

Accordingly, the diversity is unity in a population 
in which all sequences are different. It is l/N in a 
uniform distribution. As seen from the examples 
shown in fig. 18, the diversity is an appropriate 
measure for the characterization of quasista- 
tionary populations. High diversity implies high 
capacity for evolutionary adaptation provided the 
system is still above error threshold. Below error 
threshold the diversity is large and may approach 
unity. 

6. Conclusions 

Populations of a few thousand molecules, which 
are about the size we can handle with our compu- 
tational facilities, are minute compared to popula- 
tion sizes commonly used in microbiology or in 
test-tube evolution experiments. When we de- 
signed our simulation studies it was not at all 
clear, therefore, whether we would be able or not 
to observe typical evolutionary phenomena as there 
are error thresholds, quasistationary mutant distri- 
butions or evolutionary steps. Fluctuations might 
cover the interesting features. The computer ex- 
periments have shown that this is not the case. 
Error thresholds, originally derived for infinite 
populations, do exist in small populations as well, 
The influence of population size on error thresh- 
olds is unclear. Intuitively, one would expect that 

higher accuracy is needed in smaller populations 
to sustain stable ensembles of replicating se- 
quences since fluctuations are more likely to wipe 
out individual types there. The structure of the 
value landscape, of course, also has an influence 
on the error threshold. As the simulations have 
shown, the error threshold for a population of 
2000 individuals of chain length v = 70 on the 
thermodynamic landscape lies somewhere in the 
range 0.996 i q_ < 0.997. A ‘conservative’ esti- 
mate of the deterministic error threshold on this 
energy surface yields q_ = 0.990 for v = 70. 

Depending on chain length, population size 
and structure of the value landscape, an efficient 
approach towards a target sequence of optimum 
or near-optimum selective value requires an opti- 
mum replication accuracy. Too high an error rate, 
as shown by the downhill experiment in fig. 11, 
leads to continuous loss of the most efficient 
sequences. The population is unable to adapt and 
scans the sequence space in the manner of a 
random walk. The mean excess production there- 
fore reaches only an average value of the area 
populated in sequence space. Clearly, too low a 
replication accuracy is prohibitive for evolutionary 
optimization because there is no long time correla- 
tion between sequences in the sense of inheritance. 

Too high an accuracy of replication, on the 
other hand, slows down the optimization process. 
The ensemble eventually becomes stuck in a local 
optimum of the fitness landscape. Before we reach 
a situation in which the system is locally bound 
for long times we encounter quasistationary states 
and evolutionary steps. The replicating ensemble 
resides temporarily at a local trap on the value 
landscape. An example of this kind is shown in 
fig. 7. It is possible to interpret the occurrence of 
the step on the molecular level. The quasista- 
tionary distribution before the step consists mainly 
of sequences with one large loop (fig. 12). No 
much more efficient sequences lie in the direct 
surrounding of the large-loop-structures, since at 
least one stem has to be formed within an all-zero 
region and this requires several point mutations at 
a time. If the error rate is low, formation of a 
many-error mutant is an unlikely event. 

The best-documented experimental record of 
an evolutionary step has been reported for the Q/3 
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system [24,36]. The environmental conditions for 
replication of the MDV-1 variant of Q/3 RNA, a 
small polyribonucleotide with Y = 218, deterio- 
rated on addition of ethidium bromide to the 
stock solution. The mean excess production drops 
immediately and stays for about six serial trans- 
fers at the low value before it increases in a 
stepwise manner. This can be easily interpreted by 
means of the results shown in fig. 7: the repli- 
cation accuracy of Qp replicase (q = 0.9997) is 
extremely high for the chain length of the RNA 
molecule (v = 218) and hence only few mutants 
are present at the quasistationary state. The popu- 
lation proceeds through a succession of transients 
dominated first by a one- and then by a two-error 
mutant until it reaches a new quasistationary state 
in which the most efficient variant is a three-error 
mutant of the original master sequence. All four 
sequences were isolated and identified by se- 
quence analysis. 

Sequence data are now readily obtained for 
viruses and bacteria. The new techniques allow 
detection of sequence heterogeneities in natural 
populations [13,14,29] and determination of mu- 
tation rates [5,12,30]. How to collect data effi- 
ciently and how to derive the desired information 
on the evolutionary optimization process are still 
not known. We made an attempt to evaluate 
several functions which might serve as a diagnos- 
tics for the microscopic state of the system. The 
mean Hamming distance was found to be the best 
indicator of major rearrangements of sequence 
distributions. Information on the status of quasi- 
stationary sequence distributions is obtained much 
more easily. All four functions provide a direct 
measure of the spreading of the population in 
sequence space. 

Finally, we return to the optimization problem 
and the structure of the value landscape. Two 
different types of phenotype evaluation were ap- 
plied in the computer simulations reported here. 
Although the kinetic and thermodynamic lands- 
capes differ in significant details, they have com- 
mon properties which are of major importance for 
optimization. The local structures are bizarre. The 
selective values at nearby points in sequence space 
may be very different. There is plenty of room for 
selectively neutral or slightly deleterious mutants 

which are responsible for the spreading of distri- 
butions. The efficiency of optimization is de- 
termined by the accuracy of replication. An opti- 
mum strategy with constant accuracy of repli- 
cation is to operate as closely as possible to the 
error threshold in order to allow fast adaptation 
and to reduce the danger to be caught in a local 
fitness trap. It is also straightforward to conjecture 
a near-optimal strategy with adjustable mutation 
rates: 

(1) Operate close to threshold during the major 
phases of optimization. 

(2) In order to avoid local fitness traps, reduce 
the accuracy below threshold whenever the system 
stays for longer time in a quasistationary state. 
Then, after the trap has been passed return to the 
slightly above threshold strategy and stick to it as 
long as sufficient progress is made in optimiza- 
tion. 

This strategy is the basis of a research program 
developed by Manfred Eigen and co-workers 
[l&16] which aims at optimization of biopolymers. 
It is also a straight analogy to the well-known 
simulated annealing technique [22]. 

Appendix: The strategy of folding 

The secondary structure of a sequence I can be 
defined in the following formal way [401: Given a 
sequence I = ~~(7~. . . CT, the secondary structure is 
a graph g on the set of the IJ labelled points 

1% cZ,, . . , a,} such that the adjacency matrix 
A = ( aii) has the properties 

(i) 0, i+l =lforl<ilv-1, 
(ii) there is at most one u,~ = 1 with j f i + 1 

for each fixed i (1 2 i <n), 
(iii) a,, = 1 for j > i + 1 requires complemen- 

tary digits, either ur = 0 and u, = 1 or a, = 1 and 
uj = 0, and 

(iv) atj = ukl = 1 is admitted only if i  < 1 <j  is 
fulfilled when i < k (j. 

Condition (i) states that the v - 1 backbone 
bonds are edges of the graph g. Besides the back- 
bone the chain has links only where base-pairs 
between 0 and 1 digits occur; (iii) and (ii) state 
that these pairings are unique. Property (iv) im- 
plies a restriction to planar structures by requiring 
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that whenever a pair i -j confines a substring 
i . . , j then any edge that has an endpoint inside 
that region must have the other endpoint inside 
the same region. Crossings of strands or ‘outer’ 
connections are not admitted. A secondary struc- 
ture is then built up from elementary substruc- 
tures which can be classified graph-theoretically 
into four distinct types: 

(1) loops, which are unpaired regions closed by 
a pair, i.e., by a link between two complementary 
digits, also called hairpins; 

(2) ladders, which are regions of adjacent pairs, 
also called stacks; 

(3) bulges, which are unpaired regions with 
more then one branch emanating from them; and 

(4) tails consisting of unpaired end vertices. 
Any secondary structure can be uniquely de- 

composed into loops, ladders, bulges and tails 
[40], which means that every digit is a member of 
exactly one of these elementary substructures. This 
is easily verified by checking all possibilities for a 
given digit in the sequence. 

The basis for approximate free energy estimates 
was worked out during the past two decades and 
we are now in a position to assign energy incre- 
ments to the basic substructures. In essence these 
increments are based on the numbers of base-pairs 
and their orientations. 

If every substructure into which the secondary 
structure S can be decomposed contributes ad- 
ditively to the total free energy, the principle of 
optimality in dynamic programming applies. Let 
i -j be a pair of S and S,, a secondary structure 
of the substring i _ . j. If S is optimal, then S,, is 
optimal on i.. . j. We used the energy weights 
tabulated in ref. 43 and assigned G to the digit 1 
and C to 0. 

The task of computing an optimal structure has 
time complexity exponential in v. Therefore, all 
algorithms used so far rigorously examine multi- 
loop structure elements up to a certain (low) 
branching level only and often set a ceiling on the 
number of unpaired digits in bulges and internal 
loops for which the search is done exactly. 

In our computations with sequence length Y = 
70 we search rigorously for internal loops up to a 
branching level of 2 with 75 as an upper limit for 
the number of unpaired digits. The actual calcula- 

tion then consists of incrementing the chain sym- 
bol by symbol from one end and, at each step, 
computing the optimal energy for all substrings in 
a way that one can refer to them recursively. At 
the end we trace back through the energy arrays 
and obtain the set of edges in the graph. We make 
no search for alternative equivalent sets. 

The only stabilizing element is the ladder 

(stack), where we distinguish between parallel 
( i 
yy 

and antiparallel yi stacking, whereas hairpins, 
( 1 

bulges and internal loops contribute a positive 
energy term. We assign zero energy to multiloops 
and tails and impose as a steric constraint the 
condition that a hairpin loop turn has to consist of 
at least four unpaired digits. Under these condi- 
tions, the time complexity is O(?), but strictly 
speaking the structures may be suboptimal with 
respect to energy minimization. As in reality, we 
have to compromise between perfect search and 
acceptable computer time demands. To give an 
example for the time needed: Folding a randomly 
patterned 70-digit (0,l) sequence with our imple- 
mentation of Zuker and Stiegler’s algorithm takes 
approx. 0.43 s CPU time on an IBM 3083JXI 
running under VM/CMS. 

Finally, we would like to stress that it is not 
important for our purpose to predict accurate 
equilibrium secondary structures of (G,C) hetero- 
polymers whatsoever. We only intend to employ 
recent advances in this research area in a rather 
heuristic fashion in order to play with an objective 
function that emulates certain features of poly- 
ribonucleotides. Slight local changes in the se- 
quence may have drastic effects upon the whole 
structure with or without affecting their stability 
and there will be digit substitutions that are silent 
with respect to structure alterations, thus account- 
ing for neutral mutants in the system. 

Acknowledgements 

Financial support of this work by the Stiftung 
Volkswagenwerk and by the Fonds zur Fijrdenmg 
der wissenschaftlichen Forschung in osterreich 
(project no. 5286) is gratefully acknowledged. We 
thank the EDV-Zentrum der Universitat Wien for 
generous supply of computer time. 



W. Fontma, P. Schuster/Computer model of optmizotion 147 

References 

1 G.M. Adelson-Velskii and E.M. Landis, Dokl. Akad. Nauk 
SSSR 146 (1962) 263. 

2 P.W. Anderson, Phys. Rev. 109 (1958) 1492. 
3 P.W. Anderson, Proc. Natl. Acad. Sci. U.S.A. 80 (1983) 

3386. 
4 P.E. Auron, W-P. Rindone, C.P.H. Vary, J.J. Celentano and 

J.N. Voumakis, Nucleic Acids Res. 10 (1982) 403. 
5 E. Batschelet, E. Domingo and C. Weissmann, Gene 1 

(1976) 27. 
6 C.K. Biebricher, in: Evolutionary biology, vol. 76, eds. 

M.K. Hechet. B. Wallace and G.T. Prance (Plenum Press, 
New York, 1983) p.1. 

7 C.K. Biebricher, M. Eigen and WC. Gardiner, Jr, B&hem- 
istry 22 (1983) 2544. 

8 C.K. Biebricher, M. Eigen and WC. Gardiner, Jr, Biochem- 
istry 23 (1984) 3186. 

9 C.K. Biebricher, M. Eigen and W.C. Gardiner, Jr, Biochem- 
istry 24 (1985) 6550. 

10 L. Demetrius, J. Statistical Phys. 30 (1983) 709. 
11 L. Demetrius, J. Theor. Biol. 103 (1983) 619. 
12 E. Domingo, R.A. Flavell and C. Weissmann, Gene 1 

(1976) 3. 
13 E. Domingo, 0. S&o, T. Taniguchi and C. Weissmann, 

Cell 13 (1978) 735. 
14 E. Domingo, M. Davilla and J. Ortin, Gene 11 (1980) 333. 
15 M. Eigen, Naturwissenschaften 58 (1971) 465. 
16 M. Eigen, Ber. Bunsenges. Phys. Chem. 89 (1985) 658. 
17 M. Eigen and P. Schuster, The hypercycle - a principle of 

natural self-organization (Springer-Verlag, Berlin, 1979); 
Naturwissenschaften 64 (1977) 541; Natmwissenschaften 
65 (1978) 7; Naturwissenschaften 65 (1978) 341. 

18 J.R. Fresco, B.M. Alberts and P. Doty, Nature 188 (1960) 
98. 

19 D.T. Gillespie, J. Comp. Phys. 22 (1976) 403. 
20 D.T. Gillespie, J. Chem. Phys. 81 (1977) 2340. 
21 B.L. Jones and H.K. Leung, Bull. Math. Biol. 81 (1981) 

665. 
22 S. Kirkpatrick, CD. Gelatt, Jr and M.P. Vecchi, Science 

220 (1983) 671. 

23 D.E. Knuth, Sorting and searching, the art of computer 
programming vol. 3 (Addison-Wesley, Reading, MA, 1973). 

24 F.R. Kramer, D.R. Mills, P.E. Cole, T. Nishihara and S. 
Spiegehnan, J. Mol. Biol. 89 (1974) 719. 

25 S. Lin, Networks 5 (1957) 33. 
26 S. Lin and B.W. Kemighan, Operations Res. 21 (1973) 498. 
27 R. Nussinov, G. Pieczenik, J.R. Griggs and D.J. K&man, 

SIAM J. Appl. Math. 35 (1978) 68. 
28 R. Nussinov and A.B. Jacobson, Proc. Natl. Acad. Sci. 

U.S.A. 77 (1980) 6309. 
29 J. Ortin, R. Najera, C. Lopez, M. Davilla and E. Domingo, 

Gene 11 (1980) 319. 
30 J.D. Par&, A. Moscona, W.T. Pan, J.M. Leider and P. 

Palese, Measurement of the mutation rate of animal viruses 
(1986) (preprint). 

31 D. Porschke, in: Chemical relaxation in molecular biology, 
eds. I. Pecht and R. Rigler (Springer-Verlag, Berlin, 1977) 
p. 191. 

32 D.S. Rokhsar, P.W. Anderson and D.L. Stein, Self-organi- 
zation in prebiological systems: a model for the origin of 
genetic information (1985) (preprint). 

33 P. Schuster, Chem. Ser. 26B (1986) 27. 
34 P. Schuster, Physica 24D (1986) 100. 
35 P. Schuster and K. Sigmund, Ber. Bunsenges, Phys. Chem. 

89 (1985) 668. 
36 S. Spiegelman, Q. Rev. Biophys. 4 (1971) 213. 
37 D.L. Stem and P.W. Anderson, Proc. Natl. Acad. Sci. 

U.S.A. 81 (1984) 1751. 
38 J. Swetina and P. Schuster, Biophys. Chem. 16 (1982) 329. 
39 I. Tiioco, Jr, O.C. Uhlenbeck and M.D. Levine, Nature 

230 (1971) 362. 
40 MS. Waterman, in: Advances in mathematics supplemen- 

tary studies, ed. G.-C. Rota, vol. 1 (Academic Press, New 
York, 1978) p. 167. 

41 MS. Waterman and T.F. Smith, Math. Biosci. 42 (1978) 
257. 

42 M. Zuker and P. Stiegler, Nucleic Acids Res. 9 (1981) 133. 
43 M. Zuker and D. Sankoff, Bull. Math. Biol. 46 (1984) 597. 


