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The formal structure of evolutionary theory is based upon the dynamics of alleles, individuals 
and populations. As such, the theory must assume the prior existence of these entities. This 
existence problem was recognized nearly a century ago, when DeVries (1904, Species and 
Varieties: Their Origin by Mutation) stated, "Natural selection may explain the survival of the 
fittest, but it cannot explain the arrival of the fittest." At the heart of the existence problem is 
determining how biological organizations arise in ontogeny and in phylogeny. 

We develop a minimal theory of biological organization based on two abstractions from 
chemistry. The theory is formulated using 2-calculus, which provides a natural framework 
capturing (i) the constructive feature of chemistry, that the collision of molecules generates 
specific new molecules, and (ii) chemistry's diversity of equivalence classes, that many different 
reactants can yield the same stable product. We employ a well-stirred and constrained stochastic 
flow reactor to explore the generic behavior of large numbers of applicatively interacting 
2-expressions. This constructive dynamical system generates fixed systems of transformation 
characterized by syntactical and functional invariances. 

Organizations are recognized and defined by these syntactical and functional regularities. 
Objects retained within an organization realize an algebraic structure and possess a grammar 
which is invariant under the interaction between objects. An organization is self-maintaining, 
and is characterized by (i) boundaries established by the invariances, (ii) strong self-repair 
capabilities responsible for a robustness to perturbation, and (iii) a center, defined as the smallest 
kinetically persistent and self-maintaining generator set of the algebra. 

Imposition of different boundary conditions on the stochastic flow reactor generates different 
levels of organization, and a diversity of organizations within each level. Level 0 is defined by self- 
copying objects or simple ensembles of copying objects. Level I denotes a new object class, whose 
objects are self-maintaining organizations made of Level 0 objects, and Level 2 is defined by self- 
maintaining metaorganizations composed of Level 1 organizations. 
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These results invite analogy to the history of life, that is, to the progression from 
self-replication to self-maintaining procaryotic organizations to ultimately yield self-maintain- 
ing eucaryotic organizations. In our system self-maintaining organizations arise as a generic 
consequence of two features of chemistry, without appeal to natural selection. We hold these 
findings as calling for increased attention to the structural basis of biological order. 

1. Introduction. The principal triumph of the modern synthetic theory of 
evolution was to recognize that alleles, individuals and populations were 
entities relevant to evolution and that evolutionary changes in allele 
frequencies were governed by mutation, selection and drift (Fisher, 1930; 
Wright, 1931; Haldane, 1932). From this realization came a rigorous, albeit 
loosely connected, body of theories that is widely acknowledged as collect- 
ively providing the formal basis of our understanding of evolution. Despite 
the undoubted success of population genetics and, by extension, population 
biology, this formulation of evolution suffers from an existence problem. 
A theory based on the dynamics of alleles, individuals and populations must 
necessarily assume the prior existence of these entities. Present theory tacitly 
assumes the prior existence of the entities whose features it is meant to 
explain. 

The existence problem may seem, at first glance, to be a problem limited to 
the origin of life. While it is true that the Darwinian process inexorably sets in 
once the relevant entities emerged, the problem of the origin of organizations 
nonetheless remains. This fact is reflected in the centrality of organizational 
issues in a multitude of unsolved problems. The genotype-phenotype mapping 
is a persistent problem in population genetics precisely because we lack 
fundamentally an understanding of how the phenotype is generated. Similarly, 
we lack an understanding of the limits on the origin of variation (e.g. 
developmental constraints), because we lack an understanding of how the 
individual emerges. Moreover, the origin of life is but the first in a progression 
of origins. The individual in the synthetic theory is not a single class (Buss, 
1987). Multiple levels of organization have emerged in the history of life, and 
each such emergence raises the same existence problem as does the origin of life 
itself. 

A clear conceptual distinction separates those problems solved within the 
framework of the Modern Synthesis and those which have proved recalcitrant. 
The traditional dynamics approach is appropriate when both the relevant 
entities (e.g. alleles, individuals and populations) and their kinetic couplings 
(e.g. mutation, selection, drift) are fixed and known. An alternative approach is 
required to understand how the entities themselves are generated. We have 
recently provided a brief report on a constructivist theory of biological 
organization grounded in 2-calculus (Fontana and Buss, 1993). In this 
constructivist approach organizations emerge from the collective behavior of 
primitive objects without any prior assumptions as to the nature of the objects 
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or their kinetic coupling beyond that required by logical consistency with 
established physics and chemistry. We here elaborate the theoretical frame- 
work, modeling platform and organizations emanating from this approach. 
The fact that organizations arise in a system lacking any formulation of 
Darwinian selection calls for increased attention to structural aspects of 
evolution. 

2. The Structure of the Problem. Equations describing dynamical systems 
contain variables that represent entities of the physical world. The couplings 
among variables are given by a network of incidences representing the 
interactions between entities. A traditional dynamical system requires the 
explicit knowledge of this network of incidences. At the core of fundamental 
issues in evolutionary biology is the question: where does this network come 
from? To answer it, nonlinear dynamical systems must be extended in a 
fundamental way. The underlying network of incidences (not just their strengths) 
must be subject to an endogenously induced dynamic, that is: the system must 
construct its own state space. The present work provides a conceptualization 
and solution to this problem. 

We develop an approach where no particular fixed network is known a 
priori, by considering a finite ensemble in which interactions among objects 
repeatedly construct specific new objects. We will refer to such systems as 
constructive dynamical systems. In contrast to the traditional approach, a 
constructive dynamical system specifies the interactions among objects not 
externally, but rather internally to the objects as a function of their structure. A 
constructive dynamical system is, therefore, characterized by two components: 
a dynamic in phase space and a dynamic of the system's support. The term 
"support" refers to the changing dimensionality of the system. The notion is 
borrowed from mathematics, and denotes at any given moment the set of 
objects present in nonzero density at that time in the system. 

We regard biological organizations as specialized systems of chemical 
transformation. Two specializations are foremost: the capacities for reproduc- 
tion and for self-maintenance. Reproduction is what makes a system uniquely 
biological, in that it is this feature that triggers the Darwinian process. Self- 
maintenance is no less crucial, although its importance has been overshadowed 
by a traditional focus on reproduction and the associated Darwinian process. 
A self-maintaining chemical system is one which continuously regenerates itself 
by transformations internal to the system (Maturana and Varela, 1973, 1980). 
The emphasis is on the relationships amongst chemical species that permit 
continuous regeneration of the same relationships. 

We have argued that two features of chemistry are essential to generate self- 
maintaining systems of transformation (Fontana and Buss, 1993). The first 
feature is the constructive capability of chemistry. This feature is reflected in the 
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compositional syntax of molecules: molecules are either atoms or combin- 
ations of molecules. Construction taken alone, however, implies an ever- 
increasing diversity of molecules. In fact, molecules do not arbitrarily combine 
by juxtaposition. Their combination triggers specific structural rearrange- 
ments in accordance with the "laws of chemistry". Such rearrangements result 
in a set of specific stable forms. This second key feature induces a notion of 
equivalence, in the sense that multiple molecular combinations are effectively 
the same with regard to a particular product. In chemistry one can generate 
ethanol by reaction of acetaldehyde with sodium borohydride, or by reaction 
of an acetic acid ester with lithium aluminum hydride, or by a diversity of 
alternative routes. The syntactical structure < SODIUM BOROHYDRIDE APPLIED 
TO ACETALDEHYDE > is declared to be the same as the object < ETHANOL >.  By 
this process the hydride/acetaldehyde combination is seen to be the same as the 
combinational object < LITHIUM ALUMINUM HYDRIDE APPLIED TO ACETIC ACID 

ESTER >.  Similarly, pyruvate can be generated from glucose by glycolysis, or 
from the degradation of some amino acids. Construction permits diversity, and 
equality permits network formation. 

These considerations inform the choice of formalism in which to embed a 
theory of the objects in question. The core idea of our abstraction is to consider 
a molecule to be a mathematical function and to consider its interaction upon 
collision with another molecule to be a functional application. This leads to an 
abstract chemistry. Not an arbitrary one, but rather one that is based on an 
analysis of the fundamental concept of "function". Such an analysis constitutes 
the foundation of computation. The need for a universe in which to express 
objects as functions, then, leads us directly to a natural representation of 
objects as elements in a functional language, more specifically, as words in 
2-calculus (Church, 1932, 1941; for monographs on 2-calculus with different 
perspectives see Barendregt, 1984, Hindley and Seldin, 1986, Revesz, 1988, and 
Huet, 1992). 2-objects share with molecules a recursive syntactical architec- 
ture. 2-objects can be syntactically juxtaposed, a process called application, to 
form new 2-objects. Such a combination triggers syntactical rearrangements 
that produce a unique normal form (if one exists), which we view as standing in 
a logical analogy to a "stable form". These rearrangements occur in accordance 
with a few fixed schemata, which constitute a procedure for evaluating the 
application of a function to an argument by formalizing the notion of 
substitution. These schemata are generic rewrite rules, and we view them as a 
logical counterpart to the "laws of chemistry". 

Our focus is not on the behavior of any individual object, rather we seek to 
understand the many-body phenomena arising from a large number of such 
objects when they interact applicatively. In a finite system a problem arises 
when new objects can appear and disappear as a result of constructive 
interactions occurring within the system's support, particularly when the 
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infinite universe of possible objects is the only a priori certain closure (Farmer 
et al., 1986; Varela et al., 1988; Bagley et al., 1989, 1992; Bagley and Farmer, 
1992). Here we simply frame the system as a stochastic simulation in which 
individual objects construct new objects directly on a collision by collision 
basis (Fontana and Buss, 1993). 

The main distinguishing feature of a constructive dynamical system is the 
induction of an apparently deterministic "motion" (despite stochastic colli- 
sions and minor noise) of the system's support. Any particular such motion 
occurs because of the particular relationships of mutual construction at any 
given time. The addition (or the loss) of an object species may mean the 
addition (or the loss) of relations among objects in the system. Hence attention 
must be paid to both the dynamics of the set of objects as well as the dynamics 
of the functional relationships instantiated by it. An interesting possibility then 
arises: while the set of objects may continue to change, the relational structure 
may become invariant. The system has hit a "fixed point" in terms of relations 
among objects. An "attractor" of this kind is a well known mathematical 
object: in this case, the attractor is an algebraic structure. 

We view a dynamically maintained algebraic structure as a minimal 
organization. Such an organization has kinetic, grammatical and functional 
boundaries which qualify it as an object capable of combining with other 
objects, thus giving rise to new organizational levels. We claim that a model 
addressing the emergence of such organizations offers a solution to the 
existence problem in evolutionary theory, and that the specific forms of these 
organizations invite a series of biological interpretations. 

3. Guide to the Reader. Having introduced, in Sections 1 and 2, the existence 
problem in evolutionary theory and why the structure of this problem 
necessitates the development of a constructive dynamical system, we briefly 
summarize the remaining chapters of this text as a guide to the prospective 
reader. 

In Section 4, we provide a primer to the A-calculus to aid readers unfamiliar 
with this formalism, highlighting features of the calculus which are of particular 
importance for our approach. A reader for whom A-calculus is novel will find 
this section and accompanying appendices essential. Having outlined the 
principle features of A-calculus required to evaluate our claim, we return in the 
final subsection to the claim that it is a natural framework in which to represent 
the features we wish to abstract from chemistry. Readers familiar with 
A-calculus will find this section of use. 

In Section 5, we introduce a variety of implementations developed to explore 
the collective behavior of A-expressions. Three implementations are discussed, 
formost among which is the protocol for a stochastic flow reactor model upon 
which all experimental results are based. We also introduce a representation in 
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terms of ordinary differential equations and an iterated set representation, in 
which the constructive and kinetic components of the flow reactor are disabled 
respectively. Both serve as an aid to the characterization of organizations that 
emerge in our experiments. 

Section 6 presents our experimental results with the stochastic flow reactor. 
Our results fall into three natural groupings (labelled Levels 0, 1 and 2), which 
invite biological interpretations. We resist the temptation, however, to conflate 
biological interpretation with the presentation of results, and for each level 
describe in considerable detail the features of several organizations that 
emerge. The reader whose sole interest is in assessing the biological significance 
of our findings can likely be satisfied with a thorough understanding of a single 
example from each level and a careful reading of the summary of each section. 
Subsection 6.2.1, preceding the Level 1 findings, is of particular importance, as 
it is here that "what it means to be organized" is established. 

We conclude with two sections, the first of which (Section 7) makes a modest 
beginning in placing limits on the important open theoretical question of 
defining the range of organizations that are possible and the limits to their 
mutability. In the discussion (Section 8), we return to an assessment of the 
utility of the abstract chemistry we employ and explore the relationship of our 
work to the established research traditions (Subsection 8.1). We then proceed 
to apply the findings of our experimental studies to the existence problem in 
evolutionary theory, with particular reference to the resemblance of the various 
levels of organization found in our experimental work to actual organizational 
transitions in the history of life and to the problem of the origin of variation 
(Subsection 8.2). It is here that readers desiring a biological interpretation of 
the results of our experiments will find satisfaction. Finally, we conclude with a 
brief consideration of the extent to which the approach defined here may prove 
useful to other sciences in which organizational issues are prominent 
(Subsection 8.3). 

4. The Constructive Dynamical System: Part 1. The Calculus 
4.1. A 2-calculus primer. )~-calculus t makes precise the syntactical process 

of evaluating a function Ffor  a given argument x. The informal notation ofF(x) 
is ambiguous. As it stands, it is not clear if F(x) denotes the mapping from x to 
F(x), or if F(x) denotes the value of the mapping F at x (that is: the application 
of F to x). Let us settle for F(x) meaning the value of F at x. To indicate the 
mapping we write x~--~F(x). For exampleS, x~--~x'x + y. 

2-calculus is a clever notational scheme to keep this distinction unambi- 
guous throughout symbolic manipulations. In ).-calculus we write for the 

t Another simple conceptual introduction to 2-calculus may be found in Penrose (1989). 
:~ In 2-calculus there are no a priori given primitives such as multiplication, addition, or even numbers; 

there are only the bare essentials: variables and substitution. 
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application of the function F t o  x simply (F)x. This differs from usual notation 
only in the parentheses now delimiting the term that is being applied. The 
function in x, on the other hand, is designated by a "2x." prefix, which declares 
x to be a formal parameter  of F: 2x.  F. The application of the function 2x.  F to 
x reads as (2x .F)x .  For example: the 2-calculus version of the statement 
"apply the function x~--~x, x + y to 10" is "(2x. x- x + y)10". Designating F as a 
function in x and y is done by adding a corresponding 2 prefix: 2x. 2y. F. 

The designation ")~x." defines x to be a variable, that is, a slot that can be 
occupied by any argument (including another function). The application of a 
function to an argument is carried out by textual substitution. When the 
substitution occurs, the designation "2x." is removed, because the slot has been 
occupied. For  example: the application of the term 2x. x . x  + y to 10, written as 
(2x. x . x  + y)10, is executed by replacing every occurrence of x within the scope 
of the "2x."-marker by 10, while removing that marker together with the 
parentheses: 10.10 + y. The informal notation x~--~x.x +y  states that y is not 
considered as a place-holder to be substituted by an argument, y is intended to be 
arbitrary but otherwise fixed. Such a variable is called free. In contrast, a variable 
under the scope of a 2-designation is called bound. In 2-calculus any 2-term can 
replace a bound variable. The idea of substitution is to produce only tautologies. 
Stated informally: if, for example, F:x~--~x 2, then one may use "F(2)," or 
"(x~--~x a) applied to 2", or  "2 2'', or just "4" interchangeably; they mean the same 
thing. Care is needed in preventing free variables from becoming bound during 
the substitution process, since this would not conserve meaning. We recognize, 
for example, that the actual name ofx  in ~(x 2 + y) dx is not important;  we may 
as well substitute z for x: ~(x 2 + y) dx = ~(z 2 + y) dz. However, substituting y for 
x yields ~(yZ+y) dy which is not the same as ~(xa+y) dx. Similarly in 
2-calculus: naive application of A -)~x.  2y. x- x + y to B -  y would produce 
2y. y .  y + y. The variable y, which occurred free in B, has been bound by the 
remaining "2y." of A. This is inconsistent, since the y in A and the y in B are 
really intended to be different names. To perform the application we must first 
rename the (bound) y in A to, say, z, A - 2x.  2z. x. x + z. 

4.2. Axioms of  2-caIculus. The following axiomatic definition is taken from 
Revesz (1988), and is similar to Curry's approach to substitution (Curry and 
Feys, 1958). Throughout  this paper operations with 2-expressions follow 
verbatim this definition. The first three axioms define the syntax of terms. The 
remaining axioms formalize the notion of substitution by recursion over the 
structure of terms, avoiding any confusion of free and bound variables. 
Appendix A provides accompanying comments.  

(i) Terms 
).-terms are words over an alphabet consisting of 



8 W. FONTANA AND L.W.  BUSS 

 9 an infinite supply of variables: V=  {x 1 , x 2 . . . .  } 
 9 the abstraction symbol: 2 
 9 structural symbols: "." (dot) and "C, ")" (parentheses) 

The set of 2-terms, A, is defined inductively: 

xe  V=~xeA, (1) 

xe  V, M e A ~ 2 x . M ~ A  (abstraction), (2) 

M e A ,  N e A ~ ( M ) N E A  (application). (3) 

A variable x is said to be bound if it occurs inside a subterm with the form 2x.  P, 
otherwise it is free. The set of free variables in an expression P is denoted by 
r 

(ii) Syntactical Transformat ion 
The schemes of t ransformation are oriented rewrite rules. Structures on the 

left-hand side are replaced by structures on the r ight-hand side. In the following 
upper  case letters denote arbitrary terms, and lower case letters denote 
variables. 

Substitution 

(2x. x ) Q ~  Q, (4) 

( 2 x . E ) Q ~ E ,  if xr162 (5) 

(2x .2y .E)Q-}2y.  (2x.E)Q, i f x C y  and (xr162162162  (6) 

(2x. (Ea )Ez)Q ~ (  (2x . EI)Q)(2x .  Ez) Q. 

Renaming 
2x . E ~  2z . (2x. E)z, z r r 

(7) 

(8) 

4.3. Terminology. To make the paper self-contained for readers unfamiliar 
with 2-calculus, we introduce some informal background.  Details may be 
found in Barendregt (1984). 

4.3.1. Normal  Form.  A 2-term of the kind indicated on the left-hand side 
of (4)-(7) is called a redex, and the corresponding r ight-hand side is its 
contractum. A 2-term that  contains no redex is called a normal form. The 
repeated operat ion of axioms (4)-(8) on a 2-term until it is in normal  form is 
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called a reduction. A term need not have a normal form, as exemplified by 
(2x. (x)x)2x. (x)x--the application of 2x. (x)x to itself: 

(7) 
(,~x . ( x ) x ) i , x  . ( x ) x - - ,  ( (Ax  . x ) i , x  . ( x ) x )  ( ~ x  . x )2 , x  . ( x ) x  ~ 

(2x. (x)x) (2x. x)2x. (x)x~ (2x. (x)x)2x. (x)x~ etc. (9) 

The process depicted in (9) is an infinite loop. 
The Church-Rosser theorem (Church and Rosser, 1936) states that if a term 

has a normal form, that normal form is unique. The standardization theorem 
(Curry and Feys, 1958) states that if a A-expression has a normal form, then 
there is a normal sequence of contractions which terminates. This sequence 
involves the contraction of the leftmost redex at each step. The procedures used 
here follow Revesz (1988). Appendix B gives a complete example of reduction. 

There is no effective procedure for deciding if an arbitrary term has a normal 
form. This is the A-calculus analogue to Turing's "Halting-Problem'.  

4.3.2. Maps. Each term is a mapping from A into A, which we may view in 
the following way: fix an arbitrary term A cA and apply it to a term B~A. This 
yields--by axiom (3)--a new term (A)B~A. Hence A is the map: 

A: A--*A, Bw-~(A)B. (lO) 
The term (A)B may be reduced to normal form using the rearrangements 
(4)-(8). Reduction is like "carrying out the computation". Since computation 
in k-calculus is just substitution, and since substitution conserves the 
applicative behavior, (A)B has the same behavior as its normal form, say C. 
That is: (A)B applied to D is the same as C applied to D, for all D. Hence (A)B 
and C indicate the same behavior, which we identify with C. 

4.3.3. Equivalence classes. Both reduction to normal form and renaming of 
bound variables induce equivalence relations on A. The fact that both preserve 
applicative behavior in the sense of (10), permits interpretation of these classes 
as sets of expressions that are equal in regard to the function they represent. 

(i) Equivalence classes by renaming 
Two terms that differ only in the names of their bound variables are in the 

same equivalence class. They can be transformed into one another by 
appropriate sequences of renaming operations (8). For example: 

(8) (.. -) (8) 
;~x. ~y. ((x) (y))x -- , ,~u . (Ax  . ~ y  . ( ( x )  ( y ) ) x ) u - ,  . . . --,,~u . Ay  . ( (u)  (y))u 

(...) 
AU. ~v. (Ay. ((u)(y))u)v-,""" ~ u .  A v .  ( ( u ) ( v ) ) u ,  (11) 



10 W. F O N T A N A  AND L. W. BUSS 

where the second use of (8) involved the subterm 2y. ((u) (y))u. 

(ii) Equivalence classes by normal form 
Two terms that reduce to the same normal form (modulo renaming of bound 

variables) are members of the same equivalence class. 

4.4. Model-specific assumptions. We use 2-calculus in a way that is specific 
to our model intentions. 

(1) All terms are in normal form 
All expressions in our model universe must be in normal form under the 

conditions stated in the next item. 

(2) Pragmatic reduction 
To reduce a 2-expression only limited amounts of time and space can be 

used. A time unit is considered as one reduction step, that is: usage of one axiom 
(4)-(7), excluding renaming. A space unit is a character. Expressions that do 
not acquire a normal form within preset limits (Section 5.3) are barred from our 
model universe. Our universe, therefore, has no halting problem. 

(3) Identification of terms modulo renaming 
Terms that are equivalent with respect to renaming of bound variables are 

identified. The representative of an equivalence class is obtained by 
systematically renaming all bound variables in a term to standardized names 
consisting of an x indexed by the order in which its binding 2 occurs. For 
example: 

2x.  2u . 2c. ((u) (x)a)2a . (c)a = , ~ x  I . I ~ x  2 . , ~ x  3 . ( ( x 2 )  ( x 1 ) a ) ~ . X  4 . ( x 3 ) x  4 . (12) 

Since all expressions are in standardized normal form, our model universe is 
the quotient set of A with regard to the equivalence relations induced by 
renaming and (pragmatic) reduction. 

4.5. The choice of  2-calculus. As in every foundational attempt, a formalism 
functions as both an expression and justification of a level of description. 
Having outlined the basics of 2-calculus, we return to our claim that it stands in 
analogy to chemistry. Chemistry is the science that defines how substances can 
be transformed into other substances. Our stylized "chemistry" is a space of 
objects, A, such that each object in A is a map from A into itself. 

Further, we note that when two molecules interact, the product is 
determined by their structure, i.e. the components of which they are built and 
the manner in which these components are arranged. Thus, a molecule is an 
object with both a syntactic structure and an implied function. Syntactically, it 
is built up from compot~ent objects, according to well-defined rules. Its 
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function, coded by its structure, is revealed by the chemical reactions in which it 
partakes. The object/function duality of molecules is precisely the ambiguity 
that 2-calculus clarifies. 

For motivational purposes we place the structure of 2-expressions in 
correspondence to molecular structure, the risk of suggesting an inappropriate 
relation between the two notwithstanding. An aliphatic carbon chain is like a 
2-expression with no abstractions. The introduction of a hydroxy group, for 
example, enhances the reactivity of the molecule. The hydroxy group is "active" 
in the sense that it can be swapped for another molecule in a reaction. In fact, 
chemists talk literally of "substitution". Abstraction in 2-calculus performs a 
similar role: it declares a symbolic unit to be "swappable" (that is: 
substitutable) by another expression. The same holds for carbonyl groups, 
amino groups, double bonds and the like. Chemical language refers to them as 
"functional groups". Abstraction captures the role of functional groups 
embedded in the reactants. 

The process of a chemical reaction starts by placing the reactants in proper 
juxtaposition. This forms a "transition state" which is just another molecule 
that quickly undergoes structural rearrangements eventually resulting in a 
stable product. In 2-calculus a new expression is formed by the juxtaposition of 
two expressions, a syntactic operation called application. The new expression, 
like the transition state, can be rearranged in accordance with the axioms of 
reduction, (4)-(7). Application, thus, captures the combination of molecules to 
generate a transient molecule. The chemical product resulting upon electronic 
rearrangements is determined by the way functional groups are embedded in 
the transition state. Similarly, the normal form of a 2-expression is determined 
by the relative positions of the abstractions occurring in it. Of course, we have 
to require the execution of the appropriate syntactical transformations until 
normal form is reached. In chemistry this happens spontaneously because of an 
energetic driving. 

The reduction schemes of 2-calculus represent a theory of equality, allowing 
determination of when two applications of 2-expressions are the same. 
Rearrangement schemata, which state what can be transformed into what, are 
hardly similar in chemistry and computation. While reductions can be defined 
in various ways (Newman, 1941), they require an order relation in the space of 
objects. Thermodynamics can be viewed as a device which induces an order 
relation among molecular objects, thereby enabling a process of reduction (in a 
mathematical sense) to take place automatically. 

While 2-calculus captures precisely those features we seek to abstract from 
chemistry, i.e. the construction of new molecules upon reaction and the 
equivalence of reactions with respect to products, it should not be confused 
with actual chemistry. A 2-calculus based "chemistry" is competent to explore 
those logical possibilities that follow from these two features of chemistry, but 
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no others. Hence, we should not expect A-expressions to emulate particular 
molecules--we should not, for example, expect a self-replication to be equally 
easy to obtain in actual chemistry as it is with A-expressions. In standing as a 
surrogate for chemistry, i.e. an abstract chemistry, it can do no more than 
inform us as to what can be generated from the abstracted features. 

There are many alternative approaches to computation which are formally 
equivalent, raising the question of why we chose A-calculus. Each of these 
alternative approaches, however, represents formalizations of fundamentally 
different intuitive models (e.g. Turing machines rest on the notion of a state 
transition, A-calculus rests on the notion of substitution, Post (or Thue) 
systems are aimed at recursive enumerability, distributed state transitions are 
central to cellular automata, and so forth; for an overview see Odifreddi, 1989). 
While it is reassuring that all these irreducible models do indeed express the 
same class of functions, they are far from being the same in any other regard. 
While all models of computat ion share construction, only ).-calculus is a 
natural theory of equivalence. These two features, constructivism and 
equivalence relations, are that which we hope to capture from chemistry. 
Independent of the chemical analogy we take the induction of equivalence 
relations through constructive processes to be the basic organizing concept 
behind any constructive dynamical system. While in the present work 
equivalence is in regard to function, other notions of equivalence can be 
captured by appropriate "calculi". However, for the extension of nonlinear 
dynamical systems within the scope of the chemical analogy A-calculus is as 
much the proper formal structure as differential (or difference) equations are 
for the definition of dynamical systems. 

5. The Constructive Dynamical System: Part 2. Implementations. We seek to 
explore the collective behavior of A-expressions in a minimal kinetic model 
environment based on mass action (Fontana, 1990, 1991, 1992; Fontana and 
Buss, 1993). A-expressions are consequently treated as if they were physical 
particles. We will henceforth refer to them as objects or object species that can 
occur in multiple instances. In this environment space, free energy, conserva- 
tion laws, or any of a number of plausible specializations are absent. This 
minimal model can be regarded as a tool for studying the implications of the 
aforementioned abstractions from chemistry. 

5.1. Definitions. To set the dynamical stage we will need two definitions. (i) 
What happens when two objects (i.e. A-expressions) collide? We refer to this 
definition as the collision rule. (ii) What happens with these objects after a 
collision, more precisely: what is the overall balance equation? We refer to the 
corresponding definition as the reaction scheme. 
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The collision rule 
Let o denote the action between two objects A and B upon  collision. The map  

o: A x A---,A sends an ordered pair of objects into a third object. In the simplest 
case the action is application, axiom (3), with subsequent  reduction to normal  
form: 

r educ t ion  to normal  form 
A o B : A x A ~ A , [ A , B ] ~ - - ~ ( A ) B ~  . . .  0 . . .  ~ C .  (13) 

Collision between A and B creates a new function ( A ) B  which will be 
represented by its normal  form object C. 

While we utilize (13) as our  s tandard collision rule, we occasionally employ a 
generalized collision rule. Note  that  o in (13) can also be stated as the 
application of the 2-expression 2x l .  2x 2 . (x 1)x2 to the arguments  A and B. This 
suggests generalization to an arbitrary 2-expression that  mediates the collision 
between A and B, We denote this expression by O, and the corresponding 
action as A o.B:  

reduc t ion  to normal  form 
A o o B - ( ( @ ) A ) B ~  " "  ~ " "  ~ C .  (14) 

When  9 expresses application as in (13), we omit  the index from o. 
The generalized collision law has (I) t ransforming A into some A' (a 

translat ion of A) prior to its action on B, thus effectively preprocessing it: A 
behaves as if it were A'. For  example, the mediat ion of the collision between A 
and B by ( I ) -2x .  2y.  (((I)l)X) (q)z)Y, with (I) 1 , (P2~A yields ((O1)A) ((I)2)B as an 
intermediate step during reduction. Hence it can be regarded as a transforma- 
tion of both  A and B prior to their applicative action. 

The reaction scheme 
The reaction scheme defines the overall balance equation.  The main 

assumption we make  is that  the colliding objects are not  consumed in the 
collision process. At the microlevel this reads as: 

A o , B ~ n f  of ( ( O ) A ) B + A  + B ,  (15) 

where nf is shor thand for normal  form. 
The reaction scheme (15) is not  essential. It can be relaxed to the case of a 

catalytic t ransformation:  

A o+ B-->nf of ( ( O ) A ) B  + A ,  (16) 

under  either of two conditions: (i) if the system is initialized with multiple 
instances of each object or if (ii) self-maintaining closure (see below) has 
occurred. We initialize our systems with a max imum diversity of objects, each 
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present in a single copy, and, therefore, retain the reaction scheme (15) for 
system start-up (see Section 6.2.6 for a discussion). We are aware that 
biological systems involve chemical reactions that are not catalytic (e.g. 
condensation reactions, etc.), but limit ourselves to the above reaction scheme 
as the appropriate first step. 

Note that equation (15) defines a microevent which is asymmetric. The 
action of A on B is usually different from the action of B on A. However, when 
the collision partners are chosen at random, the two actions occur each with 
probability 0.5. Thus, written as a chemical reaction the scheme is symmetric: 

0.5 
A + B{o~ A~ of ((*)A)B+ A + B, 

Bo,  A ~ n f  of ((~)B)A +A +B. 
(17) 

If pragmatic reduction in (15) does not yield a normal form for (((I))A)B, then 
((rb)A)B is null, and the collision is termed elastic. Otherwise the collision is 
reactive. 

5.2. Theflow reactor equations. We will consider a finite ensemble of objects 
that randomly collide according to (15). Reactive collisions make the system 
grow. We constrain the reactor to a constant number of particles by an 
unspecific dilution flow. Each time a new particle has been created by a reactive 
collision, one particle is chosen at random and is eliminated. Object species are, 
therefore, flushed out in proportion to the number of copies with which they are 
present in the system. The constraint on the total number of particles limits the 
lifetime (residence time) of each object. Despite the fact that reactively colliding 
objects are retained by (15), they cannot be maintained in the long run unless 
they are produced by some pathway. 

It is instructive to consider the differential equations that model such a 
system, in the case of both real valued concentrations and closure with respect 
to interactions occurring within the system. The equations are most simply 
formulated in terms of the relative concentration of object species i, xi, with 
0 <<. x i ~ 1, and EkXk = 1: 

d x  i 
d t - 2 2  i i = 1 , 2 ,  a j , k X j X k _ X  i ~ t , - -  a r , s X r X  s  9 . 

j k r,s,t 
(18) 

with 

i 1 =(~0 ifjo,~k~i, (19) 
a j , k  otherwise, 

where =~ denotes pragmatic reduction. 
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A collision consists in applying a function, and yields a unique outcome. 
Hence there is at most one i for any given pair (j, k) such that aj, k = 1. If all 
collisions are reactive, then ~ta[,s = 1, and equation (18) simplifies to: 

d x  i 
d t - Z Z  ' i = 1 , 2 ,  (20) a j , k X j X  k -  X i ,   9 . . , 

j k 

with aj, k as in (19). The first term collects all production pathways of i. The 
second term represents the proportional dilution flux, which keeps the system 
normalized at ~kXk = 1. Equation (18) is appropriate for the generic case, when 
the rate coefficients aj, k are non-negative real numbers, when some collisions 
are elastic, or when collisions generate more than one product. Equation (17) is 
reflected in (18) by its invariance to a symmetric or asymmetric choice of the 

i The typical behavior of (18) for random choices of the aj, k is very robust: a j ,  k  9 

one single globally stable fixed point in the interior of the concentration 
simplex (Stadler et al., 1993). 

Note that equation (18) has an important special case. Consider the case 
where the only allowed action between any two objects is a copy-action (i.e. 

 9 i _ _  reproduction), that is: j o~, k ~ j  or k. Then a j, k - 0 iff i Cj v i r k, and using the 
notation bi j=a~,  j +aj ,  i equation (18)becomes: 

which is the well-known replicator equation 9 The replicator equation appears 
in a variety of applications (for a review see Hofbauer and Sigmund, 1988) 
ranging from evolutionary game dynamics (Maynard-Smith, 1982; Lindgren, 
1992) to models of molecular evolution (Eigen, 1971; Eigen and Schuster, 
1979), and to ecology (Lotka, 1925; May, 1976). The neo-Darwinian 
framework is thus seen as a limiting case embedded in the broader context of 
transformation systems. It is this larger context that we hold as enabling us to 
address the genesis of organizational grades 9 

5.3. Protocol .  Our system is a stochastic process of which equation (18) is 
an (imperfect) model. The standard experimental protocol follows 9 

(1) Choose a collision rule ~. 

(2) Initialize 
Generate N random expressions. A random expression is produced by 

recursively generating random subexpressions. With probability Pa an atomic 
expression--axiom (1)--is generated; it consists of a variable from some finite 
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set. With probability P2 an abstraction--axiom (2)--is produced, and with 
probability P3 an application--axiom (3). When a maximum nesting level 
(here, 20) has been reached, an atomic expression is chosen to avoid further 
recursion. Obviously, Pl +P2 +P3--1. In some cases the probabilities Pi are 
also a function of the nesting level. 

Every expression so generated is reduced to standardized normal form. All 
initial expressions are unique in the population. N =  1000, if not otherwise 
stated. 

(3) Choose a random pair 
Choose two of the N objects at random. Let the first chosen object be j, and 

the second one k. 

(4) Reduce 
Compute the standardized normal form, i, o f j o . k  =- ((~)j)k, according to 

pragmatic reduction. 
Computational limits involve space (total size in characters during any 

reduction step) and time (total number of invoked axioms, excluding 
renaming). If not otherwise stated the space limit is 4000 characters, and the 
time limit is 10,000 reduction steps. Despite an upper bound to the length of 
any expression implied by these limits, we explicitly limit the size of a 
standardized normal form to 1000 characters. 

If no normal form is produced within these limits, the collision is elastic, and 
the process continues with step 3. 

(5) Apply boundary conditions 
Filter the product object i by applying, if any, functional and/or syntactical 

boundary conditions. 
Functional boundary conditions impose constraints on the execution of 

particular actions, such as identity (copy) actions, or any other pattern of 
syntactical manipulations. 

Syntactical boundary conditions (filters) impose constraints on how objects 
are structured in terms of syntactical patterns. In particular, one boundary 
condition is standard for all our experiments. We require that all objects in 
operator position be abstraction forms, i.e. begin with a 2. The reason for this 
restriction is that the application of a normal form which does not begin with a 
2 generates an expression that cannot be reduced, hence belongs to a 
degenerate equivalence class which contains it as the only member. For 
example, (A)B applied to C yields the normal form ((A)B)C which can be 
produced only by this collision. The applicative action of ((A)B)C generates 
further instances of this kind. Allowing this to occur would eventually eliminate 
any possibility for generating transformation networks. 
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If the product i does not comply with the boundary conditions, the collision 
is elastic, and the process continues with step 3. 

(6) Apply flow and add product 
If the collision is reactive, one object, chosen randomly among the N present 

in the system, is eliminated. The collision product i is added to the system. 

(7) Iterate 
The process continues with step 3. 

5.4. Iterated set actions. We may switch offthe kinetic (mass action) aspect 
of our model by considering only iterated actions within a set of object species. 
Doing so permits us to introduce concepts that will prove useful in later 
discussion. 

We proceed to define a few simple set valued iterated maps. Let Y- and J{" be 
subsets of A. The action of Y- on o~ is the set d __ A defined as: 

d =  ~--o@~f" = {i]((O)j)k=>i,(j, k ) 6 J  x J t }  , (22) 

where we take o,} to include the application of functional and syntactical 
boundary conditions (see Section 5.3). 

Two set valued iterated maps are of special interest. The first is a "quadratic" 
map that replaces the old set at each iteration. Let d c A be an initially given 
set: 

~ 0 = ~ ,  

g ~ ' i + l = m ( ~ i ) : = ~ i o | 1 6 2  i = 0 ,  1, 2, . . .  (23) 

We will also write 

d i  +, = m(sgi) = m i + l(sg) = m ( m ~ . ,  r e ( d ) . . . ) ) .  (24) 
i+1 

A variant of (23) keeps the previous set. This turns out to be equivalent to 
refreshing the initial set sg at each iteration: 

~ 0  ~ ~ ,  

~ i  + 1 = M ( d i ) "  =- ( ,F~ i o . ~9~ i ) k._) ,.q~ i 

= ( d i o ~ s g ' i ) u d = m ( d i ) u ~  , i=0 ,  1, 2 , . . .  (25) 

The replacement map m(sgi) generates only particular terms among those that 
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result from 2 i+1 -1  collision events among members in d .  In contrast, 
consider the following sequence of sets: 

So(~) = W, 

Sn(~) = 0 Si(cgf)Or n= 1, 2, 3 . . . .  (26) 
O<~i<~n- 1 

The nth set in the sequence contains all terms that can be generated by exactly n 
collisions among elements of ~ ' ,  and 

S , ( d ) =  U s i ( d ) , n = ~  (27) 
O <~ i <~ n 

is the sequence of sets of all terms produced by up to n collisions in d .  The 
increasing sequence (27) generates the object horizon that is in principle 
accessible from the initial set of objects. In fact, the closure d *  of d (with 
respect to the collision rule r is defined as: 

lim S . ( d ) =  0 Si(d)=d*~_A,  (28) 
n ~  i=1  

where A is countably infinite by construction (Section 4.2). 
Notice that 

Vn, S , (d)  ~_ M " ( d )  c S 2 . ( d  ). 

Since S,, M", and $ 2 .  a r e  all increasing, and since 

(29) 

2 n 

lim $2.: 0 $2"= 0 U sk: 0 s,:d*, (30) 
n--~ oo n = l  n = l  k = l  I : 1  

it follows that 

lim M " ( d ) = d * .  (31) 
n---~ oo  

Iteration of the process (25) yields the closure of the initial set. 
For later use we introduce the following definitions. Any set ~ c d * ,  for 

which lim,o ~M"(~) = ~r is termed a generator of ~r Any set ~ c ~'*,  for 
which l im ,_~m"(~)=  d * ,  is termed a seeding set of d * .  These definitions 
emphasize a distinction. There are subsets of the closure for which the 
replacement map m behaves effectively like the cumulative map M. For a 
seeding set ~ to generate the closure d *  under the replacement map m, that set 
must clearly be regenerated under m at some point. 

m exhibits an interesting behavior under circumstances which are frequently 
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realized in the dynamically generated closures discussed in the next chapter. 
Suppose that ~ is a finite seeding set of an infinite d * ,  and that there exists a 
finite l' such that ~' ~ mr(~) .  Let 1 be the smallest such l'. It then follows that 
m(N) c m I § 1 (N). Hence: 

m ~  ~ m 2 ' ( ~ )  ~ m 3 ' ( ~ )  ~ . . .  

m l ( ~ ) c m / +  ~(~) cm2t+  ~ ( ~ ) ~  ma~+ ~ ( ~ ) ~   9  9  9 
m 2 ( ~ ) c m ~ + 2 ( ~ )  ~ m  21 2 ( ~ ) c m  . . . .  ( ~ ) ~ . . .  (32) 

ml-l( )cm2 -l( )cm3Z-l( )cm4'-l( )c  9  9  9 

In the case of a N for which 1= 1, the trajectories of m(N) and M ( ~ )  are 
identical and monotonically nondecreasing. For  a seeding set ~ with l >  1 the 
stroboscopic view of the trajectory mt(~) ,  t = 0, 1, . . . ,  at t = kl + m, k = 0, 1, 
 9  shows for any particular m ~> 0 a monotonically nondecreasing subseries, 
equation (32). Moreover,  for the unions Uk~-Ukl<~i<(k+l)lmi(~l~) for k = 0 ,  1, 
 9  of the trajectory segments from i =  kl to i = (k + 1 ) I -  1 we also have Vk, 
u k c u k + 1- Hence, the trajectory "engulfs" itself in such a way as to always 
contain at time t all sets produced at epochs t - kl for k = l, 2 , . . .  [t/l]. Since the 
entire series converges to d * ,  and since each set on the trajectory is contained 
in d *  by definition (28), one expects more and more overlaps within a "period" 
eventually to occur. When some set m kl + m l(~,~) is contained in a set m kz + m 2( ,~ )  

with m 1 < m E < l  the "period" 1 will shorten 9 For  a finite seeding set ~ and 
infinite d * there may eventually be a finite k > 1 such that mi(N) c m i + 1(~) for 
i ~ k .  

Finally we note that there can be initial sets which yield the closure d * under 
m, and which are not  subsets o f d  *. The totality of these sets constitutes a kind 
of "basin of attraction" for d * .  We want to distinguish the collection of such 
sets from the collection of seeding sets, because the latter are associated with a 
kind of "stability" of d *  under m with respect to the removal of random 
subsets 9 Clearly, a rigorous discussion of the range of possible "dynamical" 
behaviors of m under arbitrary initial conditions is desirable, but  requires a 
suitable topology which is not yet available 9 

Under  m the object species of iteration l + 1 are not guaranteed ever to meet 
all object species of iteration l, as is the case with M. The iterated map 
framework proves to be conceptually useful, despite the fact that our model 
system is an asynchronous stochastic process (Section 5 9 where the iterations 
undergone by an object species are frequency dependent 9 

6. Computer-Generated Organizations. We describe a variety of computer  
experiments carried out according to the protocol  described in Section 5.3 9 
These experiments yield results that are naturally categorizable into one of 
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three classes: (i) ensembles of reproducing objects; (ii) self-maintaining 
organizations; and (iii) metaorganizations composed of self-maintaining 
organizations. 

6.1. Level O--reproduction and ecology. A typical flow-reactor experiment 
starts with an initial set of random objects, without any further boundary 
conditions, and with application as the collision rule. The typical outcome is a 
small set of objects, (9, which is (i) closed with respect to interaction, and where 
(ii) every object is engaged in a copy-action. During an early phase, collisions 
among objects frequently produce objects that are new to the system. Property 
(i) means that this innovatory activity ceases, and objects only produce objects 
that are already present. Property (ii) means that: 

Vf6(93ge(9, gof=f  or fog=f. (33) 

Stated differently, each object is either a left or right fixed point of some other 
object, possibly including itself, in which case the object is a self-copier,fof=f. 
In many instances the system reduces to just one object species that is a self- 
copier. In other cases the system contains a small stable ecology of objects 
engaged in mutual copy-actions. Figure 1 shows two typical examples. 

We refer to this phenomenology as Level 0 or L0. We will also refer to 
2-expressions as L0 objects, because they constitute the relevant individuals in 
L0. The L0-phenomenology is fundamentally shaped by copy interactions. The 
structure of L0-ensembles recalls a stylized ecology consisting of cooperating 
individual replicators. These are 2-expressions, and as such they are located at 
the most primitive object level in our model. 

The most trivial example of a copier (and self-copier) is the identity 2x. x. 
There are, of course, many less trivial ones. An important lesson comes from 
the fact that an object may be an identity only on a specific subset of the 
universe A, and behave differently outside that subset. Consider, for example, 
object B in the two-membered ecology of Fig. 1 (a). Both B and A are fixed 
points of B. But if B were to encounter object C of Fig. l(b), then 
B o C = 2x 1  9 23(; 2  9 ( x  2 ) 2 X  3  9 ,~x  4  9 • x  5  9 ( x  5 )X 4 ~ C. The structure-function rela- 
tions that define our objects imply the possibility of specific roles, particularly 
kinetic ones, within the specific context of other objects. 

Most L0-ensembles have the form of n-membered elementary hypercycles 
(Eigen, 1971; Eigen and Schuster, 1977, 1978a,b, 1979), where the major 
cooperative backbone consists of object i mod n copying object (i + l) mod n. 
L0-ensembles are typically not robust towards functional perturbations. When 
a small number of random objects is introduced into the system, L0-ensembles 
typically collapse to a single replicator. A framework for the study of L0 is 
provided by equations of the replicator, (21), or Lotka-Volterra type 
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(Hofbauer and Sigmund, 1988). The present framework, thus, reproduces well 
known theoretical ground. 

6.2. Level 1--self-maintenance and oryanization. When we eliminate 
copy-actions, our results differ markedly. To prevent copy reactions we apply a 
functional boundary condition on the flow reactor, such that if a collision 
results in a product that is syntactically identical to any of the objects involved 
in the collision, that collision is declared as "elastic", and the product is ignored 
(e.g. we eliminate from our system zero-length cycles that characterize the 
interaction graphs of Fig. 1). 

The complete elimination of copying generates self-maintaining organiza- 
tions. To grasp what we mean by an organization we first introduce an informal 
discussion of how an observer might discover that the behavior displayed in the 

(a) 

f ;-----.... 
"- cd ' ' 0  , ~ " - ,  

" - _  J 

(b) 

~1 , / t 
\ !  

Figure 1. Level 0 ecology. A solid arrow denotes a transformation from argument 
object to value object. A dotted arrow connects the operator object with the 
transformation performed by it. Thus, Eo C = D  is shown as a solid arrow from 

C to D pointed at by a dotted arrow originating in E. 
A ~ ~ . x  1 . ( x 1 ) ~ . x  2 . , ~ x  3 . ( x 3 ) ~ . x  4 . 2 x  5 . ( x 5 ) x 4 ,  B - 2 x  I . ( x  l ) 2 x  2 . 2 x  3 . ( X 3 ) X 2  , 

C ~ - / ~ x  1 . 2 x  2 . ( x 1 ) 2 x  3 . x 1 ,  D --= 2 x  1 . 2 X  2 . ,~X 3 . ( X 2 ) 2 X  4 . X 2 ,  

E - 2 x  1 . 2 x  z . 2 x  3 . 2 x  4 . ( x 3 ) 2 x  5  9 x 3 . 
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flow reactor has become "organized". We follow this discussion with a series of 
specific examples which we will subsequently utilize to identify the properties 
defining an organization. 

6.2.1. Organizations, algebraic structure and observers. Let us now adopt 
the viewpoint of someone observing our stochastic flow reactor. We shall 
assume that the observer knows nothing of the 2-calculus, and hence is 
ignorant about the microscopic mechanics of our model universe. The observer 
will essentially see random collisions between seemingly meaningless symbolic 
structures. The content of the reactor changes over time as new objects are 
produced and others disappear. 

The observer may try to understand the system by detecting regularities. 
This can be done by (i) analysing the structures to identify common syntactical 
patterns, and (ii) analysing all pairwise interactions to identify regularities 
among the actions between structures. In other words, the observer will try to 
describe the system in terms of syntactical and functional patterns. If there are 
no such regularities the system will hardly be perceived as "organized". The 
system's description will amount  to a list of all structures, together with a list of 
all pairwise actions, stating who acts on whom to produce whom. 

Suppose that our observer is staring at a reactor which we have prepared to 
contain symbolic structures that are a representation of the integers, such that 
their reactive collisions effectively amount  to an addition operation under the 
current collision rule. With some naivet6 the observer might soon detect 
regularities in the syntax of the individual structures (a grammar), as well as 
regularities and symmetries in the actions of the structures upon one another. 
The observer might discover, for example, that Va, b, c (a o,~ b) ~ c = a o. (b o,~ c). 
In particular, the observer might discover that the syntactical and functional 
regularities characterizing the objects and their actions are invariant, that is, 
while interactions may yield new objects, any new objects will conform in 
syntax and behavior with the discovered regularities. 

The laws of an algebraic structure may in part refer to the internal structure 
of the objects, and thus relate subsets of objects to one another. This leaves 
room for an entire spectrum of compressions up to the point where each object 
is specified completely, and hence the algebraic structure degenerates into an 
exhaustive tabulation of the mapping from s4 x d into s t .  The observer will 
conclude that the system is an organization to the extent that there is a 
compressed description of its objects and of  their relations. 

With some ingenuity the observer will further derive all laws implied by the 
uncovered group structure (Knuth and Bendix, 1970; Huet and Oppen, 1980). 
If read as rewrite rules, the equations thus obtained will enable the observer to 
exactly describe (and predict) each and every collision product in the system-- 
without any knowledge about 2-calculus. The observer will, then, have 
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discovered a perfectly valid theory of that organization, without reference to its 
underlying micromechanics. 

Knowing, as we do, that the flow reactor is a many-body implementation of 
2-calculus, we can deduce the same theory by using axioms (4)-(7) and 
induction over the particular grammatical structure of the objects in this 
organization. Restricted to this organization, the empirically discovered laws 
are equivalent to the 2-theory. The laws derived by the observer, however, 
constitute an independen t  level of description, with different symmetries from 
those existing at the level of full 2-calculus. It is in this sense, and only in this 
sense, that such laws can be taken to be emergen t  (Anderson, 1972; Baas, 1993). 
Organizations will be defined in terms of their emergent laws. 

6.2.2. Example 1. The first example is the simplest organization that we 
have observed. All concepts introduced by way of this example are generic to all 
organizations that we have observed in our reactor. 

In this experiment, the collision rule was application, initial objects were 
random, copy-actions were declared elastic, and no further syntactical filters 
were imposed beyond the standard filter (Section 5.3). The most immediate 
observation, which distinguishes the current situation from L0 experiments, is 
that the reactor does not close with respect to interaction. New objects are 
produced frequently. Eventually, however, one notices that the "new" objects 
have been in the system at an earlier time, but had been eliminated because of 
fluctuations. The support of the system has effectively ceased to move around 
in the space of 2-objects. Despite settling in a particular region of A, it does not 
close. Moreover, increasing the capacity of the reactor does not result in 
closure. Alternating between the standpoint of our observer in Section 6.2.1 
and a limited knowledge of 2-calculus, we provide a syntactical and functional 
analysis of the reactor's behavior. 

Syntactical characterization 
At the syntactical level all objects in the system are recognized as conforming 

with a simple description. They can be identified with two indices: 

A i ,  j =- )cx  l . } . x  2 . . . .  2 x  i . x j ,  j <, i. (34) 

For example, A 3 , 1  ---J~x I . 2 x  2 . 2 x  3 . X 1 . Let (91 denote the (infinite) set of all 
objects whose structure is patterned after (34). An object of (91 acts as a 
projection function, if it were supplied with the full number of arguments: 
applying Ai, j to i arguments ak, k = 1 , . . . ,  i returns a j: ( . . .  ( A i j ) a l ) a 2 ) . . .  aj) 
. . .  a l ~ a  j .  However, the projection does not occur, since the collisions are 
binary. For example, the collision of projector 2x I . 2 x  z . 2x 3 . x 3 with any other 
object Q ~ C 1 invokes axiom (5). Q is substituted for x 1 , which does not appear 
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in the body of the function. The 2x~.-designation is removed, and leaves after 
standardization the object: 2x~. 2x 2 . x 2 . 

Functional characterization 
An analysis of all pairwise interactions among objects in the flow reactor 

reveals that the system can be completely described by two simple laws: 

Vi, j > l, k, l Ai,jO Ak, l~  Ai_ l,j_ l , (35) 

V i# l ,  k, 1Ai,toAk,t=Ak+~_l,~+i_~. (36) 

(The exclusion of a statement about the identity function A L1 comes from the 
artificial ban on copy actions.) The laws evidently imply closure of (9 x: 

VP, Q~(9,PoQ~(91 . (37) 

In the present case the patterns of relationships (35), (36) can be rendered 
schematically in a plane (Fig. 2), where every object is represented as a point at 
coordinates (j, i). Law (35) states that the operation of any object withj r 1 on 
any object yields the object represented by the point immediately below on the 
operator's diagonal. This law generates a flow of objects along each diagonal 
towards the j =  1 endpoint. Law (36) states that the object represented by the 
endpoint of the ith diagonal operates upon any argument such as to produce an 
object located at i - 1 points up the argument's diagonal. This reverses the flow 
of objects. 

Independent description 
The system departed from an initial set of random objects, and entered an 

invariant subspace ~11 c A .  This subspace is characterized by a particular 
syntactic description of its elements, and by a particular set of laws that 
describe all actions among them. 

Note that both the syntactical and the functional descriptions of the 
organization are formulated independently from the underlying ,~-calculus. 
The usage of 2-notation in (34) is for convenience, and does not require 
understanding of the symbolism. The point is that any object can be fully 
characterized by two indices, or by a grammatical structure, which may be 
represented in a variety of ways. Figure 2 is an example of a complete 
representation devoid of 2-notation. 

Most importantly, the descriptions are complete in the sense that they 
contain everything that can be known about the system. The laws (35), (36) are 
a definition of reduction (Knuth and Bendix, 1970) for this particular subspace 
as characterized by the syntactical structure (34). 
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Self-maintenance 
A set ~4 of object species is self-maintaining if every object is produced by at 

least one interaction within d ;  or in terms of set action (22), when 

(38) 
This implies that a self-maintaining subset is a seeding set (Section 5.4) of the 
organization such that the iterates of the replacement map m, (23), are 
monotonical ly  nondecreasing, m i ( ~  ) ~ m i + 1 ( d ) .  

Center 
The combined laws (35), (36) evidently ensure that the system is self- 

(a) 

(b) 

i >= j 

A A A A  . . . .  A A B B B  . . . .  B 
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."  9  

 9  9149  9149 ," 

"'"'"'o "'"'"" // 

o"" .1~'" / / ~  
c/~ . j  

1 2 3 4 5 6 

J 
Figure 2. The simplest Level 1 organization. Objects retained in the system share a 
grammatical structure (a). They can be represented as strings over two primitive 
building blocks A and B. The grammar requires a string to be a juxtaposition of two 
parts, the first containing only As, the second only Bs, such that there are at least as 
many As as Bs. In 2-notation A stands for an arbitrary abstraction, 2xi., and a 
sequence of j Bs represents the variable xj. This illustrates a description of the 
system by means of an isomorphism that dispenses of 2-notation. As a result of its 
grammatical structure, every object can be represented as a point in the plane with 
coordinates (j, i) (b). Two laws (represented schematically) completely describe the 
relationships realized in this system. The first law states that the action of every 
object which is not the bottom object of a diagonal generates its lower neighbor on 
the diagonal independently of the argument object (solid line). The second law 
states that the bottom object on a diagonal generates particular objects located up 
the diagonal depending in a simple way on the argument object (dotted line). See 

text for details. 



26 W. FONTANA AND L. W. BUSS 

maintaining. Definition (38) suggests one more definition: the center, cg, of an 
organization (9 is its smallest self-maintaining subset: 

~=min{d___m(d)}. (39) 
dc(~  

In the present case, to achieve self-maintenance the center must contain the 
Ai, 1 . The center is the smallest initial set for which the trajectories of the map m 
are identical to those of M. While there usually are an infinity of smaller seeding 
sets, all organizations that we have observed possess a single unique center. 

The kinetically maintained portion 
A finite stochastic flow reactor will realize only a tiny subset of the invariant 

subspace. Consider for example a finite population of objects located far up one 
diagonal in Fig. 2. Such a population is not self-maintaining. By virtue of law 
(35) it will slide downwards on the diagonal until it hits the bot tom object that 
gives rise to law (36). Only at this point will objects upward on the diagonal be 
regenerated. As soon as the sample population has reached the center set, 
which includes objects Ai, 1 , it becomes self-maintaining. It is our observation 
that finite subsets of an organization move under flow reactor conditions 
towards the center, and subsequently remain anchored there. In the present 
case this is readily understood, since the overwhelming majority of reaction 
pathways leads down the diagonals. When the center is reached, the frequency 
distribution of objects in the reactor will stabilize. Of course, the portion of the 
organization that can be maintained under flow reactor conditions depends on 
the capacity of the reactor. There will, however, always be a sparsely populated 
periphery of object species that occasionally disappear by dilution, and 
occasionally are reconstructed by interactions within the remaining popula- 
tion. 

Self-repair 
Consider a fluctuation that removes a random subset from the kinetically 

maintained portion of (91- The remainder will recover from the loss and repair 
itself back to the original state if the damaged portion contains a seeding set. 
Hence, the more seeding sets an organization can maintain under flow reactor 
conditions, and the smaller they are, the more robust it will be against random 
damage. Except for the trivial case of an object which is its own fixed point (an 
identity, for example) there can be no organization where every element is a 
seeding set, but it may be the case that every element is a generator. 

Flow reactor conditions impose weaker requirements on self-repair than the 
replacement map m of Section 5.4. Some generator sets, and not solely seeding 
sets, will determine the self-repair capabilities of an organization. 
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Kinetic persistance 
Fluctuat ions in the composi t ion of the support  are caused by stochastic 

events where new objects are created in collisions and others are removed by 
the outflow. As a stochastic process our system has absorbing barriers which 
are of two types: (i) an inactive state composed  of object species that  collide 
only elastically, (ii) an active state in which every object species is a generator. 
Ll-organizat ions  show a remarkable degree of kinetic persistance, even when 
they are not  themselves an absorbing barrier of type (ii). Some 
Ll-organizat ions  may, thus, be seen as extremely long lived metastable states 
which can "die", either because their intrinsic kinetics slowly drives them to a 
barrier of type (i), or because of some conflation of fluctuations from which the 
organization cannot  recover (see previous paragraph on self-repair). Incident- 
ally, in the present case each diagonal  is an absorbing barrier of type (ii). 

Self maintenance,  (38), is a s tatement about  the constructive capabilities of a 
set of objects, and is thus only a necessary but  not  sufficient condit ion for the 
kinetic persistence (Hofbauer and Sigmund, 1988) of an organization. The 
not ion of organizat ion refers to the grammatical  and functional description of 
the system. It is this description which persists even when the set of objects 
continues to change (an example is described in Section 6.3). 

Families 
The set Ca has a further fine-structure, which is visible in the reactor as well. 

r contains "families" defined as follows. Take an object X~ r and iterate the 
map  M with X as the starting set. This process will generate a subset of r The 
subsets generated in this way by all objects in C 1 are exactly the diagonals, 
indexed by i, in Fig. 2: 

di={Ai+t,l+l, l=O, 1, 2 , . . . } i = 2 ,  3, . . .  (40) 

The ~ ' / f o r m  a part i t ion of Ca: Vis~j~i~dj=O, and (_91 = ~ . ~ .  
An isolated d i is closed under interaction. Note  that any X~ d / i s  a generator 

of d g  under M. A seeding set (Section 5.4) of d i, however, requires at least i 
contiguous objects (along the ith diagonal). The center ~,. of ~'~ consists of its i 
smallest objects: c~/= {Ai+z, 1+1' l=0 ,  1 , . . . ,  i - 1 } .  Families can also seed one 
another. For  example, to seed both ~4~ and d j  with i > j  and i not a multiple of j  
only one object type from d i and one object type from d i is needed. 

While any single individual object in d~ is a generator of d i  under  M, it 
yields a limit cycle with period i under  the replacement map  m. For  the repeated 
action of A~ + ~, 1 + ~ on itself will follow equat ion (35), and finally yield A ~, a- But 
A~, 1 oAi,x =A2g 1,~, so that  after exactly i collisions A~, 1 is seen again. 

In a multi-family setting, as occurred in our reactor, the action of an object is 
not  restricted to its family. The overall organization, however, does not  enable 
the creation of new families, see (35), (36). 



28 W. F O N T A N A  AND L. W. BUSS 

The families, sur that  happen  to be present in the system depend upon  
its history. For  example, suppose that  an object of the form 
~XI.~X2.~X3.~Xg.(X1)X3 w a s  present at an earlier time. Its action on 
2 X  1 . 2 X  2 . 2X 1 ~ ~ t  2 yields a member  of a new family: 
2x 1 . 2x 2 . 2x 3 . 2x 4 . 2x 5 . x 3 e d 3 . In the reactor the restrictions imposed by the 
replacement map  m are relaxed due to asynchronous collision and flow events. 
The product ion  of one single object of a new family can, therefore, be enough to 
seed that  family. Once created, different self-maintaining families are 
kinetically neutral,  and in the long run r andom exclusion takes place. If the 
overall organizational structure has reduced to a single family, that  family is 
indestructible since it constitutes an absorbing barrier of type (ii). Even if every 
object species but  one, and no matter  which one, disappeared, it would suffice 
to repair the entire family. 

Kinetics 
Recall that  all "reactions" in the model  occur with the same unit rate 

constant.  Differential kinetics occurs solely because of network structure, that  
is, because different objects have varying numbers  of incoming pathways that  
connect  to objects with different concentrat ion profiles. While we will not  
report  extensively on kinetics here, we wish to illustrate that  allocation of 
differential rate constants changes the kinetic behavior. 

Such a study can be carried out  with the ordinary differential equat ion 
(ODE) framework (Section 5.2). For  example, the organization represented by 

i of the O D E  system (18). This was the family ~'1o was transcribed into the a j, k 
done with the 10 smallest object species (the center), and by cutt ing off all 
interactions that  lead to objects outside the center, thereby artificially closing 
the system. If all reaction rates are equal (as is the case in the reactor 
experiments), we find by numerical  integration one asymptotically stable fixed 
point  in the concentrat ion simplex, in accordance with our  analysis in Stadler 
e t  al .  (1993). This is also the case when reaction rates are assigned randomly 
and uniformly distributed in [-0, 1]. It is tempting,  however, to distinguish 
kinetically between the basic cycle: 

A10,1 oA10,1--.A19,1o, A 1 9 , 1 o o A 1 9 , 1 o - ~ A 1 8 , 9 ,  . . . A l l , z  O A 1 1 , 2 - - e A l o , 1  (41) 

and all other cross-reactions. When  assigning rate constants to the cycle (41) 
that  are larger by a ratio of 5 to i compared  to all other reactions, the dynamics 
changes into a limit cycle. Thus,  organizations are expected to exhibit a range 
of dynamical  behaviors when constructive interactions occur on different time 
scales. 

6.2.3. Example 2. While most  (If the features charac eristic of L1 
organizations are present in Example 1, a diversity of other organizations can 



THE ARRIVAL OF THE FITTEST 29 

be obtained by applying different syntactical boundary conditions. The 
procedure is to rerun the system, while disabling the emergence of a particular 
organization by declaring as elastic those collisions that produce objects with a 
grammatical structure characteristic for that organization. Our second 
example introduces a simple organization that consists of two syntactically 
different families that depend on one another. It also illustrates how different 
descriptions are applicable within the same organization. 

This example resulted with application as the collision rule, copy actions 
barred, and syntactical filters, implemented in the form of regular expression 
filters, that ban objects containing a block of three consecutive abstractions, 
)~xi" )~xi+ x')cxi+2, therefore eliminating, among others, the organization of 
example 1. 

The new organization, (91 , consists syntactically of two families sr and 
whose members have the invariant form: 

A i ~ X  1 . (X1)~X 2 . ( X 2 ) . . .  ,)~Xi+ 3 . ~,Xi+ 4 . ( x i + 4 ) 2 x i +  5 . (Xi+ 5 ) x i +  3,  (42) 

where i e { - 2 ,  - 1 ,  0, 1, 2 , . . . }  for family d ,  and 

B i =- 2 x  1 .  ( x  i ) 2 x 2 .  (x2)  9  9  9 2 x i  + 1 .  x i  + 1, (43) 

where ie{0, 1, 2 . . . .  }, for family ~ .  
A compressed representation without 2-notation is made through the 

following correspondences: 

a - 2 x  i . (x i ) ,  (44) 

A - 2 x j .  2 x j  + 1 .  ( x j  + 1 )}CXj + 2" (Xj  + 2 )X j  ~ ,~Xj .  a a x j ,  (45) 

B -  2 x  k . x k . (46) 

With this compression, family sr can be described as the set of all linear objects 
consisting of any number of as terminated by one A. Similarly, r is the set of 
objects made of any number of as terminated by one B. This is a formal 
language over the alphabet {s, a, A, B} with starting symbol s, and the regular 
grammar: 

s ~ a s ,  (47) 

s ~ A ,  (48) 

s - - . B .  (49) 

An observer could well parse the objects precisely into building blocks of type 
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a, A and B, without reference to the underlying )v-calculus. This enables the 
observer to recognize the structure of the system. 

All relationships established by the actions of such objects upon one another 
are described by three laws: 

a v  1 o v 2  = v 2  o v l  , (50) 

A o v = aav, (51) 

B o y = v ,  (52) 

where v, v 1 and v 2 are arbitrary objects of (92. Note that equation (52) is not 
observed directly, because of the no-copy constraint. An observer must, 
however, infer it (see example (53)) when attempting a complete description of 
the invariant subspace. 

As was the case in Example 1, the laws allow the prediction of every collision 
product. For example, the action of a B  on a a a A  yields a a A  according to: 

(50) (50) (52) 
a B  o a a a A  ~ a a a A  o B ~ B o a a A  -~ aaA.  (53) 

Let us for the moment  switch copy actions back on again. This only affects the 
frequency distribution of objects, but not the organizational structure, since an 
identity action, (52), is implicit in the system's description. In that case, the 
following description can be obtained: 

Vf, @e (92,f0 g 6 (92, (54) 

Vf, g, h e ( 9 2 , f o g  = (h o f )o  (hog) ,  (55) 

3 !g*Vfe  (92, g* of=f, (56) 

' r  (57) 

3!h* ~ s ~ g f  e sO, f o f  = h*, (58) 
where 9 * - B  and h * =  - aaA.  This is a coarse-grained description, because, in 
contrast to (50)-(52), it does not permit deduction of every interaction product. 
This description is similar to a group, except that associativity is replaced by 
the congruence relation (55). Application is not an associative operation 
(although it could become associative when restricted to some particular 
subspace). 

The reason for this structure is immediate, when we note that the elements A i 
and B i of both families behave as if they were a representation of the natural 
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numbers within the world of A. The series A o, A 1, A 2,  9  9  9 and B 0 , B 1 , B 2 , . . .  
correspond to the numbers 0, 1, 2 , . . . .  It also turns out that in what follows 
A _ 2 and A _ 1 behave like the negative integers - 2 and - 1, respectively. We 
will, therefore, abbreviate i - Ai ~ d or i - B~ ~ ~ .  

The syntactical structure of these numerals is such that the application of one 
numeral to another performs a difference operation (whose mechanism is 
readily seen in (50)), although not quite a symmetric one. The full actions are as 
follows. Within families: 

Vi, j ( i , j ) ~ d  x d ~ k ~ d ,  

Vi, j (i, j)~:~ x :~==>k~,  

io j_~k_  ~ j - i  ifi<~j, 
[ i - - j - -  1 otherwise. 

Across families in one direction: 

(59) 

Vi~<j-2 (i, j ) e d  • ~ = = > k ~ ,  

V i > j - 2  ( i , j ) c d •  

i o j ~ k _  ~ j - i  if i~<j -2 ,  
[ i - j -  1 otherwise. 

Across families in the other direction: 

(60) 

Vi~<j+2 ( i , j ) ~ x d = > k e d ,  

V i > j + 2  (i, j )~:~ x d==>kEg~, 

i o j ~ k _  J j - i  if i~<j+2, (61) 
[ i - - j - -  1 otherwise. 

It is seen that the predecessor and successor functions are simply given by ! e d 
and - 1  ~ d ,  respectively. The structure (54~(58) is now immediate. Syntacti- 
cal closure is evident, 0 ~ ~ is the neutral element everywhere, i >~ 0 (for ~ )  or 
i ~> - 2  (for d )  is its own inverse, and the difference between any two natural 
numbers is invariant to the subtraction or the addition of the same constant, 
(55). 

The system (92 is self-maintaining, in the sense of equation (38), as soon as it 
contains the predecessor and successor functions. The reason why both families 
coexist is that they depend on each other. ~' lacks a successor function, but 
- 1  e d acts as such for both families. On the other hand, - 1  cannot be 
produced within d alone, but requires interactions with family ~ .  
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Any set that contains at least one element i from d and one element j from 
~ - 0 ,  satisfying i< j ,  is a seeding set of the organization. The center of the 
organization is { - 2 e ~ 4 ,  0esr  0 s ~ ,  2 e ~ } .  Every object is a generator. 

6.2.4. Example 3. The third example serves to illustrate that it may take 
many laws to completely specify an organization. For this experiment the 
syntactical boundary conditions are set to disallow objects with three 
consecutive abstractions (as in example 2), as well as patterns of the kind 
)~X i . ( X j ) ) c X  k . ( X l ) .  The collision rule remains an application, and copy actions 
are barred. 

The organization, (93, resulting under these conditions consists of objects 
that can be parsed into the following building blocks: 

a = 2 x  i . ( ( ( ( ( X i ) , ~ X  i + 1 "  X i  + 1 ))CXi + 2 "  ) cX i  + 3 "  X i  + 2 ) X i ) X i ) '  
b = 2 x j .  ( x  j ) ,  

C = t ~ X  k . , 

A = ~ x  1 . a x t ,  
B = 2 x  m . b x m ,  

C = 2 x  n . ~ x  n + 1  9 x n ,  
D = 2x o . x o . 

The set of objects constituting the invariant subspace of this organization is 
specified by a grammar that generates objects consisting of any number of 
symbols from {a, b, c} terminated by one from {A, B, C, D}, with the constraint 
that no two bs or cs appear consecutively. Note that the latter is a consequence 
of the boundary conditions. 

The complete set of laws describing all relationships in C 3 is composed of 20 
equations: 

a v  1 o a a v  2 = a a v  2 o V 1 , a v  1 o A = a v  1 , 

a v  I o b a y  2 = b a y  2 o 1)1, a v  I o B = b v x ,  

a v l  ~ ab1)2 = (v2 ~ ab1)2) ~ 1)1, aVa ~ C =  C ,  

a v  1 o ca1) 2 = c a r  2 o v I , a v  1 o D = 1)1 ' 

a t ;  1 o c b 1 )  2 = (13 2 o c b v 2 ) o 1 )  1 , b1) 1 o12 2 = v  2 c 1 ) 1 ,  

a v  1 o a B = a B ,  c1)1  ~ = 1 ) 1 ,  
a v  l o b B = b v l  , A ov  l = a v  1,  

a/31 o c D =  D ,  B o y  1 = b / 3 1 ,  
a v  1 o a D = a D o v l  , C o 1 ) 1 = c v l  , 

a v l  ~ 1 7 6  D ~  = / 3 1 ,  

where v 1 and 1)2 are arbitrary elements of (93. The center 
constructors {A, B, C, D}. 

(62) 

is the set of 

The laws express statements similar to those encountered in the previous 
examples. The system is a network of transformations among the building 
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blocks a, b, c, which are introduced by the constructors A, B, C, respectively. 
From (62) it is apparent that once the constructors have appeared in the 
system, they are maintained in it through pathways spawned by their direct or 
indirect products. It is our observation that the system also persists kinetically. 

6.2.5. Example 4. This example is representative of a great many instances 
where a complete specification of the grammatical structure and of the laws 
pertaining to the invariant subspace becomes increasingly hard to discern. The 
last example, (94 , was obtained from random initial conditions, with copy 
actions barred, and with syntactical filters that prevent the emergence of any of 
the previous examples. 

There are two basic objects that spawn the organization: 

A - 2 x  1 . ((xl)2x 2 . 2X 3 . X1)2X 4 ./~X 5 . X4 ,  (63) 

B -  2x 1 . 2x 2 . ( ( X 2 ) ~ X  3 . ( (X 1 ),)t,X 4 . X 2)/~x 5 ./~X 6  9 X 5 ) X  1 . (64) 

We further compress the 2-notation with: 

cl-  (xi), [-( ,  
e -- 2xk  . 2xk  +1.  x k ]--=), 

where we have renamed the parentheses to avoid confusion between the 
notation of the compressed description and the original 2-notation. 

A picture of the syntactical structure of the members of (94 is best conveyed by 
illustrating selected laws that govern actions of B: 

B o c [ / ) l ] v z = c [ d c [ d / ) z ] e ] c [ v l ] v 2 ,  (65) 

O o c c c / )  1 = c [ d c c v l ] c c e / )  1 , (66) 

B o c c [ d c [ d v l ] e ] v 2 = c [ d c c / ) x ] c c [ d c [ d v l ] e ] v  2, (67) 

B o c c [ d V l ] v 2 = e [ d c / ) l ] c c [ d / ) l ] / )  2, (68) 

where, as before, v t and/)2 denote arbitrary objects of (94. The first law, for 
example, states that the action of B on any object, with one single c preceding 
the outermost parentheses, consists in (i) finding the subexpression v 2 enclosed 
by the outermost pair of parentheses, (ii) sandwiching v 2 between c [ d c [ d  and 
]el, and (iii) finally attaching to this construct a copy of the original object. 
Similar procedures are described by the other laws. 

In (94 objects are a variety of nonlinear nestings of other objects of the same 
organization, down to the two basic objects A and B. Part of the action of A 
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consists, for example, in extracting the/)2 portion from objects produced by B 
on the right-hand side in (65), and prefixing that portion with c: c/) 2 . 

A and B mutually maintain themselves. For example, cB  transforms A into 
B, and cA does the reverse, cB is created from B by action of A, while cA is 
similarly produced by action of B on A (through an intermediate). A,  B, cA,  cB  
is a small self-sustaining ensemble. The entire suite of actions involving all 
objects that can be constructed from this quartet is very complicated. Most, but 
not all, actions of B are captured by the regularities (65)-(68), but there is more 
subtle syntactical diversity in the system than we feel is appropriate to describe. 

Despite its complexity, (_94 nevertheless exhibits an invariant self-maintaining 
syntactical and algebraic structure that can, in principle, be concisely described 
without referring to 2-calculus. 

6.2.6. Summary of Level 1. The examples show that initially unstructured 
collections of random objects that are functions generate, under constrained 
flow-reactor conditions and the reaction scheme (15), sets of objects that 
occupy an invariant subspace of A characterized by three properties: 
 9 Grammar. The syntactical structure of all objects of the subspace is 

characterized by a finite number of rules, i.e. a grammar. The subspace 
represents a formal language, whose grammatical structure is invariant with 
respect to the applicative interaction of its members. 

 9 Algebraic structure. All relationships of action between objects of the 
subspace are characterized by a finite set of equations. Neither the 
formulation nor the discovery of these laws require knowledge of the 
underlying 2-calculus, thus defining an independent level of description. 
The system often admits a coarse-grained description that emphasizes 
symmetries and particular roles of objects. The subspace is the free system of 
its constructors. The constructors are the objects denoted by capital letters in 
the previous examples. So far they have mostly--but not always--been 
closed 2-expressions, also known as combinators (Curry and Feys, 1958; 
Curry et al., 1972; Revesz, 1988; Hindley and Seldin, 1986). To date, the 
constructors have always been members of the center. 

 9 Self-maintenance. There is a subset of the invariant subspace that is realized 
under flow-reactor conditions, and that maintains itself in the sense of (38). It 
is a summary of our observations that this subset always contains the center 
(39), that the center contains the constructors, and that there are no disjoint 
self-maintaining subsets. Systems that enter an invarient subspace, move 
within that subspace to the center. The size of the subset maintained in the 
reactor depends on its capacity. Self-maintenance, however, is a statement 
about the constructive capacities of a set of objects, and is thus only a 
necessary but not sufficient condition for kinetic persistence of an 
organization (i.e. organizations can "die"). 
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These properties are generic for Ll-ensembles as they arise in our system. We 
take these three properties of object 9rammar, algebraic structure of action 
between objects, and self-maintenance as definin9 a notion of organization. A 
major point is that Ll-organizations are also objects, though objects of a 
different class than L0-objects. The three closures--syntactic, algebraic, 
kinetic--induce a nonspatial notion of boundary and, therefore, of identity. 
Ll-organizations are units that can be combined and "applied" to one another 
as will be seen in Section 6.4. 

That L1 organizations also qualify dynamically as objects may be illustrated 
by examination of the equations used to model the dynamics of L0 objects. 
Consider a system that can be properly described by equation (18). Further 
assume the no-copy rule, and let the system contain a variety of self- 
maintaining organizations I such that VL J Ic3J= 0 m Io J ~ J. Equation (18) 
can then be rewritten by regrouping the individual L0-objects according to 
their Ll-membership (Stadler et al., 1993): 

2k~K= E Z ~ eike~K,j~jXi~KXj~J - Xk~rD(t)" (69) 
iEK J j~J 

Now let x r = ~k~rXk~K and Yk~r = Xk~r/Xr, and equation (69) can be restated in 
terms of the self-maintaining organizations/, at the expense of time dependent 
coefficients: 

.~K= XKI~j ~Kj(t)Xj--~-~(t)], (70) 

where the flow D(t) is rewritten accordingly, and with 

O~ieK,jeJYieKY j~J" 
ieK j~J keK 

Equation (70) has the form of the replicator equation (21). Thus, L1 
organizations are governed by the same dynamics as are other units-of- 
evolution. 

In addition to the defining features outlined above, we have explored the 
response of L1 organizations to various forms of perturbation. 

Robustness towards copy-actions 
The algebraic structure of an L1 organization may contain copy-actions, as 

exemplifed by the necessity of including neutral elements in the description of 
an organization (e.g. Example 2). Under no-copy conditions these actions are 
rejected when they result from a collision. Reallowing copy-actions after an 
organization has formed leaves the organization unchanged. 

Response to relaxing the reaction scheme 
Equation (15), the reaction scheme, can be read as the balance equation of 
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two simultaneous events. (i) A and B are used up in the process of producing a 
new particle, the normal form of ((~)A)B. (ii) One copy of each, A and B, is 
supplied from an external reservoir whenever (i) happens. This is, of course, not 
a buffering of A and B, since their concentrations will change over time due to 
(a) their removal by a dilution flux, and (b) multiple production channels. Note 
that this external reservoir implicitly ranges over the closure (with regard to o,}) 
of the initial set of objects (see Section 5.4). 

The necessity of (15) derives from our initial conditions which consist of the 
maximum possible diversity where each object species is present in a single 
instance (G. Wagner, personal communication). Destroying the only instance of 
an object upon interaction raises a conflict with the potential necessity for its 
later presence. This serious concurrency problem can be circumvented by 
starting out with multiple instances of each object species. We cannot, however, 
decide a priori how many objects are sufficient. Any choice may influence what 
organizations can arise. Our reaction scheme removes this difficulty. Once self- 
maintaining closure has occurred (if it occurs), the organization automatically 
guarantees an adequate number of instances for each object species. At this point 
(15) can be relaxed to a catalytic transformation as in (16). We find, however, 
that the organization is less vulnerable to stochastic fluctuations if the original 
reaction scheme (15) is retained for members of the center, while being relaxed to 
(16) for all other objects. 

Response to perturbations 
While a quantification of the behavior towards functional perturbations is not 

pursued in detail here, we have explored the effects of introducing a small number 
of random objects (typically three objects in 10 copies each), periodically or as a 
singular event. In most cases the organization is not altered, because the 
perturbing agents and their products are not maintained, either constructively or 
kinetically, and are eventually diluted out. In some instances the perturbing object 
has spawned interactions that resulted in a stable extension to the previous set of 
objects. Objects that extend an organization are (by definition) grammatically 
distinct from objects constituting the organization prior to perturbation. Their 
insertion may, therefore, require a recasting of the organization's grammatical 
and algebraic description. In simple instances, such as example 2 (Section 6.2.3) 
and example 3 (Section 6.2.4), all laws remained valid even in the presence of the 
new objects. Other laws that take into account the new syntactical building blocks 
were simply added. Small perturbations have never been observed to destroy an 
organization, but when they were repeatedly successful in extending a system, we 
observed the displacement of previous extensions. 

6.3. Reproduction vs self-maintenance--the transition from Level 0 to Level 1. 
L1 organizations are self-maintaining, but not self-reproducing. There is no 
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sense in which one can identify multiple instances of an L1 organization in the 
current system. This contrasts fundamentally with the case of L0 ensembles, 
where individual objects are involved in copy reactions and hence are 
reproducing entities. The distinction between self-maintaining organizations 
and reproducing objects defines the role of selection in our flow reactor and 
necessitates the prohibition of copy reactions in our L1 experiments. 

Darwinian selection, by definition, acts upon entities capable of reproduc- 
tion (Vrba and Gould, 1986). When the dilution flux removes an object in our 
L0 system, selection has occurred, whereas when an object is removed from a 
L1 organization, there is no selection (at the L1 level).? Thus, selection at the 
L1 level cannot be invoked to interpret the dynamics of equation (70). 

Disallowing copy-actions, as we do in L1 experiments, turns offselection in a 
radical way. Since we know that once an organization is established, copy 
actions can be switched on again, typically without affecting the system's 
stability (see Section 6.2.6), the disadvantage of self-maintaining organizations 
vs individual replicators is restricted to the initial stages of formation of an 
organization. The basis of this finding is not mysterious. Since the system is 
constrained to maintain a constant size, objects that replicate eliminate objects 
that do not. However, once an organization has been generated, objects that do 
not reproduce are nonetheless created via transformation pathways involving 
other nonreproducing objects and, hence, can offset the inherent replicatory 
advantage of copiers. 

The prohibition on copy reactions has the additional advantage of 
illustrating that organizational grades are achieved in the absence of Darwinian 
selection. This restriction, however, may well be criticized as being abiological 
(P. Schuster, personal communication). While a number of authors contend that 
self-maintaining metabolism preceded self-reproduction (Oparin, 1924; Fox and 
Dose, 1977; Dyson, 1985; Morowitz, 1992), others hold that self-replication was 
achieved first (Haldane, 1954; Miller and Orgel, 1974; Eigen and Schuster, 1979). 
If the latter were the case, it might indeed be regarded as abiological to claim that 
reproduction was suspended. Hence the restriction on copy reactions in our L1 
experiments may be regarded as inappropriate (but see Buss, 1994, for a 
plausible scenario under which this restriction might have occurred even if self- 
replication preceded the evolution of metabolism). 

Accordingly, we have sought to explore further the transition between Level 
0 copiers and Level 1 organizations. Returning to our flow reactor seeded with 

I Natural selection is often confused with sorting (Vrba and Gould, 1986). Readers having difficulty with 
this distinction may find it fruitful to ask themselves whether removal of a molecule in the citric acid cycle 
constitutes selection. Clearly it does not, and neither does the removal of an object within an L 1 organization. 
For Darwinian selection to operate in an L1 experiment, the dilution flux would have to remove entire 
organizations. This, however, is impossible because these organizations are nonreproducing and hence do 
not exist in multiple instantiations to remove. 
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a set of random objects, a race is evident. The time required for a self- 
maintaining metabolism to dominate the system is longer than the time 
required for self-replicators to dominate the system. It follows that a transition 
from self-replication to self-maintenance can be generated either by a process 
which reduces the rate at which self-replication occurs, or increases the speed 
with which organizations dominate, or both. We have explored three sets of 
conditions, motivated by chemical and biological intuition, each of which 
permits this transition to occur. 

Varying copy efficiency 
In actual chemical systems that replicate, the process of replication is a 

complex one and is notably less rapid than simple catalytic reactions. In our 
system all reactions occur with the same rate constant. A reduced, rather than 
zero, reaction rate for copy functions should facilitate the rise of organizations 
(J. Kephart, personal communication; P. Schuster, personal communication). 
We have systematically varied the probability with which we accept the 
product of any copy action in the system under a diversity of initial conditions. 
We found that reducing the probability of copying to 0.75 was typically 
sufficient to permit organizations to develop. 

The abundance of copy reactions 
A naive one-to-one correspondence between 2-objects and actual molecules 

is not a proper interpretation of our model. In particular, it is far simpler to 
construct a 2-expression with a copy functionality than it appears to be to 
design a molecule that replicates (but see, von Kiedrowski, 1986, and Tjiuikaua 
et al., 1990). It is appropriate, then, to explore the consequences of depressing 
the abundance of objects with copy functionality in our system. If complicated 
objects, incapable of copying, are used to initialize the system, copy functions 
may be expected to take longer to arise granting the time necessary for 
organizations to form first and preempt the available space in the system. 

We have sought to explore this possibility by initializing the reactor with 
substantially more complicated 2-expressions than were utilized in earlier 
experiments. Intricate 2-expressions are unlikely to act as copiers for all objects 
they encounter in a system. Their copy functionality may become embedded in 
a network spawned by their own constructive actions which eventually gives 
rise to an organization. While ensembles of copiers or single self-copiers 
dominate these systems under some sets of initial conditions, it is not difficult to 
discover initial conditions under which organizations arise. 

Parasites of copy reactions 
The replicatory advantage of self-copiers can be reduced if the act of copying 

sustains noncopying objects. A replicator's rate of reproduction may be 
effectively controlled by parasites (J. Padgett, personal communication). In 
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our mean field setting, the build-up of parasites simply dilutes the replicator(s), 
hence decreasing the frequency of their encounters, and thereby controlling the 
copy-activity in the system. The following case provides a striking example of 
this route to organization. 

Figure 3 is a rendering of the structure of an organization obtained by 
prohibiting syntactical patterns of the projector kind (Ll-example 1), and by 
allowing objects that are not abstraction-forms to be products of collisions, but 
barring them from acting upon others. 

The organization is centered around a replicator R. There is further a parasite- 
object Pi that is copied by R. P~ acts in turn upon R and produces an object O i. Oi 
is not an abstraction-form, and while our boundary conditions prevent it from 
acting upon others, others may act upon it. In fact, R acts on O i and thereby 
produces P~+ 1, which is another parasite, syntactically not identical, but 
analogous in action to P~. This then leads to Pi + 2, and so on ad infinitum were it 
not for the upper limit on the size of an object (1000 characters). 

Some details are interesting. First note from Fig. 3 that at the syntactical 
level P~§ 1-  2x. (O~)x. While syntactically P~+Ir O~, in terms of action they 
would be both equal if O~ were not barred from action, that is: VAeA 
(Pi+I)A=(Oi)A. Hence we may say that functionally Pi+l=Oi. The Ps, 
therefore, circumvent the constraint that catches the Os; Pz§ is literally the 
"active form" of O~. 

R 

+3 " ~  
4 f  

z / & / / \ ~ - j l  

R ~  ! ', ui <~ ',, i[ 
R 

~ E ~x(Oi)x 

R 
Figure 3. A route to organization through parasites. Solid and dotted arrows are 
explained in the caption to Fig. 1. R -  2 x  1 . 2 x  2 . ( x l ) x  2 . The dots in the upper part 
of the figure reflect the continuing generation of branches analogous to those 

shown. See text for details. 
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The interactions displayed in Fig. 3 produce an interesting dynamic. Except 
for being copied by R, Pi is not produced by anything else in the system at the 
time illustrated in Fig. 3. Suppose (as it does) that a fluctuation wipes out Pi. 
There is no pathway left to produce P~, since to copy Pi at least one instance of it 
is needed. Once P~ disappears, Oi can no longer be produced, and eventually O~ 
will disappear. This in turn removes an important noncopy pathway to P~+ 1, 
making it vulnerable to chance extinction (in particular if the concentration of 
the Ps is low). When this happens (as it does), the story repeats as for P~. In the 
stochastic flow reactor each spike originating at R, R ~ O k - ~ Q +  1, will 
eventually disappear. At the same time the system provides for the generation 
of new branches, since the Pk with the largest k will act on R and produce a 
novel O k+ 1. The system keeps losing spikes on the low k end, and producing 
spikes at the high k end. Because of the object size limitation, this process will 
stop at some point, and the system goes extinct asymptotically. In principle, 
however, the example illustrates how a set of objects may continue to change 
indefinitely, while retaining an invariant relational structure. 

The recursive structure of the Ps and Os (Fig. 3) makes them increasingly 
larger objects. Collisions between the Ps are elastic at the time of Fig. 3, 
because their products are larger than the size limitation. The simple structure 
of the organization in its later phase is, therefore, a result of the boundary 
conditions. Where did P~, with the lowest i currently in the system, come from? 
Following the recursive structure of the Ps and Os leads us back to some small 
object O o (buried in the structure of all Ps and Os), which must have been 
generated during the early history of the system. 

6.4. Level 2: Organizations of  organizations. L1 organizations qualify as an 
object class (see Section 6.2.6), hence it is appropriate to ask how two such 
organizations might interact. Combining two organizations, A and B, in a flow 
reactor will lead to interactions within A, within B, and across organizations. 
Collisions across organizations need not lead to products that belong to A or B. 
Cross-interactions may build up an ensemble of objects that is located, 
organizationally speaking, "outside" the organizations engaged in the inter- 
action. We denote this ensemble by rg. Furthermore, collisions between members 
of cg may yield products that further expand cg or which belong to A or B. 

Formally, this process is the union of the free products A ,  B and B ,  A, and 
C g = A , B u B . A - A - B .  Two cases arise: (i) oK= 0 or (ii) cgr 0. The two cases 
behave quite differently under flow reactor dynamics. In case (i) one of the two 
organizations displaces the other, depending on the relative magnitude of the 
transformation flows between them (if any), as well as on their internal growth 
rate. In case (ii) the set cg may offer a variety of pathways which stabilize the 
integration of A and B into a new metaorganization. We refer to cg as the glue, 
and to the resulting organization as a Level 2 or L2 organization. 
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6.4.1. Example 1. We begin with an example wherein two L1 organizations 
that have been generated separately are introduced into the flow reactor with a 
different collision rule governing the actions involving the glue. Organization A 
is described as example 3 in Section 6.2.4. A second L1 organization, B, was 
generated under the same functional and syntactical boundary conditions, but 
with a differing set of initial conditions. 

B is simple, and follows similar principles to those of A: 

e =- 2 x  i . ( ( x i ) ) , x i +  1" x i +  1) '  
b - i x  i . ( x i )  , 

E = ) . x  k . e x  k , 

B =- 2 x  1 . b x l ,  

D ~ 2 x  m . x m . 

Notice that organization B overlaps with A in terms of the syntactical building 
blocks b, B and D. The laws are given by: 

E o v = e v ,  

B o y = b y ,  

e v  1 o e v  2 = v  2 ~  1 , 

e l )  1 o b y  2 = 1)2 o v 1 , 

b1)l o l) 2 ~_D2 o l) 1 .  

D O 1 ) l = U 1 ,  

e v  I o B =  I) 1 o D ,  

e v  1 o E = e O o v  1,  

e Y l  O O = V l  , 

Objects outside both organizations, i.e. members of the glue, are subject to the 
same syntactical boundary conditions as the L1 organizations, but interact via 
the collision rule: 

 9 - 2 f . 2 g .  ((q~l)f)(q~2)g with (71) 

(I) 1 ~ X  1 . ( (X1))~X 2  9 X 1 ) X  1 , (72) 

(~) 2 ~ ~ X  I " '~X2 " ( ( X 2 ) X 1 ) I ~ X 3  " X3" (73) 

The effect of a collision rule of the form (71) was discussed in Section 5.1. q~l and 
(I) 2 w e r e  chosen randomly. 

The initial condition was the sum of both L1 organizations as they were 
populated at the end of the experiments that produced them. Populations A 
and B consisted of 54 and 41 different object species, respectively. Each 
population had 1000 particles. Hence the initial population of the L2 
experiment consisted of 2000 particles with 95 different object species. The 
capacity of the flow reactor was increased to 3000 particles. The L1 
organizations overlap with respect to the family o f b . . ,  bB-objects. When such 
objects are produced by interactions involving glue-objects, they are allocated 
with equal probability to either L1 organization. 

Both A and B were stably maintained under these conditions. In Fig. 4 we 
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show the total number of particles in each organization and in the glue as a 
function of the number of elapsed collision events. During the initial phase the 
larger organization A grows much faster than B. However, the rapidly 
generated glue stabilizes both organizations while itself remaining remarkably 
constant in population size. 

The glue contains new objects made of combinations from As and Bs 
syntactical building blocks. In addition, glue-objects display one new 
syntactical pattern that behaves like parentheses. We code the new pattern 
with: 

[ = 2 x .  ((x) and ] - ) D .  (74) 

Objects that carry the new pattern are of the form Ul[ I )2]  , where vl, v 2 are 
arbitrary objects of the system, and vl may be null. The [v]-pattern is evidently 
a consequence of the ~2-part (73) of the collision rule. 

Algebraic laws can be formulated in terms of application, o, but typically not 
in terms of other interactions o.. The reason is that application, axiom (3), is a 
basic constructor of 2-objects. We can, however, always reformulate o~,- 
interactions in terms of o, for the collision rule (I) is itself a 2-object and thus 
defined in terms of applications. From the previous definition of  9 we obtain: 

2000 

//',,,, 
organization A ,." ". .,". 

1500 

1000 

500 

~3 

O- 

i i i 

0 0 200000 400000 600000 
collisions 

Figure 4. Dynamics of the interaction between two separately generated L1 
organizations. The size (number of particles) of each organization and the glue 
resulting from their interaction is plotted against time (number of collision events). 

Reactor capacity is 3000 particles. See text for details. 
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or v= = ((vlo cvl)o vl)~ (75) 

With (75) every interaction involving glue-objects can be deduced by using the 
laws of both L1 organizations together with additional laws expressing new 
relations established by the glue. Such laws are, for example: 

[vl]ov2=(v2~ 
e v  1 o a u 2  = / ) 2  o u 1 ,  

a r t  ~ eev2 = (/)2 ~  ~ , 

a v  1 o e a v  2 = a v  2 o v  1 , 
a v  1 o e b v  2 = (v z o e b v 2 )  o v l  , 

etc. (76) 

Glue-objects conform with a specific grammatical structure. However, that 
structure lacks closure since glue-glue interactions may yield members of the 
constitutent L 1 organizations. The glue cannot maintain itself, when separated 
from the L1 organizations that gave rise to it. 

In this example, the two L 1 organizations overlapped in components of their 
syntax. We observed that the overlapping component was lost from one 
organization in the long run and this same simplification occurred more 
rapidly if the system was externally perturbed by injections of small quantities 
of random objects. The simplification, however, does not alter the syntactical 
and functional description of the L2 organization. 

6.4.2. Example 2. In our first example, two L1 organizations were 
constructed independently and then combined to generate the L2 organiza- 
tion. L2 organizations may also arise spontaneously without external 
imposition of differing collision laws for either the organizations or the glue. In 
this example the system was initialized with application as the collision-rule, 
copy actions barred, and syntactical filters prohibiting objects of the projector 
form (34) to occur in the initial set or as collision products. 

Figure 5 shows the dynamics for both organizations. Organization A was 
easily identified, since it eventually excluded organization B. Organization B 
was identified by (i) isolating from the reactor at collision 21" 10 4 a set of 
objects which did not contain syntactical markers associated with A, and (ii) 
inoculating with it an empty flow-reactor. This produced a self-maintaining 
organization composed of objects whose syntactical structure was resolved to 
an extent that allowed selective filtering against all other objects present in the 
original flow-reactor. In addition to the filters for A and B we formulated a 
positive third filter for the glue. This allowed us to consistently split the time 
series into A, B, and their glue. Using this procedure, we accounted for 
99.5-100% of all particles in the reactor at any time. 

Organization A consists of objects with the following syntactical com- 
ponents: 

T =  •Xi " 2 X i  + 1" )~X i  + 2 " ~ X i  + 3 " (X i  + 3)t~Xi + 4 " X i '  (77) 
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1 =- 2 x j .  (x j), (78) 

0 - 2x  k . (79) 

Hence  objects are made  of  zero or  more  ls  separa ted  by  one  or  m o re  0s and  
t e rmina ted  by  one  T. Stated differently, the invar ian t  subspace is the set of  
objects descr ibed by  the regular  expression:  

[0]  9 [1 [0] + ]  9 T, 

where  [ p a t ] ,  and  [pat] + deno te  ~> 0 and  /> 1 repet i t ions  of  pat ,  respectively.  
The  laws govern ing  the relat ions a m o n g  objects of  this k ind are given by: 

To v 1 = 0010vl ,  (80) 

lV 1 o lV 2 =Vl ,  (81) 

lv I o0V 2 =V2, (82) 

1000 
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Figure 5. Dynamics of the spontaneous generation of an L2 organization. Two L1 
organizations originate spontaneously in the same reactor, and form an L2 
organization. The size (number of particles) of each organization and the glue 
resulting from their interaction is plotted against time (number of collision events). 
The glue could be tracked unambiguously only after remaining debris from the 
initial condition had decayed. Reactor capacity is 1000 particles. Typical computer 
time for such experiments runs from 1 to 10 hours on a MIPS R2000A/R3000 

processor. See text for details. 
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l v  I o T =  0010vl, (83) 

0V 1 e V2 ~- I)1, (84) 

where Vx, v 2 are arbitrary objects of the subspace. The simplicity of the laws is 
deceiving. Figure 6 shows a schematic representation of the basic patterns of 
action, showing mostly self-interactions. A solid arrow represents the 
transformation operated by the object at the arrow's tail on itself. A dotted line 
represents a transformation operated by object T. Consider the T in the top- 
most circle in Fig. 6. The entire organization is constructed from 
T: To T~OOIOToOOIOT~OIOToOIOT~ IOTo lOT--. T, which returns us 
to the starting point. T operating on any object on the circle orginates a new 
circle. For example, To 10T~001010To001010T~01010To01010T~ 
1010To 1010T---, 10T. Objects on the new circle are origins for further circles, 
etc.This yields the top-most cluster, the T-cluster, whose objects end with 10T, 
except Titself. Now consider the action of 10T on T (represented by the bold 
line labelled with the square): 10To T~00100T, which by iteration eventually 
again yields 0T. As before, the action of Twill spawn new circles at any point. 
This builds up the 0T-cluster, where objects end in 100T, except for 0T. By the 
same token an infinity of clusters can be built, each one identifiable by a base 
object of the form 0 . . .  0T. By virtue of law (84) the repeated self-action of the 
base objects ends up in T again. 

Organization B is difficult to understand to the same extent as A, by virtue of 
the fact that the organization sustains a vast number of objects under flow 
reactor conditions. In isolation B sustained 650-800 different object types at 
any time with a reactor capacity of 1000. Objects of organization B were 
identified as containing the pattern ((xi+5)((xi+4)xi+3)(xi+2) (xi+ 1)xi), but 
neither ((xi)2x i + 1-xi), nor 2x i . (x j). This was sufficient to discriminate against 
objects belonging to the glue or to A. Most of B's objects are fluctuations 
present in a single instance, although the organization sustains a small, but well 
defined and populated core set. Among the core objects are two generators, q 
and Q: 

Q = '~X 1  9 2 . ~)~X 3 . . . .  ~X 8  9 ((X6) ((Xs)X4) (X3) (X2)X1)fL,X 9  9 ~XIO. X 3 , 
q = ~XI" ~X2" 2X3 . . . .  ~X8" "~X9((X7) ((X6)X5) (X4) (X3)X2) (X1)~X10  9 '~X1 1" X4" 

Other well populated objects have the form 2x. 2x . . . .  q which produce q 
after repeated collisions. Self-maintenance is achieved only through inter- 
actions between objects in the low populated periphery which directly produce 
core objects. Yet, the large peripheral set of single-instance-objects is subject to 
rapid change and turnover. It is likely that this feature ultimately leads to the 
elimination of B. 

The diversity of objects characterizing B makes a pair interaction analysis or 
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T 

\ " 

etc. 

Figure 6. Schematic representation of the relational structure of a particular L1 
organization. Objects are schematically represented as filled dots or filled squares. 
Squares are objects of the form 10v ~. Thin solid arrows represent self-interactions of 
the object "located" at the arrow's tail. Dotted arrows represent transformations 
operated by object Ton  the object at the arrow's tail. Thick solid arrows represent 
transformations operated by "square" objects on T. The size of the circles has no 
relational interpretation, but indicates the density at which their member objects 
are maintained in the reactor. This organization is part of an L2 organization. See 

text for details, 
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the use of the iterated map (25) infeasible, and the 2-expressions resulting from 
q and Q proved too complicated for a derivation of the algebraic structure from 
their behavior. 

The glue was syntactically characterized as the set of objects not of the form 
of A but containing ((Xi),~Xi+ 1 "Xi) o r  ,~x i  9 ( x  j). All objects isolated with the use 
of these patterns proved to be produced by cross-interactions between A and B. 

The kinetics shows a series of interesting features (Fig. 5). Organization B 
dominates in the early phase of the system, after which organization A expands 
in a burst. Between 12.104 and 21.10 4 collisions, when A's population peaks 
for the first time, the diversity of the system halves from about 620 different 
object species to slightly above 300. This reflects the fact that A is a simpler 
organization than B in terms of its sustained portion under flow-reactor 
conditions. During the same time B completely disappears. At this point the 
system contains only organization A and glue. Nevertheless, B is recreated. The 
glue objects together with A retained the capacity to regenerate a seeding set of 
B. This happened repeatedly. At about 20-104 collisions B returns to a 
significant extent in the system. The high diversity maintained by B is reflected 
in a burst of the glue size. The glue is the largest component in the system as 
long as B is present beyond some threshold. In the long run B is excluded by A 
at about 38- 104 collisions. As a consequence the glue also disappears. 

6.4.3. Summary of Level 2. The preceding examples show that the 
interaction between L1 organizations can result in a higher-order organiza- 
tion. L2 organizations share with L1 organizations the presence of syntactical, 
functional and kinetic closure. The major distinguishing feature, however, is 
the stable integration of both L1 organizations as independently self- 
maintaining subalgebras of the L2 system. That which distinguishes this 
integration from a coexistence is the presence of a set of objects, the glue, 
syntactically and functionally "outside" the component Lls. 

The center of an L2 organization is exactly the sum of the constituent L1 
centers. This allows one to distinguish an L2 situation from a transient where 
two L1 organizations happen to be present in conjunction with objects which 
are either remnants of the reactor's prior history or which were introduced 
exogenously. The proper identification of an L2 organization can be verified by 
inoculating an empty flow-reactor with the union of the putative L1 centers. 

While there is a superposition of L1 centers, it is worth emphasizing that in 
terms of organizational characteristics an L2 organization is not the sum of the 
L1 organizations, because the glue which develops is a syntactical and an 
algebraic extension to both L1 structures. This provides for a fundamentally 
altered kinetic and constructive situation. The glue on the whole is effectively a 
catalyst of transformations between L1 organizations which cannot be 
achieved exclusively within those organizations. At a global level we may write: 
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A _  " B .  

At the same time the glue is not an organization. It does not preserve its 
structure when the supporting L1 organizations are removed. Thus, just as 
Level 1 organizations reflect a new object class, so do Level 2 organizations. 

Our experience is that L2 organizations are more readily attained by first 
generating L1 organizations separately, and subsequently combining them 
into the same reactor. L2 organizations, however, do not always arise under 
such conditions. It greatly facilitates the construction of L2 organizations, if the 
glue, or even the constituent L1 organizations operate under different 
boundary conditions, in particular different collision rules ~.  Moreover, the 
fact that a glue is produced does not guarantee that both organizations will be 
stably maintained over long time periods (see example 2, Section 6.4.2). Our 
observations indicate that the kinetic constraints on interactions involving the 
glue are stringent. 

7. Conditions for Organizing. The current contribution focuses on introduc- 
ing abstractions upon which a theory of organization might be based and an 
implementation within which the consequences of these abstractions might be 
explored. The results outlined above illustrate that this approach is indeed a 
powerful tool for generating a diversity of organizations and organizational 
grades and a tractable device for exploring their properties. Ultimately, 
however, a theory of organization must provide a suite of formalisms that 
define what organizations are possible and what variations on such 
organizations may be achieved. We briefly discuss issues which the current 
study has identified as central. 

Generating an organization involves establishing a network of construction 
pathways. The formation of a network requires the existence of equivalence 
classes implied by the reduction process. The size and diversity of equivalence 
classes implied by a given choice of initial objects will determine the horizon of 
potential network connectivities. 

If the reactor system is not perturbed exogenously, then every object at any 
time can be expressed as a series of applications involving only objects that 
were present initially in the system. In other words: any set of objects resulting 
from an initial set s / a f t e r  l collision events must be a subset of S2,(d), as 
defined by equation (27), Section 5.4. 

Consider equation (27), and let us define the following two sets. One set, S, Ng, 
consists of all expressions obtained by associating in all possible ways up to n 
applications among objects. This is the set S n from equation (27) when no 
reductions (NR) were executed. Let us refer to an element of S NR as a "collision 
sequence", because it contains the entire history of collision events all the way 
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back to the initial set. For  example, if the initial set d contains the objects a, b, 
c, d, then a o ((b o d)o (c o c)) is a collision sequence, and it appears for the first 
time as an element of S~ R. The other  set is just  5:, as defined in equat ion (27). 
This is the set of expressions obtained when all expressions in S, NR are reduced. 
Let Id] denote the size of set ~4, and consider two extreme cases of (degenerate) 
reduction processes. On  the one hand  consider the trivial process that  
establishes each object as its own equivalence class (no reduction),  in which 
case IS, I=IsN, R I for all n, and no network can ever be formed. The system's 
diversity explodes like an ever branching tree. (This is the reason for barring 
2-expressions that  are not  abstraction forms from being operators.  See Section 
5.3.) On  the other hand  consider a reduction process that  induces one and only 
one equivalence class for all objects in the universe (an inconsistent system), in 
which case [S,[ = 1 for all n, and the network would be trivial, consisting of a 
single node  only. Clearly, a necessary and sufficient condi t ion for organization 
to occur lies somewhere in between. 

Since normal  forms represent equivalence classes of objects, we may  say that  
for organization to occur it is necessary that  the total number  of normal  forms, 
IS,(sr grows with lower order than  the total number  of collision sequences, 
Is,NR(~4)I, given an initial set d ,  of size a = l ~ [ :  

Is.(N)l 
lina - I s ~ " ( d ) l -  o. (85) 

In the following we will omit  the reference to the initial set d .  Consider  s, as 
defined in equat ion (26), and for simplicity let s, also denote the size of the set 
s,. Then s,+ 1 = S,+ 1 - S, ,  and we replace condit ion (85) by: 

lim - s .  = 0 ,  ( 8 6 )  
n ~ oo S NR 

with 

s N R ( ~ )  = ~ a n + l  ( 8 7 )  

sNR(s/) counts the number  of ways in which we can associate n (binary) 
applications between n + 1 expressions (Catalan numbers)  times the variations 
allowable by the size of the initial set. Equat ions in the algebraic structures 
defining our organizations are statements about  the symmetries of collision 
sequences (associativity, for example) or variations within a collision sequence 
(commutativity,  for example). 

NR always increases exponentially, our  examples suggest that  s, While s, 
increases not  faster than polynomially for organizations maintained under  flow 
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reactor conditions. For example, consider the subfamily sg of example 2 
(Section 6.2.3). We build the sets S, from an initial set d o .  We can always 
express set S, in terms of the action among (disjoint) difference sets: 

Sn= U ASi~ A S n - i -  I -k S . -  I , 
O<~i<~n-1 

(88) 

where AS o -= d o and A S  i = S i -  S i_ 1, i = 1, 2 , . . . .  Hence 

AS. = U ASi~  (89) 
O<~i<~n-1 

Now recall the interpretation of organization B, equation (59), where the 
action among objects essentially amounts to a difference operation among the 
corresponding numbers. Evidently, for i ~j ,  j -  1/> 0, and for i >j ,  i - j -  1 7> 0. 
Hence any initial set produces only positive numbers. 

Let us start with sr 0 --AS o = {--2, --1, 0}, and AS 1 = {1, 2} is obtained by 
direct computation. The largest numbers added to any S, will come from (a) 
the smallest number, - 2 ~ ASo, operating on the current largest one in AS, _ 1 
according to j - i ,  and (b) from the reverse situation, where the action takes 
place according to i - j - 1 .  Let M = m a x { i e A S , _ l }  for n > l .  The largest 
number in AS, produced according to case (a) above is M +  2, and the largest 
number according to case (b) is M +  1. It follows that the two largest numbers 
in AS, + 1 must be M + 4 and M + 3. Hence by induction the increments AS i are 
contiguous, and contain exactly two elements. [AS.I=2 for all n, and 
[S.[--3+2n. Clearly, our conjecture regarding polynominal growth and 
condition (86), or (85), are fulfilled. 

Condition (86) is a statement that addresses only network existence, and 
does not take into account issues of self-maintenance, or any kinetic issues as 
they arise from network connectivity. A theory of organizations will ultimately 
require understanding of three issues: (i) what symmetries of collision 
sequences are implied by an initial set of objects, (ii) what combinations of such 
symmetries can achieve self-maintenance, and (iii) how robust are these 
combinations in regard to changes in the reaction scheme. While our work 
defines these issues as central, it is apparent that the bulk of the task in 
generating a theory of organization remains before us. 

8. Discussion 
8.1. The approach: a minimal chemistry. We claimed at the outset that the 

formal structure of evolutionary theory is plagued with an existence problem--  
that it assumes the prior existence of the entities it acts upon. We have 
introduced a theoretical framework in which we show that self-maintaining 
organizations can be generated on the basis of two key abstractions from 
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chemistry. Hence, we claim that our approach offers the basis for a 
constructivist augmentation of the traditional evolutionary approach based on 
the dynamics of pre-existing entities. 

Our approach should be compared with at least three existing research 
traditions. 

Autopoiesis--Lambda-organizations appear to be related to what Matur- 
ana and Varela (1973, 1980) have termed "autopoietic systems" (see also 
Bachmann et al., 1992; Luisi, 1993). From Varela et al. (1974, p. 188), "The 
autopoietic organization is defined as a unity by a network of productions of 
components which participate recursively in the same network of productions 
of components which produced these components." In addition to the work by 
Maturana and Varela, a paper by R6ssler (1971) on generalized autocatalytic 
chemical organizations must be included among prior work to which our 
model is relevant. No formal morphism between the 2-organizations and the 
autopoietic tradition or R6ssler's line of thought is possible, since these 
approaches have been exclusively verbal. The 2-system may be considered a 
formalization of the network component of autopoietic systems and a theory of 
their origins. 

Concurrent computat ion--Our formulation of organization draws heavily 
on foundational concepts of computer science. This is not coincidence. The 
notion of a function as a rule is crucial in achieving the proper abstractions 
from chemistry. The many-body perspective developed here (and emphasized 
in Forrest, 1990) is reminiscent of concurrent computation. Concurrency is 
also at the root of our reaction scheme, equation (15). Once the system has 
produced an organization which maintains sufficient instances of each object, it 
has effectively solved part of a concurrency problem by homeostasis, and the 
reaction scheme can be relaxed. 

We recently became aware of work in computer science which also employs a 
chemical metaphor, albeit in a far less abstract manner (Berry and Boudol, 
1990). Their "Chemical Abstract Machine" is proposed as a new paradigm for 
models of concurrent computation. Similar to our approach here, the machine 
is a multiset, i.e. a milieu where objects can float freely and interact according to 
specific reaction rules. In line with Banatre's and LeMetayer's (1986) F 
language the authors pursue a methodology where concurrent programming is 
"liberated from control management" by having the system's "components 
move freely and communicate when they come in contact". While this system 
has not been employed for the study of biological organization, our experience 
with the 2-system strongly suggests that such an approach would be fruitful. 

Autocatalytic reaction networks--Our results replicate a variety of earlier 
findings by researchers exploring autocatytic reaction networks. Specifically, 
the capacity of the 2-system to generate ensembles of hypercyclically coupled 
copying reactions is an independent rediscovery of the results of Eigen and 
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Schuster (1977, 1978a,b, 1979), as is our finding of the well-known sensitivity of 
these systems to perturbation in a mean field setting (Neisert et al., 1981), 
Similarly, the generation of self-maintaining ensembles recalls attempts to 
construct dynamical models of polypeptide or polynucleotide based metab- 
olisms (Kauffman, 1971, 1986; Eigen and Schuster, 1982; Bagley and Farmer, 
1992; Bagley et al., 1992; Futrelle and Miller, 1992; Thfirk, 1993). While the 
2-system permits exploration of the logical implications of the features that we 
have abstracted from chemistry, much of actual chemistry is absent. It is 
therefore encouraging that the 2-system replicates results obtained using 
methods grounded in proximity to chemical detail. Note, however, that the 
tradition of research on autocatalytic reaction networks is distinguished by the 
absence of a notion of organization, in the sense defined here. 

Our approach contrasts with the autopoietic tradition in having a formal 
foundation, and differs from autocatalytic reaction network traditions in the 
level of chemical detail that our model seeks to capture. We did not attack the 
problem of organization by an attempt to imitate or emulate the details of actual 
chemistry. Our model is neither a theoretical chemistry, nor is it a theoretical 
biophysics. We consider the behavior of a constructive dynamical system, i.e. the 
many-body phenomena that occur within an ensemble of formal objects that are 
capable of playing any of three roles: function, argument, and value. We argued 
that these features are required to realize a minimal "chemistry" in the sense of a 
constructive system implementing equivalence relations. 

The virtues of the minimal approach lie in the realm of representation. 
Clearly, every organization, natural or artificial, will rely on some represen- 
tation, since it must consist of objects which have to be expressed somehow. 
Hence there will be features which are imports from the chosen representation, 
and which consequently are not generalizable to features of abstract 
organizations. The virtue of our approach based on 2-calculus is to minimize 
the representational constraints and to keep them transparent. It, therefore, 
becomes easy to recognize what is 2-specific and what is not. 

It is appropriate, then, to ask what kind of biological conclusions can 
possibly be inferred from such a minimal construction? Since strict analogy 
between molecules and 2-expressions is inappropriate, only conclusions 
regarding the features of organizations should be drawn. What is interpretable 
and observable are (i) the presence of functional and syntactical regularities in 
organizations, (ii) basic organizational features like closures, self-maintenance, 
centers, robustness, layered expansions, hierarchical combinations, simplifica- 
tions, roles or positions within a network structure, and (iii) the linkage 
between boundary conditions, in particular the functional ones, and the 
organizational classes to which they give rise. Indeed, these are the very 
organizational issues claimed at the outset to be at the core of difficulties with 
evolutionary theory. As we argue in the next section, under biologically 
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motivated boundary conditions, the phenomena arising in this mathematical 
world share fundamental features with biological organizations and their 
historical progression. 

8.2. The organization problem in evolutionary theory. Given the capacity of 
the 2-system to rediscover and extend earlier findings, we are encouraged to 
suggest how the properties of 2-organizations might inform outstanding 
problems in evolutionary biology. At the outset we claimed that the dual 
criteria of self-maintenance and self-reproduction defined chemical transfor- 
mation systems as biological. The latter criterion has received the preponder- 
ance of attention in that it is this feature that triggers the Darwinian process. 
We hold, however, that the former is central to gaining an understanding of (i) 
the emergence and (ii) the mutability of biological organizations. 

8.2.1. The Emergence of Organizational Classes: Self-maintenance vs 
Self-reproduction. The history of life is a history of the emergence of new 
organizational grades and their subsequent diversification (Buss, 1987). A 
transition in organizational grade occurred when self-replicating molecules 
gave rise to (or became incorporated within) self-maintaining procaryotic cells 
and the origin of procaryotes was itself followed by the emergence of a 
hierarchical nesting of different procaryotic lineages to generate multi-genomic 
eucaryotic cells. The existence problem in evolution is germane not only to the 
origin of life, but to a number of transitions in organizational grade. We have 
found, in 2-organizations, transitions that mimic the transitions seen in the 
history of life, i.e., the transition from self-replicating molecules to self- 
maintaining organizations to hierarchical combinations of such organizations. 

Level 0: replicator ecology 
Level 0 (Section 6.1) consists of a single self-copying object or of an ecology 

of objects all of which are engaged in mutual copy-actions. This is precisely the 
situation described by the replicator or ecological Lotka-Volterra framework: 
the reproduction of an object species, A, requires itself and one (or more) other 
object species, B. From a purely functional point of view A is a "fixed point" of 
its interaction with B. This is reflected in the factorization for the rate equations 
in the relative concentrations, xi--xiFi(x)- 

We find that copy ensembles, of which the hypercycle (Eigen and Schuster, 
1979) is one example, spontaneously arise but are unstable to perturbation in a 
mean-field setting. Two kinds of perturbation are relevant here: the exogenous 
addition of random objects (including copiers), and the random deletion of 
subsets of the system's support due either to exogenous intervention or to 
endogenous stochastic fluctuations. It is characteristic of Level 0 ensembles 
that they are unstable towards both perturbations. 
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The instability of L0 ensembles to the addition of new objects is in most cases 
attributable to parasitism by single objects which are copied by members of the 
ensemble and thereby achieve a replicatory advance. Identity functions, in 
particular, play a strong kinetic role, since they efficiently resist the dilution 
flow by autocatalytic duplication. This has been successfully countered in other 
formulations by a spatial implementation (Bjoerlist and Hogeweg, 1991). 

The instability upon removal of object species, however, reflects an intrinsic 
lack of self-repair. Because copying is not a constructive operation, the 
ensemble easily achieves trivial closure. Eliminating construction eliminates 
the capacity for self-repair. 

Parasites, side-reactions and organizational transitions 
Copiers, i.e. identity functions, come to dominate L0 systems under per- 

turbation preventing the emergence of new organizational grades (e.g. L1 or 
L2). Pure replicators have two inherent advantages, they reproduce themselves 
and they maximize this advantage by not entertaining constructive interactions 
with others. There are, therefore, two routes to a transition in organizational 
grade: (i) control of the inherent kinetic advantage of replicators, and/or (ii) 
control of replicators via unavoidable constructive side-reactions. 

The first route may be achieved in at least three ways. First, one may prohibit 
copy interactions in our system, with the result that L1 organizations appear. 
This condition corresponds to the "metabolism-first" school of the origin of life 
(Oparin, 1924; Fox and Dose, 1977; Dyson, 1985; Morowitz, 1992) or to an 
early life scenario in which the life cycle of a protocell has a non-proliferative 
phase (Buss, 1994). Second, a modest reduction in the efficacy of copy reactions 
results in L1 organizations. Finally, one may mimic the relative rarity of copy 
reactions in actual chemical systems by using more complicated 2-expressions. 
These may act as copiers on some objects in the population, but will perform 
transformations on others. Such side-reactions can be sufficient to construct an 
organization. Rather than invoking kinetic controls external to the system, our 
work also suggests an endogenous route by reducing the kinetic advantage of 
self-copiers through parasites on those copiers. A copier dilutes itself as soon as 
it sustains objects which are not engaged in copy-actions (J. Padgett, personal 
communication). If these parasites entertain constructive interactions, a direct 
route from copy-ensembles to self-maintaining organizations becomes poss- 
ible. We have observed a variety of such cases. A particularly simple and 
elegant case has been discussed in Section 6.3. 

Our model is silent about the likelihood of each of these routes in real 
chemistry or in the actual history of life. It serves, however, to illustrate that a 
replicator-based, "genetics-first" approach to the origin of life (Haldane, 1954; 
Miller and Orgel, 1974; Eigen and Schuster, 1979) and a "metabolism-first" 
approach (Oparin, 1924; Fox and Dose, 1977; Dyson, 1985; Kauffman, 1986; 
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Morowitz, 1992) are both, in principle, possible. The endogenous mechanism 
based on the kinetic effect of parasites is a novel proposition. 

Level 1: a new self 
In contrast to Level 0, Level 1 organizations are infinite invariant subspaces 

of objects, of which only a specific finite portion is maintained under flow 
reactor conditions. Hence the set of object species in the reactor is no longer 
closed under interaction. Nonetheless, the organization endogenously main- 
tains grammatical and functional boundaries (the invariances of the subspace). 
It is these boundaries which we define as an organization and which qualify the 
organization as a new object class. Moreover, the organization is self- 
maintaining and characterized by kinetic persistence, growth from a minimal 
subset of L0 objects, and robustness to perturbation. 

Note, however, that while L1 organizations maintain themselves kinetically 
and constructively, they do not reproduce. In no sense can one identify multiple 
instances of the same L1 organization in our flow reactor. While L0 objects are 
constructed and lost in our system, this is no more a matter of loss or gain of an 
organization than, say, fluctuations in the number of molecules present in the 
citric acid cycle of a bacterium imply a change in the number of bacteria. 
Reproduction at the new object level requires a means for separating two 
instances of a L1 object. 

Hierarchical progression of organizational levels 
In addition to the transition from self-reproduction to self-maintaining 

organizations (i.e. L0 to L1), we have shown that self-maintaining Level 1 
organizations can be hierarchically combined to produce new self-maintaining 
Level 2 organizations. The Level 1 organizations of which these metaorganiza- 
tions are composed retain their capacity for self-maintenance. The 
2-framework, thus, exhibits the capacity to generate the hierarchical nesting of 
units that has so characterized the history of life. 

Note that the capacity of the 2-system to mimic transitions which have 
occurred in the history of life is a consequence of self-maintenance, rather than 
reproduction. In this study, the only reproducing entities are the self-copying 
functions arising in Level 0. Level 1 and Level 2 organizations are self- 
maintaining, but not self-reproducing. Since Darwinian selection presupposes 
the existence of reproducing entities (Lewontin, 1970; Vrba and Gould, 1986), it 
follows that these transitions are obtained without appeal to natural selection. 

8.2.2. The Origin of Variation. The famous macro-mutationist Hugo 
DeVries closed his 1904 book (pp. 825-826) with the line "Natural selection 
may explain the survival of the fittest, but it cannot explain the arrival of the 
fittest." The issue which prompted this remark was concern that since all 
novelty must arise from mutation, whereas natural selection merely dispensed 
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with the unfit, that the principle problem in evolution was to understand how 
mutation could give rise to phenotypic novelty. Selection, he held, has no 
generative power, hence evolution was largely a problem of what generates the 
fit. 

Biologists today, as then, have no coherent theory of variation. Population 
genetics has succeeded largely by virtue of a device which permits this problem 
to be artfully ignored. Here genes are held to be alleles and alleles are 
recognized by phenotypic characters. In standard parlance, then, genes are 
equated to phenotype or, if you like, phenotype is reduced to genes. It is widely 
appreciated that this conceptualization collapses what are fundamentally two 
different mappings into one. The mapping of genotype to phenotype and the 
mapping of phenotype onto fitness are both subsumed under one mapping of 
alleles onto fitness. The origin of the phenotype--DeVries' arrival of the 
fittest--is swept under the carpet. Clearly, difficulties arise to the extent that the 
mapping of the genotype to the phenotype placed limits on what is possible-- 
limits that preclude the arrival of the fittest. Critiques of pan-selectionism 
(Gould and Lewontin, 1979), characterizations of evolution as "tinkering" 
(Jacob, 1982), and the recent preoccupation with developmental constraints 
(Maynard-Smith et al., 1985) are but a reawakening of the same concern. 
Lambda organizations provide a foundation upon which to assess these issues. 

An organizational view of phenotype 
A 2-organization has a "phenotype". It is the set of regularities which specify 

its grammatical and algebraic structure. Our 2-system, however, is not based 
on details of an actual chemistry, and the question of the relevance of the 
internal structure of 2-organizations, and hence of the mutability of these 
structures, to biological organizations is central. Grammatical and functional 
regularities, though, are typical for biological organizations as well. 

Let us first consider grammatical regularities. Biological metabolisms have 
as components a variety of families consisting of syntactically related 
molecules, such as polypeptides, polynucleotides, sugars, lipids, and so forth. 
Even membranes could be viewed as regular structures with a simple 
grammatical description. It is characteristic for a 2-organization at Level i and 
Level 2 to consist of objects that are described by specific syntactical 
regularities. Organizations whose sets of objects can be partitioned into 
multiple families, each described by a different grammar, have been observed as 
well. For example, Level 1, Example 2 (Section 6.2.3) is a simple instance of an 
organization based on the interaction between two different syntactical 
families. Level 2 organizations are similarly structured. The reason for such 
regularities in 2-organizations is the generation of some basic set of constructor 
objects from which families within an organization are built up by iterated 
action. 
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Sugars and lipids play specific functional roles in a biological organization. 
Similarly, in a 2-organization, an object or a set of objects can have a specific 
function, be it kinetic or constructive. For example, in Level 1, Example 2 
(Section 6.2.3), the syntactic family ~ ,  from the viewpoint of s~', has the 
function of providing objects required for the production of - 1, without which 
the self-maintenance loop could not be closed. It is, thus, apparent that the 
organizations generated by our model have an internal structure which assigns 
"functional roles" to certain elements or families of elements.? 

Response to perturbations 
Variation in 2-organizations is highly constrained. Specifically, perturba- 

tions rarely alter the algebraic laws that characterize a system. The basis for this 
restriction is that for any novel object to persist, it must generate a set of 
transformation pathways that (i) produces itself and (ii) does so in a kinetically 
effective manner from within an existin9 network of pathways. However, when a 
novel object does become established, the algebraic laws characterizing the 
organization are necessarily recast. We have not, though, ever observed a case 
in which perturbation of one organization has given rise to a fundamentally 
different one. For example, we have never observed the rebuilding of the 
"projector organization" (example 1, Section 6.2.2) into the "number 
organization" (example 2, Section 6.2.3) upon perturbation. The implication is 
one of a universe of different organizations, each of which can be modified and 
diversified, but which are not readily transformed one into another. 

The resemblance between 2-organizations and biological organizations is 
further reinforced by consideration of the response to perturbations. Consider 
the organization's center, that is, the smallest kinetically persistent set of 
objects which specifies the construction of the organization. It is characteristic 
for centers to obey a superposition principle in regard to the construction of 
new organizations upon perturbation. Centers combine linearly, organizations 
not. This is a characteristic feature of 2-organizations. The fact that 
organizations must be constructed implies a linear behavior at the level of 
centers and a nonlinear behavior at the level of the organization. 

In addition, we find differences in the effects of perturbation on Level 1 and 
Level 2 organizations. Successful perturbations of Level 1 organizations led to 
the elaboration of new transformation pathways and a recasting of the laws 

? Note the distinction between an individual object that is a function (in the mathematical  sense) and an 
object within an organizational context which may, in addition, have  a function (in a "semantic" sense). It 
is not  uncommon  to find argumentat ion wherein an organization is claimed to exist because of the function 
it has. This, however, is circular since the latter cannot be argued without the former. Our  model 
completely escapes teleology by generating organizations, and consequently function in a "semantic" 
sense, purely as a many-body phenomenon of objects that are  functions in the former and well defined 
mathematical  sense. 
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that characterize the organization. In contrast, similar perturbation intensities 
on Level 2 organizations with overlapping L1 centers (example 1, Section 
6.4.1 ) resulted not in an augmentation of existing laws, but in the simplification 
of one of the centers of a constituent Level 1 organization, while maintaining 
the Level 2 status of the system. These results recall, respectively, the well- 
known fact that most metabolic pathways of modern organisms have their 
origins in procaryotes and that the genomes of organelles have often become 
simplified by the loss of genes whose function is redundant with that encoded in 
the nucleus. 

These results suggest that an understanding of the origin of variation--that 
which defines what the Darwinian process can attain--must ultimately be 
based on a theory of biological organization. In particular, assessing the 
potential of perturbations in transforming one organization into another will 
require an appropriate notion of distance between organizations. In other 
words, we require not only a theory of organization, but a theory that defines 
the limits of its mutability. 

8.3. "Organization" as a universality class? The ease with which biological 
interpretations are possible in our abstract approach raises the possibility that 
we are confronted with a universality class, i.e. the possibility of a theory of 
organization that is independent of the details by which actual systems 
implement, generate and evolve organizations. 

An example of a universality class in mathematics is computability. It 
denotes a mathematical structure whose theory is independent of the details of 
implementation, as manifest by the variety of equivalent models of compu- 
tation. Despite the existence of specialized theories for each of these models, 
and despite their fundamentally distinct suitability for particular tasks, there is 
a level of description, recursive function theory in this case, at which they share 
a common structure. 

Suppose, for example, that we had been motivated not by organizational 
issues in biology, but rather by issues in earth sciences. It is surely appropriate 
to treat aspects of the global climate system as problems in the generation and 
maintenance of systems of chemical transformations. With appropriate 
syntactical constraints, e.g. limiting the capacity for "polymerization", and 
functional constraints, e.g. multiple collision schemes operating on vastly 
different temporal scales, the current model would likely prove as relevant to 
geological organization as it does to biological organization. While the 
geochemical example is an obvious candidate, functional organization issues 
are central in a number of disciplines where the chemical metaphor is almost 
certainly inappropriate (Winograd and Flores, 1986; Lakoff, 1987; Leifer, 
1991; Padgett and Ansell, 1993; Lane, 1993a; Lane, in press). It is, of course, 
impossible to determine if there indeed exists a universality class "organiza- 
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tion" without alternative formalizations beyond those of actual chemistry and 
our 2-system. 

We think it useful to attempt an implementation independent mathematical 
theory of abstract functional organizations which is based on necessary and 
sufficient assumptions. In our specific application, we have developed a 
constructive dynamical system, i.e. a dynamical system with an endogenously 
induced motion of its support. The points on the trajectories of that motion are 
sets. Intuitively these trajectories have attractors which we have characterized 
as algebraic structures. We have, however, not yet produced a mathematical 
theory of the observed phenomena. We lack the ability to define what 
organizations are possible or the limits to their variation. Thus, our 
experimental 2-reactor and the theory specific to it are only stepping stones 
towards a larger goal. 

Our progress toward that goal is mirrored in the state of evolutionary 
theory. Existing evolutionary theory is a formulation of the process of natural 
selection, but is incomplete in that it assumes the prior existence of selectable 
units and is formalized without a theory of the origin of variation. The 
Darwinian theory, thus, requires augmentation with a theory of the organism. 
A complete theory of biological organization would explicate what organiza- 
tions can emerge, combine and vary. The 2-system, based as it is on 
abstractions from chemistry, succeeds as a device to construct self-maintaining 
organizations and to explore their properties. In its current form, however, it is 
only a step toward a theory of biological organization. A formal apparatus for 
defining possible organizations and possible variations must be the ultimate 
goal. 
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birthday. We thank Gyorgy Revesz for providing source code for a fast 
2-calculus reduction machine, John McCaskill for discussions that proved 
central to the early phases of this project, and Neil Blackstone, Francesca 
Chiaromonte, David Lane, John Padgett, James Pelkey, John Reinitz, Peter 
Schuster, Lee Segel, Butt Singer, Peter Stadler, Gabriel Stolzenberg, Andreas 
Wagner and G/inter Wagner for discussions and careful reading of the 
manuscript. This paper is communication number 7 from the Center for 
Computational  Ecology of the Yale Institute for Biospherics Studies. 

A P P E N D I X  A. REMARKS ON AXIOMS OF k-CALCULUS 

The system defined in Section 4.2 consists only of syntax. 2-calculus was, however, designed 
with an interpretation in mind. A few informal comments in this regard may be helpful in 
obtaining a better understanding of the syntactical system. 
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(1) Trivial. 
(2) This axiom declares x to be a formal parameter of M, thus turning M into a function of x (x 

may or may not appear free in M). It "abstracts" a procedure (i.e. function) from M by 
generalizing the expression x in M from being a particular fixed symbol to being a "slot" (a 
bound variable) that may be replaced by anthing. 

(3) Application is the operation whose mechanics is defined in axioms (4)-(7). At the same time 
A-calculus declares application as a syntactical structure of terms, thereby obtaining closure 
of A by definition: application is a term forming operation. 

Axioms (4)-(7) define schemes of rearrangement that can be applied to any term in A. If a term 
contains a (sub)structure of the form specified on the left-hand side, that (sub)structure can be 
replaced by the term on the right-hand side. Taken together these axioms define "substitution" 
by induction over the structure of terms. Notice: the left-hand side always has the form of an 
"application", axiom (3), and that which is applied always has the form of an "abstraction" (that 
is: a function), axiom (2): application of a function pulls the trigger of syntactical 
transformations. An abstraction prefix is removed upon application. Roughly speaking, iterated 
application and iterated abstraction are inverses of each other. 

(4) Trivial. 
(5) x is designated a variable, but does not appear in the body E of the function, or is already 

bound by another abstraction. Q is substituted for x which is not available, and the 2x. prefix 
is removed: a constant function. 

(6) This axiom prepares the expression so as to make substitution occur for the first bound 
variable in case of multiple abstractions 9 The conditions ensure that no free variable in E or Q 
is captured in subsequent processing. Obviously one could choose the alternative form: 

(2x .2y .E)Q~2x . (2y .E)Q,  i f x C y ,  and (xCdp(Q) v yCdp(E)). ( a l )  

Both, (6) and (A1), are equivalent. To fulfill the conditions of (6) a renaming via (8) may be 
necessary 9 

(7) A kind of distribution law. If the function body consists of a term applied to another term, 
substitution of Q for x occurs in both. This axiom merely restructures the term for further 
processing by (4)-(7). 

(8) Provides effective renaming of variables, when the term on the right-hand side is submitted 
to (4)-(7) for processing 9 

A P P E N D I X  B. EXAMPLE OF R E D U C T I O N  TO N O R M A L  F O R M  

The following example illustrates the normal order reduction of 

(((2x. 2y. 2z. (y)x)2x. (x)y)2u. 2z. (u)z)y. 

The first column numbers the reduction step, the second column refers to the invoked rewrite 
axiom, and the third gives the resulting expression: 

0 (((2x. 2y. 2z. (y)x)2x. (x)y)2u. 2z. (u)z)y 
6 

1 --, ((251. (2x. 2z. ($1)x)2x. (x)y);~u. 2z. (u)z)y 
6 

2 -~ ((251.2z 
7 

3 ~ ((251.2z 
5 

4 --, ((251.2z 
6 

5 ~ (2z.(251 

 9 (2x. ($Dx)2x. (x)y)2u. 2z. (u)z)y 

 9 ((2x. $02x. (x)y) (2x. x)2x.  (x)y)2u. 2z. (u)z)y 

 9 (SX) (2X. X)2X. (x)y)2u, 2Z. (U)Z)y 

 9 ($1) ff.X. X)2X. (x)y)2u. 2Z. (U)Z)y 
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7 
6 - - ,  

5 
7 - +  

4 
8--+ 

6 
9 - +  

7 
10 -+ 

4- 
11 --, 

5 
12 

4 
13 

7 
14 

4 
15 ---* 

5 
16 

5 
17 

()vZ. ((/~$1 " $1)/~u" ~,Z. (U)Z) ('~$1 " (,~X. X),~.X. (x)y)/,U.)'.Z. (U)Z)y 

((251. $a)2U. 2Z. (U)Z ) (251. (2X. X )2X . (x)y)2u . 2Z . (U)Z 

(,ZU . 2Z . (U)Z) (251. (,ZX . X),~X. (x)y);~U. ;.Z. (U)Z 

2Z. (2U. (U)Z) (251. (2X. X)2X. (x)y)2u.)~Z . (U)Z 

2Z. ((2U. U) (251. (2X. X)2X. (x)y)2u.  2Z. (U)Z) (2U. Z) (251. (2X. X)2X. (x)y)2u.  2Z. (U)Z 

2Z. ((251. (2X. X)2X . (x)y)2u.  2Z. (U)Z) (;~U. Z) (251. ().X. X)2X. (x)y)2u.  2Z. (U)Z 

,Zz. ((;~x . x);~x . (x)y) (,~u . z) (;~x . x);~x . (x)y 

;~z . (2,x . (x)y) (2u. z);~x . (x)y 

2z . ((,~x. x) (,~u . z);~x. (x)y) (~x . y) (;ou . z);~x . (x)y 

,~z. (ff, u . z)2,x . (x)y) (,~x . y) (2~u. z);.x . (x)y 

;~z. (z) (2,x. y)z 

2z. (z)y 

whose standardized normal form is: 2x I . (x~)y. 

(1) According to normal order reduction we must first contract  the leftmost redex. The leftmost 
redex is the substring (2x.2y. )~z . (y)x)2x. (x)y .  Hence axiom (6) is invoked, with 
E =- )~z. (y)x and Q =- 2x .  (x)y. However, x  9 qS(E) A y  9 4~(Q), and to fulfill the conditions we 
rename the y in E to, say, $1, for avoiding confusion with the y in Q. The renaming is 
executed via axiom (8). Since its effect is evident, we jump to the renamed expression. 

(2) Axiom (6) is a restructuring in preparat ion for a contraction. (In fact, it simply insures that 
the first bound variable will be substituted first.) After use of axiom (6) we must continue 
with the redex (2x. 2z. ($1)x)2x. (x)y created inside the former by this restructuring; the 
so-called "trace" (for details se Revesz, 1988, pp. 128-129). This requires again axiom (6), 
with E - ( $ 1 ) x  and Q-=2x .  (x)y. This time xe(o(E)  A ze}4)(Q ), hence the conditions for 
axiom (6) are fulfilled and no renaming is necessary. 

(3) We have invoked axiom (6), and hence must continue with its trace ()~x. ($1)x))~x" (x)y. The 
appropr ia te  reduction scheme is axiom (7), with E 1 ~ $1 and E 2 - x .  

(4) (2x. $1)2x. (x)y is finally contracted with axiom (5), leaving ($1). 
(5) A contract ion has now been performed, and we continue with normal  order, that  is: with 

the leftmost redex in the expression. This redex is (251.).z. ($1) ().x. x)i,~x. (x)y)2u.  2z .  (u)z, 
which invokes axiom (6) with E - ( $ 1 ) ( 2 x . x ) ) . x . ( x ) y  and Q--2u . )~z . (u ) z .  Since 
$1  9 q~ (E) A z r q5 (Q), no renaming is necessary. 

(6) The trace (251. ($1) (2x. x )2x .  (x)y)2u.  2z .  (u)z is processed by axiom (7) with E 1 - ($1) and 
E 2 = (2x. x )2x .  (x)y. 

(7) We continue with normal order. The leftmost redex is in fact the entire expression. The 
appropr ia te  contract ion scheme is axiom (5), since z does not  occur free in 
((251. $ 0 2 u  . ~.z . (u)z) ff.$1. (2x . x)~.x . (x)y)~.u . )~z . (u)z. 

(8) The leftmost redex is now (251. $1)2u. 2z. (u)z which is contracted with axiom (1). 
(9) The leftmost redex is the current expression, which is prepared for further processing by 

axiom (6), with E = ( u ) z  and Q-~(25 l . ( ; t x . x ) 2 x . ( x ) y ) i ~ u . 2 z . ( u ) z .  No renaming is 
necessary. 

(10) The trace is (2u. (u)z) (251. (2x. x )2x .  (x)y)2u.  2z. (u)z, and axiom (7) must be applied with 
E 1 = u ,  E 2 =- z ,  and Q = (251  9 (2x. x )2x .  (x)y)2u.)~z.  (u)z. 

(11) The leftmost redex is (2u. u)(251. (2x .  x )2x .  (x)y. Axiom (4) yields its contractum. 
(12) The leftmost redex (251. (2x. x )2x .  (x)y)2u.  2z .  (u)z is contracted with axiom (5). 
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(13) The leftmost redex (2x. x)2x. (x)y is contracted with axiom (4). 
(14) The leftmost redex (2x. (x)y) (2u. z)2x. (x)y is processed via axiom (7). 
(15) Contraction with axiom (4). 
(16) Contraction with axiom (5). 
(17) Finally, contraction with axiom (5) yields the normal 2z. (z)y, which is equivalent to 

~-X 1 - (X 1)y- 
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