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The problem of change

The classical framework of evolutionary change is based on two aspects of biological

organization: phenotype and genotype. The notion of phenotype refers to the physical,

organizational and behavioral expression of an organism during its lifetime. It

emphasizes the systemic nature of biological organizations. The notion of genotype refers

to a heritable repository of information that instructs the production of molecules whose

interactions, in conjunction with the environment, generate and maintain the phenotype.

Figure 1. The folding of RNA sequences into shapes as a proxy of a genotype-

phenotype map. Mutations occur at the genetic level. Their consequences at the

phenotypic level are mediated by development, the suite of processes by which

phenotype is constructed from genotype. RNA folding is a transparent and tractable

model that captures this indirection of innovation within a single molecule. The

RNA folding map is characterized by a number of remarkable statistical

regularities with profound evolutionary consequences. These regularities may

generalize to more complex forms of development.

In its simplest manifestation, evolution is driven by the selection of phenotypes, which

causes the amplification of their underlying genotypes, and the production of novel

phenotypes through genetic mutations (Figure 1 top).  These two factors of evolutionary

change are the focal points of distinct research agendas. Selection is a dynamical

phenomenon that arises spontaneously in constrained populations of autocatalytically
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reproducing entities. The research agenda focused on selection aims at characterizing the

conditions under which a phenotypic innovation can, once generated, invade an existing

population.  The classical fields of inquiry concerned with selection are population

genetics and ecology. The main variables are frequencies of genes or species

representatives whose change is typically described by a nonlinear dynamical system.

This description is not concerned with a mechanistic understanding of how change occurs

in the first place nor with how the internal architecture of biological entities arises and

how it influences their capacity to vary. Rather, evolving entities are treated as black-

boxes whose variation or “innovation” is generated by some stochastic process with

simple characteristics in an isotropic phenotype space, typically motivated by the need

for mathematical tractability.

The question of how a phenotypic innovation arises in the first place has, so far, been the

concern of a different research track.  The heritable modification of a phenotype usually

does not involve a direct intervention at the phenotypic level, but proceeds indirectly

through change at the genetic level (Figure 1).  This forces the processes that link

genotype to phenotype into the picture.  In biology, these processes are known as

development.  Evolutionary trajectories, or histories, depend on development, because

development mediates the phenotypic effects of genetic mutations and thus the

accessibility of one phenotype from another.  Aside from constraining and promoting

variation, the mechanisms of development are themselves subject to evolution, creating a

feedback between evolution and development.

In the early days of the neo-Darwinian school of evolutionary thought, insufficient

knowledge of developmental processes justified ignoring the relationship between

genotype and phenotype. This pragmatic approach produced a powerful conceptual and

formal framework that has been exported—with mixed success—to fields outside

biology, particularly “evolutionary” flavors of economics and the social sciences.  The

problem remains that important phenomena of phenotypic evolution do not result

naturally from a purely adaptationist framework that assumes phenotypes to be

completely malleable by natural selection. These phenomena comprise the punctuated

mode (the sudden nature) of evolutionary change (Eldredge and Gould, 1972), constraints

to variation (Maynard-Smith, Burian et al., 1985), the origin of novelties (Müller and

Wagner, 1991), directionality in evolution, path-dependency (“frozen accidents”) in

organismal structure, and phenotypic stability over evolutionary time, such as homology

(for a discussion see Gould, 2002).

The origin of the problem is that the arrival of a new phenotype must necessarily precede

its survival and spread in a population through selection.  While selection is clearly an

important driving force of evolution, the dynamics of selection doesn’t teach us much

about how evolutionary innovations arise in the first place. To say that a mutation is

advantageous, means that it generated a phenotype favored by selection, but reveals

nothing about why or how that mutation could innovate the phenotype. A model of the

genotype-phenotype relation (development) is needed to illuminate how genetic change

maps into phenotypic change.  In this chapter, I informally discuss a simple molecular

instance of such a relation that is based on the shapes of RNA sequences (Fontana and

Schuster, 1998ab; Stadler, Stadler et al., 2001), see Figure 1 bottom. RNA is an extreme
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case, because genotype (sequence) and phenotype (folded sequence or shape) are

different aspects of the same molecule, as illustrated in Figure 2. The sequence of an

RNA molecule functions as a genotype, since an RNA sequence can be directly copied

(or replicated) by suitable enzymes. It is the sequence that is copied, not the shape of the

molecule. An RNA sequence acquires a shape through a process in which the sequence

folds into a spatial structure guided by many competing interactions between the

chemical building blocks (the ‘letters of the RNA alphabet’) that constitute the sequence.

Like a phenotype, the shape conveys biochemical behavior to an RNA molecule and is

therefore a target of selection.  The mapping from RNA sequences to shapes constitutes

the perhaps simplest biophysically grounded example of  a mapping from genotypes to

phenotypes that is tractable both theoretically and experimentally.

The RNA model allows to study an important question: given a particular “physics” (that

is, a system of causation, which I shall simply call a “mechanism,” ignoring post-modern

worries in other disciplines) that generates phenotype from genotype, what are the

statistical characteristics of the relation between genotype and phenotype and how do

they affect the dynamics of evolutionary change?  In other words, what can we say

statistically about how phenotype changes with genotype? It is important to keep in mind

the limitations of the model. While RNA is an instance of a genotype-phenotype relation,

it is not a model of organismal development. First, the regulatory networks of gene

expression and signal transduction that coordinate the production of phenotype (for an

overview see Carroll, Grenier et al., 2001) have no analogue in RNA folding. Second, the

molecular processes underlying organismal development are themselves genetically

influenced and thus subject to evolution. In fact, major innovations in the history of life

are associated with the emergence of new developmental mechanisms (Kirschner and

Gerhart, 1998). In contrast, the folding of an RNA sequence into a shape is essentially

governed by physico-chemical principles that lie beyond the control of the sequence.

This said, I believe that the RNA model is relevant, because it offers perspectives that are

potentially generalizable to other, far more complex, situations.

RNA shape as a systemic phenotype

Figure 2 sketches all one needs to know about RNA folding for the present discussion. At

one level, we are given a sequence of fixed length over an alphabet of four letters: A, U,

G, and C. The letters represent certain molecular building blocks. RNA is chemically a

very close relative of DNA. As in DNA, specific pairs of building blocks interact with

one another preferentially: A pairs with U, G pairs with C, and G also pairs with U. We

call building blocks that pair with one another “complementary”.  The difference to DNA

is that RNA occurs single-stranded. Rather than pairing up with a second complementary

strand, as in the DNA double-helix, an RNA sequence folds up on itself by matching

complementary segments along the sequence, as shown in Figure 2. The notion of

structure depicted in Figure 2 simply consists in the pattern of pairings between positions

along the sequence.  The structure formation is driven by changes in (free) energy upon

pairing. Stretches of pairs (the “ladders” or stacks in Figure 2) stabilize a structure, while

loops destabilize it. Notice that the pairing of two segments necessarily creates a loop. In

this abstraction, pairings between positions located in different loops are not allowed.
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Consequently, the formation of a paired stretch (which is energetically “good”) generates

not only a loop (which is energetically “bad”), but it prevents the positions within that

loop from pairing with any positions outside of it.  A huge number of structures are

possible for any given sequence. Yet, one or a few of these structures balance the trade-

offs in an energetically optimal fashion.  I shall call the energetically optimal fold of a

sequence simply its “shape”. This shape can be computed by clever and fast algorithms

(Waterman and Smith, 1978; Nussinov and Jacobson, 1980; Zuker and Stiegler, 1981;

Zuker and Sankoff, 1984) based on empirically measured energy parameters (Turner,

Sugimoto et al., 1988; Jaeger, Turner et al., 1989; He, Kierzek et al., 1991; Walter,

Turner et al., 1994; Mathews, Sabina et al., 1999).

Figure 2. RNA shape. At the level of resolution considered here, RNA shape is a

graph of contacts between building blocks (nucleotides) at positions i=1,…,n along

the sequence. Position 1 is the 5’-end. The graph has two types of edges: the

backbone connecting nucleotide i with nucleotide i +1 (red) and hydrogen bonded

base pairings between positions (green).

The actual shape of a sequence is a three-dimensional structure (see for example the

bottom of Figure 1). Today, this three-dimensional structure cannot be computed directly

from the sequence.  Although the shape shown in Figure 2 is a very crude model, it is not

a fiction either. The pairings in an actual structure can be established empirically and it

turns out that the three-dimensional structure contains many of the pairings predicted by

this more abstract notion of shape.
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The pairing rules and their energetics establish a map (or a process) that assigns a shape

to each sequence. The relevant point for the present discussion is that a shape cannot be

changed directly, but requires modification of the sequence which is then interpreted by

the folding process to generate the new shape. This situation mirrors the indirection in

transforming phenotypes through genetic mutations (Figure 1).

The number of possible sequences of small to moderate length is unimaginably huge.

For example, there are 4100 (that is, 1060) sequences of length 100 – which is not very long

for biological molecules. Our goal can only be to characterize the overall statistical

regularities of the mapping from sequences to shapes.

Figure 3. Epistasis. Bullets indicate a neutral position. In the top left sequence,

position x is neutral because the substitution of G for C preserves the shape, as

shown in the top right sequence.  Yet, neutral positions do change as a consequence

of a neutral mutation. The green and red bullets in the top right sequence indicate

positions that have gained or lost neutrality, respectively. The lower part illustrates

the context sensitivity of mutational effects. The neutral mutation from C to G at x

affects the consequences of swapping A for G at position y.

Shape in RNA (as for bio-molecules in general) is a systemic property. Changing the

‘letter’ at a given sequence position alters many pairing possibilities throughout the

sequence, possibly tipping the optimal pairing pattern. The effect at the shape level of

changing a sequence position is strongly dependent on the sequence context. In a four-

letter alphabet, there are three possible substitutions, or mutations, at each sequence

position. I call a position neutral, if it allows for at least one mutation that does not alter
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the shape of the sequence. Accordingly, such a mutation is a neutral mutation. Although a

neutral mutation leaves the shape of a sequence unchanged, it has two important

contextual effects illustrated in Figure 3. The shape shown at the top left of Figure 3

remains the same if C is substituted by G at the position labeled x.  Yet, whether x is C or

G determines the shape obtained when mutating the position y from G to A (Figure 3,

lower half). This illustrates that the effect of a mutation at position y depends on the

building block at position x. In biology, this dependency is called epistasis. I’d like to

draw attention to another, more subtle, effect: although the replacement of C by G at x

does not alter the shape, it alters the number and location of neutral positions (Figure 3,

top right). Thus, while a neutral mutation does not change the phenotype, it affects the

potential for change.

The tendency of a sequence to adopt a different shape upon mutation is called variability

and is a prerequisite for its capacity to evolve in response to selective pressures

(evolvability). Variability underlies evolvability.  Figure 3 illustrates that variability

(quantified as the number of non-neutral positions) is sequence dependent.  Variability

can therefore evolve (Wagner and Altenberg, 1996; Wagner, 1996). Note that the change

in variability occurs here without the mechanisms of folding (development) themselves

changing. This sequence-dependent change of variability is related to Waddington’s

concept of canalization (Waddington, 1942).

Figure 4. Sequence space for sequences of length 4 over the binary alphabet {0,1}.

The connections correspond to single mutations that change only one position. The

colors hint at how the four-dimensional sequence space (a hypercube) is constructed

from the three-dimensional space (a cube).

Neutral networks

I focus next on one statistical property of the RNA folding map that I believe to be a

“paradigm of change” of metaphorical import beyond RNA.
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In the following it is useful to think of all possible sequences of a given length as related

to one another by a notion of distance.  The distance between two sequences is the

smallest number of mutations required to convert one sequence into the other. The direct

neighbors of a sequence are all sequences one mutation away. For example, a sequence of

length 100 has 300 neighbors. This results in a very high-dimensional metric space.

Despite its abstract nature, this so-called sequence space (Eigen, 1971), see Figure 4,  is

real in the sense that mutations are chemical events interconverting sequences with a

certain probability.  The probability of going from one sequence to another in a single

event depends on their distance (the number of edges on the smallest path connecting

them). The farther apart the sequences, the lower the probability for a direct jump.

Equipped with the notion of a sequence space, consider the sequence and its shape

depicted at the top left of Figure 3.  The positions marked by grey bullets are neutral.  At

least one mutation at each neutral position leads to a neighboring sequence with the same

shape – a neutral neighbor. A given sequence has typically a significant fraction of

neutral neighbors at a distance of one or two mutations.  The same observation holds for

each of these neutral neighbors. (For example, the sequence shown at the top right of

Figure 3 also has several neutral positions, as indicated by grey bullets.)  In this way, we

can jump in steps of one or two mutations from sequence to sequence,  mapping out a

vast network in sequence space on which the phenotype is preserved. For this extensive,

mutationally connected, network of sequences, we coined the term neutral network

(Schuster, Fontana et al., 1994), Figure 5A.

Robustness enables change

The possibility of changing the genotype while preserving the phenotype is a

manifestation of a certain degree of phenotypic robustness towards genetic mutations.

Yet, at the same time, it is a key factor underlying evolvability, the capacity of a system

to evolve. It seems paradoxical, but robustness enables change. To understand this,

imagine (with the help of Figure 5A) a population with phenotype “Green” in an

evolutionary situation where phenotype “Blue” would be advantageous or desirable.

Phenotype Blue, however, may not be accessible in the vicinity of the population’s

current location in genotype space, say, somewhere in the northern portion of the Green

network of Figure 5A. In the popular image of a rugged fitness landscape, the population

would be stuck at a local peak, forever waiting for an exceedingly unlikely event to

deliver the right combination of several mutations to yield phenotype Blue. Yet, if

phenotype Green has an associated neutral network in genotype space, the population is

not stuck, but can drift on that network into far away regions, vastly improving its

chances of encountering the neutral network associated with phenotype Blue (Huynen,

Stadler et al., 1996; Huynen, 1996; Fontana and Schuster, 1998ab; Nimwegen,

Crutchfield et al., 1999), see Figure 5A. Neutral networks therefore enable phenotypic

innovation by permitting the accumulation of neutral (that is, phenotypically

inconsequential) mutations. These mutations, however, alter the genetic context, enabling

a subsequent mutation to become consequential.
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Figure 5. Neutral networks and shape space topology. A: Schematic depiction of

neutral networks in sequence space (upper part).  The color of a sequence (and

hence of a network) indicates its phenotype in the lower part of the figure.  A

population located in the northern portion of the “green” phenotype cannot access

the “blue” phenotype, but it can diffuse on the green network until it encounters the

blue network. B: Phenotypic neighborhood as fraction of shared boundary. The

green network is near the red one, because a random step out of red has a high

probability of yielding green.  The red network, however, is not near the green one,

because a random step out of green has a low probability of yielding red. This effect

can result from differently sized networks. In another case, the green and blue

networks have similar sizes, but they border one another only rarely; green and

blue are not in each other’s neighborhood.  This is the case for shift transformations

like the one shown in Figure 6A.
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Of course, there is no guidance on a neutral network, only drift. Yet, drift confined to the

Green network dramatically increases the chance of eventually encountering the Blue

network. In the absence of neutral networks, an exceedingly unlikely direct jump from an

isolated Green-location to some far-away Blue-location would be required.

What appears to be a sudden and abrupt change at the phenotypic level becomes the

result of several random neutral genetic changes.  The existence of neutral paths in RNA

sequence space was impressively demonstrated experimentally by (Schultes and Bartel,

2000). The importance of neutrality for evolution was long recognized by the Japanese

population geneticist Motoo Kimura (Kimura, 1968; Kimura, 1983).  Population genetics,

however, is concerned with the dynamics of gene frequencies. Neutrality is interesting in

that context because it leads to a diffusion dynamics in the frequency of a neutral gene

within the population. In the present context, I’m concerned with something quite

different, namely the diffusion of a whole population over a neutral network in gene

space. The next consequence of neutral networks that I wish to emphasize is the

organization of phenotype space.

The topology of phenotype space

A space is formally a set of elements with a structure imposed by the relationships among

the elements. A relation of distance gives rise to a metric space. For example, the distance

between two RNA sequences is the number of positions in which they differ. For a metric

space to be relevant, the distance must be defined in terms of naturally occurring (or

technologically controllable) operations that interconvert elements. This is indeed the

case with sequences, where the operations are mutations (or technologically targeted

changes in the sequence). But what is a space of phenotypes, if phenotypes cannot be

modified directly? Although any number of distance (or similarity) measures between

phenotypes can be defined, a phenotype space so-constructed is of no help in

understanding evolutionary histories, because it relates phenotypes in a manner that fails

to take into account the indirection required to change them.  Rather, what is needed is a

criterion of accessibility of one phenotype from another by means of mutations in their

underlying genetic representation. Such a notion of accessibility can then be used to

define a concept of neighborhood that underlies the structure of phenotype space. Such a

neighborhood does not rest on a notion distance (Fontana and Schuster, 1998b; Stadler,

Stadler et al., 2001).  This runs against common sense, which conceives “neighborhood”

in terms of “small distance.” I shall not pursue this here, but a branch of mathematics

known as point set topology clarifies the sense in which neighborhood is more basic than

distance (see any text book on topology).

Recall that a neutral network is the set of all genotypes adopting a particular phenotype.

In Figure 5B, I define a relation of accessibility between two shapes, Green and Red, in

terms of the adjacency of their corresponding neutral networks in genotype space

(Fontana and Schuster, 1998ab).  The boundary of a neutral network consists of all

sequences that are one mutation off the network. The intersection of the neutral network

of Red with the boundary of the neutral network of Green, relative to the total boundary
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of Green’s network, is a measure of the probability that one step off a random point on

the neutral network of Green there is a sequence folding into Red. A rough schematic of

such intersections is depicted in Figure 5B by thick double-colored lines that trace the

apposition of the networks of the corresponding colors.

To fix ideas with a cartoon, think of Europe as sequence space and of a neutral network

as a European state (a “phenotype”), say, France. Now scan the boundary of France and

measure the fraction of boundary it has in common with some other state, say Germany.

That fraction measures the likelihood of ending up in Germany when making a random

step out of France. Doing this for all states bordering France yields a distribution of

relative border lengths.  This distribution has an abstract average. Now define the

neighbors of France as those states whose relative boundary with France is longer than

that average. This construction is needed in actual genotype space because a neutral

network is a very high-dimensional object that borders to a huge number of other neutral

networks. (The example of geographic states fails miserably in this regard.) Most of these

boundaries, however, are tiny and their states are not classified as ‘neighbors’ in this

construction. (The actual distribution of relative boundary sizes is a generalized power-

law (Fontana and Schuster, 1998b).) For important technical details the reader should

consult Stadler, Stadler et al., 2001. Notice something funny, though. France is near

Monaco, because a large fraction of Monaco’s boundary is with France. Yet, Monaco is

not near France, since France’s boundary to Monaco is tiny.  Returning to our original

picture, a phenotype may be easily accessible from another phenotype by genetic

mutations, but the reverse may not be true. A common sense manifestation of this is the

observation that it can be very difficult to build structure (few paths), but very easy to

destroy it (many paths).  I will not provide RNA examples here, since their discussion

requires too much terminology that is of little import to the target audience of this

chapter. The important message is that accessibility is not a distance.  A distance relation

is always symmetric, while accessibility is not, as illustrated in Figure 5B. The RNA

phenotype space is not a metric space, but a much weaker and less intuitive space

(Stadler, Stadler et al., 2001).

Continuous and discontinuous change

One more step is needed to put together a full picture.  Obviously, Austria is not near

France, because Austria has a zero border to France. We can ask, however, whether there

is a route from France to Austria such that at each step we always make a transition to a

state in the current neighborhood - for these are the easy transitions. For example, we

could step from France into Germany (easy) and from Germany into Austria (easy).

Roughly speaking, mathematicians call a path continuous if at any given small step it

proceeds along the neighborhood relations of the space the path is traversing; in other

words, if you don’t have to lift the pencil when drawing the path...
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Figure 6. A: An example of a discontinuous shape transformation in RNA. In this

case (a shift) one strand slides against the other in a paired segment. All pairings

must slide in one single event, since any partial sliding would create bubbles

destabilizing the intermediate. Triggering such a shift by a single mutation requires

a special sequence context (Fontana and Schuster, 1998ab). B: Punctuation in

evolving RNA populations.  A population of RNA sequences evolves under selection

for a specific target shape.  The homing in on the target shape shows periods of

stasis punctuated by sudden improvements.  (Fitness is maximal when the distance

to the target shape has become zero.)  Yet, the phenotypic discontinuities (marker

lines), as revealed by an ex post reconstruction of the evolutionary trajectory, are

not always congruent with the fitness picture.  In this example, the first two jumps

in fitness turn out to be continuous in the phenotype topology discussed here and a

crucial discontinuous transition is fitness neutral (first marker line).

We can now ask an important question about the structure of phenotype space: Given any

two phenotypes, is there always a continuous (“easy”) path connecting them? That is, can

we travel from one neutral network to another that is not a neighbor (in the boundary

sense defined above), such that at each step (mutation) along the way we always transit to

a neighboring network, until we reach our target network? In the RNA case, the answer is

no (Fontana and Schuster, 1998ab). This means that certain shape transformations are

irreducibly difficult to achieve, no matter which route we try. The formal construction

I’ve sketched here, allows us to call such transformations discontinuous in the

mathematical sense of the concept. When looked at in detail, these transformations are
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local changes in shape—nothing fancy— but they require the simultaneous

rearrangement of several interactions (pairings) among building blocks, because any

intermediate resulting from a serial rearrangement would be unstable or physically

impossible (Figure 6A shows an example).

A few observations deserve emphasis. Analyzing the mapping from genotypes to

phenotypes in terms of neutral networks enables a mathematically rigorous definition of

continuity (or discontinuity) in evolutionary trajectories.  First, this notion of

(dis)continuity cross-cuts (dis)similarity. Some transitions between similar shapes are

discontinuous (e.g. Figure 6A) and some transitions between dissimilar shapes are

continuous. Second, the notion of discontinuity defined here is not related to sudden

jumps in fitness or the discrete nature of the notion of phenotype considered here. The

categories of discontinuity are caused by the genotype-phenotype map. They remain the

same regardless of the further evaluation of phenotypes in terms of fitness. (Of course,

the particular shapes observed at discontinuous transitions in actual evolutionary

trajectories will depend on the fitness map. Yet, the nature (type) of these transformations

does not depend on the fitness map.) Third, the dynamical signature of this phenotype

topology is punctuation (see Figure 6B).  A population of replicating and mutating

sequences under selection drifts on the neutral network of the currently best shape until it

encounters a gateway to a network that conveys some advantage or is fitness-neutral.

That encounter, however, is not under the control of selection, for selection cannot

distinguish between neutral sequences.  While similar to the phenomenon of punctuated

equilibrium recognized by (Eldredge and Gould, 1972) in the fossil record of species

evolution, punctuation as described here occurs in the absence of externalities (such as

meteorite impact or abrupt climate change in the case of species). Here, punctuation

reflects the variational properties of the developmental architecture.

Summary

Development matters. The processes that link genotype to phenotype typically generate

a many-to-one mapping, that is, there are considerably fewer phenotypes than genotypes.

Yet, this degeneracy also depends on the level of resolution at which we define

phenotype.  If, in the RNA case, we were to define shape in terms of atomic coordinates,

there could be no redundancy; every sequence would have a unique shape and the topic

of this paper is mute.  I believe, however, that it is precisely the onset of robustness – that

is, extended neutral networks – that identifies a meaningful level of resolution for

phenotype. The notion of neutrality depends on an appropriate notion of equivalence,

which is a notoriously difficult notion to pin down in biological, economic or social

contexts.

Robustness enables change.  The mathematical and statistical analysis of the mapping

from RNA sequences to shapes has produced the concept of a neutral network – a

mutationally connected set of genotypes that map to the same phenotype. I believe that

this concept holds for many genotype-phenotype mappings beyond the simple RNA case.

Neutral networks are key to change. It is hard to understand how evolution could be
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successful at all, if developmental processes don’t give rise to neutral networks. The

popular image of a rugged evolutionary landscape, where populations get stuck at local

optima, is certainly incomplete and perhaps even wrong. Populations may be pinned at

the phenotypic level, but they constantly change at the genetic level, drifting on neutral

networks, thereby dramatically increasing their chances for phenotypic innovation.

Variation is not innovation – the limits of selection.  A neutral network has many

neighbors (in the boundary sense). A transition from a given network to any of its

neighbors corresponds to the acquisition of an “easy” new phenotype. We have seen,

however, that certain phenotypic changes must go through border-bottlenecks, involving

a transition from one network to another that touches the former only rarely. I have

distinguished (with some mathematical motivation) such phenotypic changes as being

continuous or discontinuous.  I’d like to belabor that point by suggesting that the

continuous/discontinuous distinction reflects an intuitive distinction between variation

that occurs readily (a better mouse trap) and innovation, that is, a new phenotype that is

not readily achievable and that requires long periods of drift. The former variation is

typically present in any reproducing population that drifts over a neutral network and

explores its boundary by mutation. Such omni-accessible variation is therefore easily

available to selection for adaptive responses. In the case of an innovation,  however,

selection can do nothing to guide a population over a neutral network in the direction of

the rare boundary segment that marks an innovation, since selection cannot distinguish

between genetic variants of the same phenotype. The occurrence of innovations is not

under the control of selection, but,  of course, their fate is. The economic literature makes

a distinction between invention and innovation. Invention denotes the first occurrence of

an idea, while innovation refers to its adoption in practice. From this perspective, what I

call ‘innovation’ would be the economist’s notion of  invention, since my notion of

innovation only reflects the constraints imposed by the genotype-phenotype map,

independently of the fixation or rejection of an innovation through selection.

Beyond genotype and phenotype

I have described a paradigm of change in a rather specific molecular and biological

setting.  Underneath the surface, the notions of genotype and phenotype appear as

convenient idealizations even in biology (Griesemer, 2000).  They appear hardly

meaningful in technological, economic and social realms. I’d like to conclude, therefore,

with a little translation for readers from other disciplines.

In social, economic and technological domains, we rely on systems consisting of many

interacting heterogeneous components whose collective action gives rise to ordered

system behavior.  When we wish to change that behavior, we hit on a simple fact whose

consequences I have described in this contribution: Behavior is not a thing, behavior is

the property of a thing. It follows that the only way to change behavior is to change the

thing that generates it. The change of a property is necessarily indirect.

As an example, consider a computer program. A computer program implements a

function.  A function is not something that can be touched and altered directly. To alter
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the function one must alter the program text. The mapping from program to function is

what computer scientists call the semantics of the programming language in which the

program is written. Substitute for computer program your favorite social, technological,

or economic organization, for function the relevant qualitative behavior of that

organization and for semantics the dynamical principles that govern the micro-

interactions among the parts of the organization.

At a high level of abstraction, the structure of the situation may be represented by a

mapping from systems to behaviors of those systems. An input to this mapping is the

specification or description of a particular system configuration. The outcome of the

mapping is the behavior or function of that system configuration. The mapping represents

the dynamical principles that are characteristic for a particular class of

systems—computer programs, molecules, electronic circuit diagrams, urban

transportation systems, firms in a given industry. In other words, the mapping represents

the rules or processes that are constitutive for a given class of systems. In social contexts,

institutions would be a component of this mapping.  The unfolding of this constitutive

dynamics in the context of a particular system configuration yields the behavior

associated with that configuration.

When we wish to change behaviors of systems, we often have a spatial metaphor in mind,

such as going from “here to there”, where “here” and “there” are positions in the space of

behaviors. But what exactly is the nature of this space?  Who brought it to the party?  It is

a widespread fallacy to assume that the space of behaviors is there to begin with. This is a

fallacy even when all possible behaviors are known in advance. How does this fallacy

arise?  When we are given a set of entities of any kind, we almost always can cook up a

way of comparing two such entities, thereby producing a definition of similarity (or

distance). A measure of similarity makes those entities hang together naturally in a

familiar metric space. The fallacy is to believe that a so-constructed space has any

significance. It isn’t, because that measure of similarity is not based on available real-

world operations, since we cannot act on behaviors directly. We only have configuration-

editors, we don’t have property-editors. Seen from this operational angle, that which

structures the space of behaviors is not the degree of similarity among behaviors but a

rather different relation: operational accessibility of one behavior from another in terms

of system-reconfigurations.  This brings the mapping from system configurations to

behaviors into the picture.  The structure of behavior-space is induced by this mapping. It

cannot exist independently of it.

Limits

In the previous sections I have described how this space-structure arises in the context of

RNA molecules. With the above paragraphs in mind, substitute  “system” for “RNA

sequence” and “behavior” for “RNA shape”. It  deserves emphasis, however, that the

RNA model is a limiting (and highly  idealized) case in which the mapping from

sequences (systems) to shapes (behaviors) is exogenous to the system itself. In the game

of Go, the rules are not determined by the board configuration; they are given

independently.  While this limiting case is useful to illustrate the induced character of
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behavior-space, the most  intriguing cases are those in which the mapping itself is

endogenously generated by the system. This is the case in all of organismal biology,

where genes also code for products that implement development. The endogeneity  of the

mapping from systems to behaviors is clearly a feature of economic  and social systems

as well.  Nothing prevents the rules of the game (and thus  the game itself) from

changing.  It may be harder to change a rule than to  change a game configuration, but

this is a question of time scales, not of  principle. In the case of an endogenous mapping,

the structure of phenotype  (behavior) space remains an induced one. However, the

concept of space becomes significantly more subtle. Not only can a change in the

mapping  rearrange the accessibility structure between phenotypes, it can also bring  into

existence phenotypes that were not possible before.  We still lack a formal  grip on this

radical form of change.  In the mid sixties, C. H. Waddington vented his frustration with

the mathematical apparatus of theoretical biology: “The whole real guts of evolution -

which is, how do you come to have horses and tigers, and things - is outside the

mathematical theory.” (Quoted by (Gould, 2002, p. 584).) The challenge remains of

bringing the guts of evolution within the scope of a mathematical theory – that is, of

formalizing the emergence of new classes of biological objects.
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