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Modelers of molecular signaling networks must cope with the com-
binatorial explosion of protein states generated by posttranslational
modifications and complex formation. Rule-based models provide a
powerful alternative to approaches that require explicit enumeration
of all possible molecular species of a system. Such models consist of
formal rules stipulating the (partial) contexts wherein specific pro-
tein–protein interactions occur. These contexts specify molecular
patterns that are usually less detailed than molecular species. Yet, the
execution of rule-based dynamics requires stochastic simulation,
which can be very costly. It thus appears desirable to convert a
rule-based model into a reduced system of differential equations by
exploiting the granularity at which rules specify interactions. We
present a formal (and automated) method for constructing a coarse-
grained and self-consistent dynamical system aimed at molecular
patterns that are distinguishable by the dynamics of the original
system as posited by the rules. The method is formally sound and
never requires the execution of the rule-based model. The coarse-
grained variables do not depend on the values of the rate constants
appearing in the rules, and typically form a system of greatly reduced
dimension that can be amenable to numerical integration and further
model reduction techniques.

protein interaction networks ! rule-based models ! model reduction !
distinguishability ! information carriers

Molecular biology is spectacularly successful in disassem-
bling cellular systems and anchoring cell-biological behav-

iors of staggering complexity in chemistry. This raises the
challenge of reconstituting molecular systems formally, in pur-
suit of principles that would make their behavior more intelli-
gible and their control more deliberate. This pursuit is as much
driven by the practical need to cure disease as it reflects a desire
for a theoretical perspective needed to understand the complex-
ity of cellular phenotypes. In achieving such a perspective, we
must deal with two broad problems.

First, we must be able to represent and analyze molecular
interaction systems of combinatorial complexity. Although ubiq-
uitous, such systems are perhaps most notorious in the context
of cellular signaling. The posttranslational modification of pro-
teins and their noncovalent association into transient complexes
generate an astronomical number of possible molecular species
that can relay signals (1). The question then becomes how to
reason about system dynamics if we cannot possibly consider a
differential equation for each chemical species that can appear
in a system.

Second, understanding systems requires resisting the temptation
of adopting the view of an outside observer. The outside view is
indeed appropriate for the chemical analysis of a network, since the
experimenter deliberately interacts in specific ways with the net-
work to create measurable distinctions. Yet, the network, as a
dynamical system, may not be capable of making these same
distinctions. For example, an experimental technique might differ-
entiate between SOS recruited to the membrane via GRB2 bound
to SHC bound to the EGF receptor and SOS recruited via GRB2
bound to the EGF receptor directly. However, from the perspective
of the EGF signaling system, such a difference might not be
observable for lack of an endogenous interaction through which it

could become consequential. The endogenous units of the dynam-
ics may differ from the exogenous units of the analysis.

In an attempt at mitigating the first problem, analytical model
reduction techniques eliminate variables on the basis of algebraic
constraints such as conservation equations and quasi-steady-
state conditions obtained mainly by exploiting separations of
time and/or concentration scales (for example refs. 2 and 3).
Numerical model reduction consists in integrating the kinetic
rate equations of the full network and subsequently building a
reduced model based on species that were observed to be
significantly populated (4). Yet, all these techniques hinge on an
explicit representation of the full network, which severely cur-
tails their applicability to larger systems.

The past few years have seen the emergence of several ap-
proaches (5–8) that represent signaling systems in terms of rules
stipulating conditions for specific interactions among proteins.
These conditions typically specify (far) less than the full state of all
proteins involved in an interaction. In this way, rules capture
combinatorial complexity but avoid an explicit representation of
the complete reaction network involving all possible molecular
species. Yet, to explore the dynamics of a system of rules, such
approaches must resort to stochastic simulations (6, 9, 10), whose
event-based nature exacts a high computational cost. Ordinary
differential equations (ODEs) would be highly useful for rapidly
exploring system dynamics by numerical integration, but a flat-out
expansion of rules into ODEs would, of course, fall victim to the
combinatorial explosion. To nonetheless assemble ODEs from
rules, a coarse-graining approach has been recently proposed
(11–16). The idea is to convert a rule-based model into a reduced
system of rate equations by identifying molecular patterns (sets of
species) that act ‘‘independently’’ (16). We believe this approach to
be promising, because it seems natural that a system described by
rules might be characterized by dynamical units that are less specific
than molecular species. We proceed in the same spirit, but differ
significantly by seeking as variables those molecular patterns that
establish the finest level of resolution at which the dynamics of the
system is capable of making distinctions, thus rendering finer-
grained patterns unwarranted. This we call internal coarse-graining.
Moreover, our approach is formal, avoiding the limitations listed in
ref. 16.

The next section surveys the language, Kappa (17), in which we
cast rules of interaction. Kappa forms the basis of a substantive,
formal, yet intuitive modeling framework (7, 9, 18, 19). Access to
the Kappa modeling platform is provided at www.cellucidate.com.

Kappa: A Language for Molecular Biology
Kappa (17) is a formal language for defining agents (typically
meant to represent proteins) as sets of sites that constitute
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abstract resources for interaction, as illustrated in Fig. 1 and
extensively detailed in section 1 of supporting information (SI)
Appendix. Sites can hold an internal state, as generated through
posttranslational modifications, and engage in binding relations
with sites of other agents. An association of proteins is a
connected (site) graph, called a complex (of agents), as shown in
the box of Fig. 1B. The nodes of the graph are agents, but the
endpoints of edges are sites, which belong to agents. Although
an agent can bear many connections, a site can bear only 1.

Kappa is used to express tunable rules of interaction between
proteins characterized by discrete modification and binding states.
The idea of a rule, Fig. 1A, is to stipulate only the molecular context
required for an interaction along with some rate constant(s). The
left-hand side (lhs) of a rule is any site graph. Agents may mention
a subset of their sites and omit states (SI Appendix, section 1.2). The
right-hand side (rhs) exhibits the changes that occur when the lhs
is matched (SI Appendix, section 1.4) in a mixture of agents. The
difference between rhs and lhs is called the action of the rule. Sites
mentioned on the lhs are said to be tested by the rule. Sites that are
tested but not modified constitute the context of a rule’s action.
Because rules typically do not mention all of the sites and states of
an agent, they keep combinatorial complexity implicit, obviating
the need for eliminating it. A molecular species is a complex in
which each agent occurs with a complete set of sites in definite
states. We also refer to molecular species as ground-level objects.
The complete set of sites defines the finest grain of resolution at
which the state of an agent is known. Like rules, this set of sites can
be updated to reflect new knowledge or hypotheses. Rules give rise
to potentially numerous reaction instances [whose rate constants

are related to the rate constant(s) of the rule]. These instances
involve particular combinations of molecular species, each of which
satisfies the context required for the rule to apply, see Fig. 1B and
Fig. S4 in SI Appendix.

Kappa rules are both descriptions of mechanistic knowledge and
executable instructions. In fact, we view Kappa as a programming
language attuned to molecular signaling. Rules induce a stochastic
dynamics on a mixture of agents, for which we implemented a
general and efficient implicit-state version of the Doob–Gillespie
algorithm (9). A Kappa model of a biological system is a concurrent
computer program whose instructions are rules that asynchronously
change the state of a shared store representing the reaction mixture
on which the rules act. Computer programs are formal objects that
can be analyzed statically. Static analysis assists in the discovery of
behavioral properties of a program without running it, much like a
system of differential equations can be analyzed without simulating
it. Static analysis involves, for example, the inspection of causal
dependencies among rules and an overapproximation of the mo-
lecular species reachable from an initial condition.

Kappa is closely related to BNGL (5), but differs from the latter
in being a context-free grammar, that is, a language that expresses
strictly local rules of action. The computational cost of checking
whether a rule can apply to a given choice of reactants is bounded
by the size of the rule’s lhs and not by the reactants. This difference
enables scalable simulation (9) and static analysis of the implied
dynamical system (7), which plays a crucial role in the efficiency of
the coarse-graining technique we describe here (see Remarks below
and SI Appendix). The central role we attach to static analysis sets
our framework apart from other rule-based approaches, such as
BNGL (5) and ‘‘little b’’ (8), whose primary deliverable is the
automated assembly of the full reaction network by generating all
possible species and their reactions from a given set of rules. Yet,
the combinatorial explosion inherent in molecular signaling makes
such goals impractical and often impossible. In a pilot study of EGF
signaling, we collated 71 rules representing mechanistic observa-
tions of pertinent protein–protein interactions. These rules would
produce 1019 molecular species. Our current EGF model has grown
to !350 rules. It thus appears more useful to forgo the expansion
into an inscrutably large system of equations and, instead, apply
static analysis techniques directly to the rule collection and explore
the system with stochastic simulations that generate dynamical
trajectories (6, 9, 10). Yet, such simulations are computationally
expensive. This raises the question whether there is a system of
ODEs that ‘‘corresponds’’ to a rule-based model, i.e. that consti-
tutes its natural differential semantics.

From Rules to ODEs
Using a rule-based (as opposed to a reaction-based) model
amounts to acknowledging that molecular species may not
always be meaningful units of the dynamics. Such units should
lump together species that cannot be distinguished by the
dynamics arising from a given system of rules (see section 4,
especially 4.2, of the SI Appendix). Moreover, the lumping must
be self-consistent, meaning that the contribution of each rule to
the rate of production or consumption of any unit should only
depend on other units. In the following, we introduce 2 key
properties that a suitable set of coarse-grained dynamical units—
referred to as fragments (to be properly defined later)—should
satisfy.

Property 1 (‘‘No Overlap’’). No fragment properly overlaps a lhs
component of a rule on a modified site. This property is defining
of fragments and is key (but not enough) for expressing the rate
function of a fragment in terms of fragments. The reasoning is
illustrated in Fig. 2. The rule r at the top consumes those species that
match its lhs component rlhs. We can think of a pattern X in terms
of its extension X!, which is the set of species that match X,
accounting for the many ways in which any such species might

Fig. 1. Rulesandreactions inKappa. (A)Arulecapturesahigh-levelmechanistic
statement (empirical or hypothetical) about a protein–protein interaction in
terms of a rewrite directive plus rate constant(s). The left-hand side (lhs) of the
rule is a pattern of partially specified agents and represents the contextual
information necessary for identifying reaction instances that proceed according
to the rule. The right-hand side (rhs) expresses the actions that may occur when
the conditions specified on the lhs are met in a reaction mixture of Kappa agents.
A maximal connected subgraph on the lhs of a rule is called a rule component. (B)
The rule in A matches a combination of agents in 2 distinct ways giving rise to 2
possible reactions with different outcomes. Note that because of their local
nature,Kapparuleswith"1lhscomponentmayapply inbothaunimolecularand
bimolecular situation. This is why such rules are given 2 rate constants, a first-
order (k1)andasecond-order (k2) constant. Inatextual representation,agentsare
names followed by an interface of sites delimited by parentheses. Bonds are
labeled by superscripts and internal states at a site by subscripts. In the graphical
rendition, internal states are indicated as labeled barbs. See SI Appendix, section
1 and the section Kappa: A Language for Molecular Biology for more details.
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match X (think symmetries). The extension rlhs
! of rlhs is shown

schematically at the bottom of Fig. 2 as a yellow area within the blue
area standing for the set of all molecular species implied by the rules
of a system and an initial condition. Fig. 2 provides assistance for
reasoning about the suitability of a few sample patterns as potential
fragments in light of Property 1. Consider pattern B. Although B
does not itself match rlhs, some ground-level instances of B do, such
as species 2. Thus, B! (properly) intersects rlhs

! , which makes it
impossible to express the contribution of the unimolecular rule r to
the consumption rate of B in terms of B alone. Rather, we would
have to know at any time the fraction of molecular species that
occurs in the intersection of B! with rlhs

! , which is a property that
requires knowing the complete reaction mixture at any time. By
contrast, A! is entirely contained within rlhs

! . As a consequence, the
firing of rule r will consume the pattern A at a rate proportional to
its concentration [A], defined at t # 0 by the number of embeddings
of A in the reaction mixture. There is no need to know the reaction
mixture for any subsequent time. The case of C is analogous to that
of A.

It is possible to refine B into B$ by adding context, such that
B$! ! rlhs

! . For example, connecting agent A at siteb to agentB at
c yields B$ % C (a1), A (au, c1, d, b2), B (c2) with B$! #
B! " A!. Thus, as far as rule r is concerned, patterns A, C, and
B$ are fragment candidates by virtue of their extensions being
inside rlhs

! . However, other rules in the system may further
constrain these potential fragments. Indeed, our procedure to
construct fragments depends on all rules of a given system.

Property 2 (‘‘Orthogonality’’). Fragments must partition (in the
extension sense) anything that is contained within a fragment,

which we refer to as a subfragment. We show later that any lhs
component of a rule is a subfragment (Property 1 clarifies this only
for particular components). The rate equation for a fragment
affected by a rule of molecularity "1 (i.e. a rule with 2 or more lhs
components) gets a contribution consisting of a monomial involving
several fragments. Consider, for example, a rule of type Z, Z$3Z*,
Z$, which modifies the lhs component Z into Z*. Consider further
a particular fragment A that is a refinement of Z and is thus
consumed by the rule (A! ! Z!). The consumption rate of A will
be proportional to [A] [Z$]. If only 1 fragment, say B, matches the
lhs component Z$, then [Z$] # [B]. However, there may be several
fragments Bi that match Z$, in which case [Z$] should be the sum
over all [Bi]. The only problem is that the Bi might have ground-
level extensions Bi

! that overlap, causing the naive sum to over-
count. Thus, there must be a set of fragments that partitions Z$!,
so that [Z$] can be expressed as a sum of orthogonal fragments.
Property 2 does more, however: It guarantees that the concentra-
tion of any subfragment can be expressed in terms of fragment
concentrations. This will be needed down the road. Properties 1 and
2 jointly ensure a self-consistent coarse-grained system whose
dynamics is sound. Soundness means that computing the ground-
level dynamics and then coarse-graining yields the same result as
coarse-graining at the outset and then running the coarse-grained
dynamics.

Note that the (possibly infinite) set of molecular species is always
a trivial set of fragments enjoying Properties 1 and 2, but typically
far from optimizing our criterion of ‘‘dynamical distinguishability.’’
We can do much better without ever touching the ineffable
ground-level network of species. As we show next, by proceeding
directly from the rules, we construct dynamical units whose bound-
aries are carved out by the actions available to the system.

Constructing Coarse-Grained Fragments
In this section we implement Properties 1 and 2 by defining
syntactical criteria with which we scan all rules in a model to
determine which agents and sites belong to a fragment. As a test
case, we apply these criteria to a rule-based model of a small section
of early events in epidermal growth factor (EGF) signaling as
adapted from ref. 20. These events include the binding of EGF
(agent E) to the receptor (R), the subsequent dimerization of the
receptor, and the eventual recruitment of SOS (O). The model
consists of 39 rules r01–r39, listed in section 5.1 of SI Appendix. We
write separate rules for binding and unbinding actions, because
unbinding typically occurs under less-restrictive contexts than bind-
ing. The names of agent sites were chosen fairly arbitrarily. The
biological accuracy of the published models from which we ob-
tained the rules might be outdated, because knowledge about EGF
signaling mechanisms keeps changing rapidly. Our goal here is not
a particular biological insight, but a procedure of general interest.
Together, the 39 rules of our test case imply 356 possible distinct
molecular species. We shall see, however, that based on these rules
of interaction, the system can only make 38 internal distinctions.
Differential equations in these 38 variables self-consistently de-
scribe the dynamics of the system. It is very convenient to use a
special map as a canvas for laying out which sites and bindings must
appear together in a fragment. In ref. 7, we called this map the
contact map (CM), Fig. 3A. The CM is generated automatically
from a rule-based model and provides a summary of attainable
interactions. The CM is a graph whose nodes are the agents that
appear in the model. Recall that agents are sets of sites. These sites
are the endpoints of edges representing possible binding interac-
tions. Certain sites are colored to indicate that their internal state
can be modified.

Syntactical Criteria for Annotating the Contact Map. We shall need
the notion of a parsimonious covering, or covering for short. A
covering C of a set S is a set of subsets of S, called classes, such that
(i) no class is empty, (ii) no class is a subset of another class, and (iii)

Fig. 2. Rules and fragments. The figure provides assistance in establishing
criteria that define fragments, as detailed in the section From Rules to ODEs. The
top row depicts a (unimolecular) rule whose lhs component is rlhs. The third row
from top shows fully specified molecular species (ground-level objects), num-
bered 1 to 4. The second row depicts various patterns, A to D. Arrows indicate
embedding relations of one pattern (graph) into another (see SI Appendix,
section 1.4). The rectangles at the bottom provide a schematic of relationships
between sets of molecular species that match the patterns A–D and rlhs. Note that
D embeds into rlhs; its matching instances are therefore a superset of those of rlhs.
Also, D does not overlap with rlhs on a site that r modifies. Hence r has no effect
on D.
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the union of all classes yields S. A covering differs from a partition
in that the elements of a covering need not be pairwise disjoint.

In preparation for building fragments, we first annotate the CM
with 2 types of information obtained by applying the syntactical
criteria listed below. (i) For each agent type A, we define a covering
C(A) of the set of its sites. (ii) For each edge in the CM, we define
its type as either ‘‘solid’’ or ‘‘soft.’’ In a second step, we assemble
fragments based on the annotated CM (ACM).

The following syntactical criteria determine valid coverings
for an agent and the type of a bond. We follow up with some
explanatory remarks.
Cov1 (backward closure). If a rule tests a site a in an agent A and
modifies a siteb in the same agent, any class in C(A) that contains
b must also contain a (e.g. Fig. 4 A and B).
Cov2 (relay). If a rule tests a sitea in an agentA, andA is connected
by some path through a site b to an agent that is modified, any
class in C(A) that contains b must also contain a (e.g. Fig. 4C).
Cov3 (witness). For each agent in an unmodified lhs component,
there must be a class in the agent’s covering that contains all of
the sites tested by the rule.
Edg1. A bond is solid if it occurs on the lhs of a rule that tests
anything other than that bond.

Syntactical criteria Cov1–Cov3 and Edg1 implement Properties
1 and 2. To see this, define an overlap between 2 patterns X and Y
as the set of agents and sites both mention along with a mutually
compatible state. The overlap, if it exists, can be used as an
instruction for gluing the patterns together, see section 2 of SI
Appendix. Our discussion of Fig. 2 suggests that if a pattern has an
overlap with a component on the lhs of a rule, and the overlap
contains a site modified by the action of the rule, the pattern must
be glued to the lhs component to become a fragment as far as that
rule is concerned. Hence, a fragment A either has no overlap with
the sites that are modified by the rule, or it contains a whole lhs
component (SI Appendix, section 2). The same process—glue on

overlap—is repeated for each rule and all agents, starting out with
each site in its own class. Cov1 and Cov2 simply keep track of which
sites of an agent must be mentioned together in a fragment as a
result of this repeated glue-on-overlap. Cov3 takes care of the
orthogonality property in the special case of a component required
for an action but not modified by it (a ‘‘witness’’).

The glue-on-overlap process can pull bonds into a fragment (see
B$ in the discussion of Property 1). However, not all bonds are
conduits of control between the parts, say X and Y, they connect.
Suppose that the only time a bond appears on the lhs of a rule is
in a so-called pure dissociation rule that tests nothing except the
existence of the bond that is to be broken. No rule modifying X or
Y depends on that bond (or the bond would figure in a rule other
than the dissociation rule). As a consequence, the fragments
containing X can stop short of including all possible states of Y and
vice versa. The fragments containing X only need to specify whether
or not X is connected to Y, but they do not need to specify Y itself.
(And vice versa.) The directive Edg1 defines those bonds that carry
constraints as solid. All bonds not characterized by Edg1 can be
chosen as solid or soft, and we can choose to have smaller or larger
covering classes (provided they satisfy Cov1–Cov3); the fragmen-
tation is sound either way. However, soft bonds make for smaller
fragments (see next section). Our policy is to obtain small fragments
by choosing covering classes that are as small as possible and
considering bonds to be soft when they appear only on the rhs of
a rule (bonds that are only formed) and/or on the lhs of a pure
dissociation.

Fragment Assembly. To define fragments, it is convenient to extend
the notion of complex with bond stubs. An agent with a bond stub
is written A (aB@b), which means that A’s site a is bound to B’s b,
without, however, including agent B in the complex.

Given an ACM, a fragment F is a complex such that: Each agent
has a set of sites that is a class, every site has an internal state if any,
every site has a binding state—either free, bound, or stubbed, every
stub must correspond to a soft bond in the ACM, and every bond
is solid. A subfragment is a complex that embeds in a fragment.

To obtain a fragment, one starts with an agent and a site. The
ACM then determines which further sites to add and which
binding states (stubbed or not) are appropriate. When there is
nothing more to add, one has a fragment.

As an example of this growth process, consider agent R in our
rule set. According to the ACM in Fig. 3B, we have a choice
between 2 classes. Suppose we choose class {l, r, Y48}. Next, we
assign a state to each site in that class. For example, all sites are free,
andY48 is unphosphorylated. This yields fragmentR (Y48u,l,r),
which is F34 in the complete list for our example (SI Appendix,
section 2.3). Alternatively, we might choose Y48 to be phosopho-
rylated (fragment F15). Yet, if we choose Y48 to be also bound,
then the solid link in the ACM forces agent S into the fragment,
along with its sitec as the link’s endpoint. In turn,c forces inclusion
of the class to which it belongs, {c, Y7}. Now we need to assign
states to c and Y7 in agent S. For example, S (Y7p, c1), R
(Y48p

1 ,l,r), which is fragment F04. A further fragment is obtained
by considering site r in agent R to be bound. Site r can bind to
another R agent, but the link is soft. A soft link at r does not force
the inclusion of another instance of R. Instead, the bound state is
only indicated with its type: S (Y7p, c1), R (Y48p

1, l, rR@r). This
fragment, however, does not show up in our list. Given our set of
rules, the state in which R is dimerized at site r cannot occur if the
ligand-binding site l is empty. Such a fragment is automatically
eliminated from the list because a separate reachable state analysis
(next section) recognizes it as inaccessible. Fragments as defined
above enjoy the following properties:
Q1. No fragment strictly overlaps with a rule component on a
modified site.
Q2. Any lhs component is contained in a fragment (i.e., is a
subfragment).

Fig. 3. The contact map. (A) The contact map is a graph whose nodes are the
agents in the model and whose edges are possible bonds between sites. Filled
circles indicate sites with modifications of state. The contact map is a fine-grained
version of what is known as a protein–protein interaction (PPI) map, in that its
edges end in sites of agents and not just agents. (B) The annotated contact map
(ACM) after decoration induced by the directives Cov1–Cov3 and Edg1.

Fig. 4. Examples illustrating the syntactical criteria Cov1 and Cov2 for
determining classes in the covering of an agent. See section 3 of the SI
Appendix for further details.
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Q3. The concentration of any subfragment can be expressed
as a linear combination of fragment concentrations (Eq. 17 in
SI Appendix).
Q4. Fragments are closed under rule actions.

Q1 is Property 1 (no overlap), whereas Q2 and Q3 imply
Property 2 (orthogonality). Q4 means that fragments form a
network of reactions (like species).

Q1 follows from Cov1 and 2 and Edg1; Q2 follows from Cov3
and Edg1 for nonmodified rule components, and Cov1 and 2 and
Edg1 for modified ones; Q3 follows from the exhaustivity of the
growth procedure for fragments, as does Q4.

Q1–3 ensure a sound translation from rules into an ODE
system for fragments, as sketched next.

Assembling the Dynamical System for Fragments. The dynamical
system for fragments is constructed by deriving mass action terms
for the consumption and production of fragments from rules. We
only sketch the reasoning here and provide a detailed account in
section 6.4 of SI Appendix. Consider, for example, a rule of the form
Z,Z$ 3 ZOZ$, which binds 2 complexes Z and Z$. Based on this
rule, the differential equation d[Fi]/dt for each fragment Fi that
matches Z obtains a consumption term &![Fi][Z$], where [Z$] is
expressed as a sum of concentrations of orthogonal fragments using
Q2 and 3. The factor ! depends on the rate constant of the rule and
the number of ways that Z embeds into Fi. On the production side,
the kinetic terms depend on the bond type in the ACM. Consider,
for example, a solid bond. A kinetic term ![Fi][Fj] is generated for
the differential equation d[Fk]/dt of every fragment Fk that matches
ZOZ$, where Fi and Fj are fragments matching Z and Z$, respec-
tively, subject to the constraint that the match of Fk is the disjoint
sum of the embeddings of Z and Z$ into their respective fragments.
If the bond in ZOZ$ is soft and corresponds to a """ A.aOb.B """,
one can replace ZOZ$ with ZB@b,Z$A@a, because there is no
information in Z$A@a affecting ZB@b. Every fragment Fk matching
ZB@b gains a production term ![Fi][Z$], where Fi matches Z and is
related to the Fk matching ZB@b. A similar argument applies to
fragments that match Z$A@a.

The dissociation of a solid bond ZOZ$ will give rise to a piece
Z (and also Z$) that embeds into a fragment F. To determine the
contribution of the dissociation rule to the rate of production of
F, we need the concentration of FOZ$. However, FOZ$ is not
itself a fragment but, rather, a subfragment. This is why, for our
method to result in a closed system of equations, we must be able
to express the concentration of a subfragment in terms of
fragments (see Q3 and Property 2).

Fig. 5 was obtained by running a microscopic stochastic
simulation of the early EGF test system, driven by rules r01–r39
while reporting the concentrations of fragments F01–F38. This
stands as a proxy for the numerical integration of the determin-
istic ground-level system of 356 ODEs and the subsequent
lumping of species into our 38 fragments. As a comparison, the
smooth curves result from the direct numerical integration of the
automatically generated ODE system for fragments.

Remarks
Reachability. Underlying several steps of our procedure is a very fast
overapproximation " of the set of reachable species, deploying the
framework of abstract interpretation (21) as described in ref. 19.
This overapproximation comes into play at 3 junctures (i) The
contact map reports edges and site modifications only if they are
reachable by ". (ii) Fragments that are not reachable by " are
discarded. (iii) The procedure for compressing rules (see below)
makes use of ". In ref. 19, we characterize those special situations
for which " is exact. (The present EGF example is such a case.)

Making Rules Concise. Because fragment construction proceeds by
inspecting the structure of rules, it is important that rules be concise,
in the sense of avoiding redundant contextual conditions (tests) on

their lhs. However, what classifies as redundant depends on the
remaining rules in the model. Because rules record empirical
observations or hypotheses, they tend to be crafted in isolation.
Consider, for the sake of illustration, rule r02 expressing the binding
of ligand to receptor: R (l, r), E (r)3 R (l1, r), E (r1). The rule
mentions 2 sites, l and r, of the receptor R. Site l is the ligand
(EGF)-binding site, whose state is modified by the action of r02,
whereas r is the site at which the receptor dimerizes (as described
in r03). Rule r02 asserts that binding of E (EGF) to R requires not
just a free l, but also a free r. Given the other rules of the model,
there is no reachable state of the reaction mixture in which R could
dimerize before binding E. Hence, in the context of the remaining
38 rules of this model, asking for site r to be free is a redundant
condition for the firing of rule r02, because a free l implies a free
r. Without removing such redundancies, fragments would be more
numerous and bloated by fictitious dependencies. To reduce the
extent to which this happens, we preprocess a rule system with an
automatic compression that removes unnecessary contextual spec-
ifications. This technique rests on the reachability overapproxima-
tion referred to in the previous paragraph. In section 5.2 of the SI
Appendix, we list the 39 compressed rules cr01–cr39 from which the
38 fragments were derived.

Role of Rate Constants. All ground-level reactions into which a
rule expands inherit its rate constant (after accounting for
possible symmetry reductions upon expansion). Beyond any
specific values of rate constants, rules themselves already imply
a notion of kinetic distinguishability. For example, our toy model
of early EGF events posits that the phosphorylated EGFR
receptor (R) binds the protein SHC (S), which would read as R
(Y48p), S (c) 3 R (Y48p

1), S (c1). Yet, such a rule does not
appear in the model. Rather, the same binding action between
R and S is found in 2 rules r24 and r28 that differ in their
contexts. Rule r24, R (Y48p), S (c, Y7u) 3 R (Y48p

1 ),S (c1,
Y7u), specifies that site Y7 of S must be unphosphorylated and
free, whereas rule r28, R (Y48p), S (c, Y7p

1),G (a1, b) 3 R
(Y48p

2 ),S (c2, Y7p
1),G (a1, b), specifies that Y7 of S is phos-

phorylated and bound to G. The only reason to warrant such a
distinction is an actual or hypothesized difference in the rate
constants for the 2 contexts. Hence, regardless of the specific
values of rate constants, positing 2 rules with different contexts
for the same action affects the construction of fragments. The
precise values of the rate constants of rules enter the ODEs for

Fig. 5. Comparison between microscopic dynamics and fragment dynamics. Wig-
gly curves: The microscopic dynamics of the early EGFR example is executed with a
Doob–Gillespie simulation (9) while reporting the coarse-grained fragment concen-
trations. This serves as a proxy for the deterministic microscopic dynamics. Steady
curves: The output of the deterministic fragment dynamics. Still, many fragments
(and many more molecular species) only acquire tiny concentration values, causing
far fewer than 38 curves to be discernible by eye in this plot.

Feret et al. PNAS ! April 21, 2009 ! vol. 106 ! no. 16 ! 6457

CO
M

PU
TE

R
SC

IE
N

CE
S

CE
LL

BI
O

LO
G

Y
SP

EC
IA

L
FE

A
TU

RE

http://www.pnas.org/cgi/data/0809908106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0809908106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0809908106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0809908106/DCSupplemental/Appendix_PDF


fragments, but they do not affect the fragments themselves,
because the latter are based on the distinguishability of control
f lows shaped by rule contexts.

Limitations. For our coarse-graining procedure to be well defined,
rules must have unique ground-level molecularity, i.e., a rule with
2 lhs components must apply only to disjoint reactants (unlike in
Fig. 1). Rules whose arity does not always match the arity of their
ground-level instances (molecularity mismatches) can give rise to
polymerization and result in an infinite number of fragments.

Multiple occurrences of the same agent in a rule do not constitute
a problem; neither does the production of an agent. The destruction
of an agent poses no theoretical problem either but is costly in terms
of fragment numbers—as is the BNGL ‘‘.’’ (dot) operator.

We do not claim that our method generates a smallest set of
fragments or that it is unique. In particular, our method carries
a deliberate bias by defining fragments as connected patterns. As
a consequence of our construction via an annotated contact
map, fragments are closed under the operational semantics of
Kappa, i.e., rules convert fragments into fragments (Q4). This
allows us to conveniently picture a reaction network at the level
of fragments. However, this is not necessary for sound coarse-
graining, and alternatives remain to be explored.

We are mathematically certain that any information lost by
our coarse-graining is not distinguishable by the microscopic
dynamics. However, we cannot prove that all information re-
tained in our fragments is distinguishable. One reason is that rule
compression (see above) is, in general, an approximation.

Prior Art. Our method differs from prior approaches in several
aspects. First, our method is formal, which makes its properties
more transparent and amenable to proof. It suffers from none of the
limitations listed in ref. 16, as far as deterministic dynamics is
concerned. Second, our approach focuses on interaction-based
distinguishability rather than ‘‘independence.’’ In section 4 of SI
Appendix, we provide some thoughts on independence and distin-
guishability that are conceptually useful for appreciating our stance
but not needed for grasping our method. The similarity between the
approach sketched in ref. 16 and our present work ends at directive
Cov1, because control flows across bindings are treated differently.
In section 8 of SI Appendix, we compare the outcome of our method
with the manual procedure described in ref. 14.

Conclusions
Rule-based representations have been recently proposed to
address the dynamics of combinatorial systems for which an

expansion into the full reaction network is virtually impossible
(5–7). It would be highly useful to construct a deterministic
projection of rule-based dynamics for several reasons. On the
practical side, rule-based models require stochastic simulations,
which can be very time consuming. Although stochastic kinetics
can provide insights not accessible from deterministic rate
equations, the latter are useful for calibration, analysis, and
judicious simplification. On the conceptual side, many of the
molecular species that are, in principle, attainable by a given
system seem unlikely to play a significant dynamical role, be-
cause they either are too improbable, or the dynamics of the
system cannot differentiate them. The latter is already implicit
in the use of rules, which specify patterns of interactions, rather
than reactions between fully detailed molecular species.

We have presented a formal method for automatically generating
a dynamical system of coarse-grained variables from a given set of
rules, guided by a criterion of distinguishability. The method is exact
in the sense that coarse-graining first and then integrating the
fragment ODEs is equivalent to first integrating the network ODEs
at the level of molecular species and then coarse-graining. The fact
that the ground system is oftentimes ineffable because of combi-
natorial blow-up is of no consequence, because these patterns are
constructed directly from the rules.

Our running test case was a limited model of early events in
EGFR signaling (21), consisting of 39 rules that generate 356
molecular species. Our method yielded a dynamical system of 38
fragments. A pilot study on a larger section of the EGFR system
(19), comprising 71 rules potentially expanding into
18,051,984,143,555,729,567 molecular species, yields 175,988 frag-
ments, which reconnects the system to the realm of feasible ODEs.

In particular cases, fragments become independent units. (A neces-
sary condition being that the coverings of all agents are partitions.) We
call such systems ‘‘tileable.’’ In section 4.1 of SI Appendix, we provide a
connection between tileability and invertibility. Although exact, our
coarse-graining is not invertible, in general.

It might be biologically insightful to attempt a sensitivity
analysis of the fragmentation process, to determine which rules,
when changed, have the biggest impact on the nature and
number of fragments. Can highly consequential rules be guessed
from the annotated contact map? Issues like these suggest that
internal coarse-graining is not only of practical use but of
theoretical import for understanding the informational archi-
tecture of molecular signaling systems.
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1 Kappa

Kappa is a formal language for representing molecular objects as agents [1, 2]. These agents are decorated with sites that carry modifiable
state and/or bind sites of other agents to form complexes. Empirical observations about the states of proteins that permit them to interact in
specific ways are expressed as rules at a level of abstraction consistent with how molecular biologists approach networks of protein-protein
interactions. Kappa-rules stand in analogy to reaction rules in organic chemistry, where aspects of molecules that are irrelevant to a chemical
rearrangement are designated as "remainder" groups, Figure 1. In Kappa, irrelevant context is simply not mentioned. While chemistry has a
theoretical foundation for rationalizing rules of reaction, Kappa-rules only codify observations, not why these observations might make sense to
a structural biologist or biochemist. In this section, we provide a formal syntax of the language and an equivalent graphical rendering, Figure 1.
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Fig. 1. Rule-based languages: the analogy between chemistry and Kappa. A: An aldol condensation is used as an example to illustrate the concept of a reaction rule in

chemistry. The rule details only those molecular parts that are relevant to a particular scheme of reaction, designating unspecified context in terms of remainder groups

R, R’, R”, and R”’ (highlighted). Sometimes a generic scheme, such as in (A), requires refinement into special classes defined by different sets of contexts R to R”’. B:

Upon full specification of the contexts R = H , R′ = H , R′′ = CH3, and R′′′ = CH3, the rule (A) becomes a reaction instance (B). Kappa proceeds in complete

analogy. A rule (A) describes the context required for a local interaction to occur. Panel B shows an instance that complies with the rule depicted in A.
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1.1 Agents, complexes, mixtures. We first provide a formal definition of the context-free grammar of Kappa [3, 4], followed by a few
explanations for readers unfamiliar with Backus-Naur notation.

In the following, let A be a set of agent names, S a set of site names (and let ℘(S) denote the powerset of S), V a set of internal states, and
N a set of labels. Further, let ψ : A !→ ℘(S) be a map that associates an agent name to a set of sites, called the agent’s interface.

Definition 1.1 (Agents).

(i) agent a ::= N(σ)
(ii) agent name N ::= A ∈ A
(iii) interface σ ::= ε | s,σ
(iv) site s ::= nλι
(v) site name n ::= x ∈ S
(vi) internal state ι ::= ϵ (any state)

| m ∈ V
(vii) binding state λ ::= ϵ (free)

| − (semi-link: "bound to something”)

| ? (unspecified: free or bound)

| i ∈ N (bond label)

Definition 1.2 (Expressions).

(viii) expression E ::= ε | a, E

Definition 1.3 (Well-formedness).

(ix) unique interface the sites form a set and each site name in the scope of an agent named A must be in ψ(A)
(x) agent scope a site name can occur only once in a given interface

(xi) binary binding a binding state i ∈ N occurs exactly twice, if it occurs at all

Definition 1.4 (Structural equivalence).

(xii) interface E, A(σ, s′, s,σ), E′ ≡ E, A(σ, s, s′,σ), E′ (site permutation)

(xiii) mixture E, a, a′, E′ ≡ E, a′, a, E′ (agent permutation)

(xiv) edge labels i, j ∈ N ∧ i not in E ⇒ E[i/j] ≡ E (relabeling)

The grammatical rules (i)-(xi) define well-formed expressions in Kappa. We shall define the syntax of Kappa-rules in section 1.3. The
notion of "rule-based" models refers to rules expressing actions, not to the grammatical rules defining the terms of the language.

The grammatical rule (i) defines the overall syntax of an agent as consisting of a name N , taken from the set A (rule ii), and an interface
σ. For example, we may call an agent ErbB1. Rule (iii) and (ix) define the interface of an agent as a finite set σ = {s1, s2, . . . , sn} of sites.
The vertical bar (|) in (iii) indicates a choice in the recursive application of the grammar when constructing agents. The rule is recursive because
σ appears on both sides of the definition: a set of sites consists of a site s and a set of sites. Each time we iterate over (iii), we instantiate a
different site s. The s in (iii) refers to the syntactical category "site” defined in (iv). The construction of an interface terminates by choosing the
empty interface ε. The sites of an agent control the interactions it participates in. These interactions are defined by Kappa-rules, section 1.3. As
indicated in (v), a site s is referred to by an arbitrary name in S, much like an agent. According to (iv), a site carries two types of information,
notated as a superscript and subscript to the site name. The subscript ι (iota) of a site refers to its internal state, which either assumes some
definite value or is left unspecified (ϵ), as declared in (vi). In most biological interpretations, the value of an internal state indicates a post-
translational modification, such as "phosphorylated", "unphosphorylated", "methylated". The superscript λ of a site refers to its binding state,
defined in (vii). Agents may be bound to other agents at sites that belong to them. To indicate that site l of agent ErbB1 is bound to site r of
agent EGF, we deploy the same superscript at both sites. For example, the expression ErbB1(l2),EGF(r2) indicates an agent ErbB1 that is
bound to an agent EGF at the sites indicated. A superscript uniquely labels a bond between two agents, as laid out in rule (xi). The superscript ϵ
means that the site is unbound (free), while a subscript ϵ indicates an unspecified state (like a wild card). We typically do not write the value ϵ.
For example, A(sϵϵ) ≡ A(s).

The object ErbB1(l2),EGF(r2) is not itself an agent, because an agent has only one name by virtue of (i). In fact, ErbB1 bound to agent
EGF is a complex, which belongs to the syntactical category of expression, Definition 1.2. In the grammar rule (viii) for forming expressions,
the symbol a refers to agents, as defined in (i)-(vii). An expression is simply a set of comma-separated agents. The syntactical category of
expression thus includes the notion of a complex. For example, the expression

EGF(r1) , ErbB1(l1,CR3,Y1016p) , EGF(r2) , ErbB1(l2,CR3,Y1016u) [1]

denotes a complex in which two ErbB1 agents, each bound to an EGF agent, have dimerized on their sites named CR (Figure 2).
An agent is an atomic entity, in the sense of not being decomposable into further agents. A complex is a connected graph of agents. (In

chemistry, an atomwould correspond to an agent in our sense, and a molecule to a complex.) An expression is more general than a complex, since
Definition 1.2 does not require any bindings between agents in an expression. Figure 2 illustrates an expression (and a graphical presentation)
consisting of an agent EGF(r), an agent ErbB1(l,CR,Y1016p), and the complex represented in [1]. As defined in (viii), an expression is a
graph over agents whose connected components are complexes.

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Fig. 2. A Kappa expression. The textual representation of a small reaction mixture containing 6 agents that are divided into three complexes (underlined) is shown at

the bottom. The two complexes on the left are simple agents, while the complex on the right is made of 4 agents hanging together as shown. An equivalent graphical

rendition is depicted above the textual expression, exhibiting the complexes in the same order (left to right) as in the expression below. Names of agents and sites are

written inside their corresponding nodes, while internal states of sites, such as the phosphorylated state (p) of Y1016 at ErbB1, are indicated by a labeled barb coming
off the corresponding site node.

An agent should be thought of as being associated with a unique interface (by virtue of the mapping ψ). As we shall see later, agents in an
expression are oftentimes mentioned with only a subset of their sites. Rule (ix) ensures that these sites are elements of the agent’s interface.

We would like an expression to represent the contents of a well-stirred mixture or chemical solution. To formalize this intent, we define
structural equivalences between expressions, Definition 1.4. This is a standard procedure in computer science to undo the distortion in literal
meaning arising from the constraints of linear text. The first two equivalences, (xii) and (xiii), erase any notion of space in the Kappa language.
This is important to keep in mind, since textual (and graphical) renditions have a tendency to fool us. In particular, rule (xii) states that an
interface is a set, not an ordered sequence of sites. Hence, the placement of sites in a graphical representation, such as Figure 2, has no
significance. Rule (xiii) states that an expression has no spatial meaning. Every agent or complex is "equidistant” from any other, since all
shuffles of an expression are equivalent. An expression, therefore, represents a well-mixed solution of molecular objects. Rule (xiv) states that
we can relabel edges (bonds) as we please, provided the labels remain unique. Thus, if j is an edge label in an expression E and i is not, then
we can substitute i for j in E (denoted by E[i/j]) without changing the meaning of E.

1.2 Patterns. An expression representing the contents of a reaction mixture typically contains complexes made of agents with a completely
specified interface. In the main text we refer to these as molecular species or ground-level objects. However, it is useful to consider agents with
only a partially specified interface. Recall that chemical rules, such as the one in Figure 1A, refer to partially specified molecules for the purpose
of isolating an action that occurs across many reaction instances consisting of different fully specified molecules.
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by not mentioning the site at all. See text for details.
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A pattern is an expression consisting of partially specified agents. Figure 3 depicts the basic patterns exemplified by an agent A(x,y) with
two sites:

1. Unspecified binding partner. The expression A(x1,y−p ), Figure 3A, specifies an agent in state 1 at site x and in state p at site y. In addition,
site y is bound, but we don’t specify to whom. We call this a semi-link and indicate it by a hyphen (− ) instead of an edge label.

2. Unspecified binding state. The agent expression A(x1,y?
p), Figure 3B, is similar to the previous one, except that we do not care whether site

y is bound. We indicate this by a question mark (?) in the bond superscript. Note that by not mentioning any binding state for site x we assert
that this site is free (unbound).

3. Unspecified internal state. In A(x,yp), Figure 3C, we do not care about the internal state of site x, because we omit its subscript. However,
we do care that the site be free (as in all previous cases). Site y is in state p and free.

4. Omitted site. In A(yp), Figure 3D, we omit site x entirely, asserting that we don’t care about its internal state nor its binding state. Site y is
in state p and free.

1.3 Rules. The main use of patterns is in the definition of Kappa rules. In analogy to chemical reaction rules, a rule is a pair of expressions
that are typically patterns:

Eleft −→ Eright.

The pattern Eleft defines conditions on internal states and binding states of agents that have to be satisfied for the rule to apply. Rules are applied
to a mixture, that is, an expression S representing the contents of a reaction system at a given time. The basic idea is illustrated in Figure 4 for
the rule

Gab1(PH−,Y4471),PI3K(SH21,s),PIP(threeu,fourp,fivep)

!!
Gab1(PH−,Y4471),PI3K(SH21,s2),PIP(three2

u,fourp,fivep)

[2]

(which we write vertically for ease of placement on the page). Below the rule in Figure 4, we have sketched a hypothetical mixture. We want
to identify a configuration of (fully specified) agents in the reaction mixture S that satisfies the pattern of reactants on the left hand side (lhs),
Eleft, of the rule. When such a configuration has been located, it is replaced by the configuration specified on the right hand side (rhs), Eright, of
the rule. Replacement consists in updating the internal states and the binding states that are changed by the rule. The operational meaning of a
match and a replacement are formalized in section 1.4 and 1.5, respectively.

We can think of a rule as an action that is applied to a configuration in the mixture. The action is the difference between the right hand side
(rhs) and lhs of a rule. The differences may be many, such as changing several internal states and binding states at once, but they all boil down to
a handful of elementary actions that cannot be further decomposed within the present definition of Kappa: binding, unbinding, and the change
of an internal state. Kappa also allows for the creation and the removal of an agent.

Rules must obey certain constraints to be sound. Obviously, expressions Eleft and Eright must be well-formed, that is, in compliance with
Definitions 1.1, 1.2, and 1.3. The interpretation of a rule, however, requires a mapping of agent identities across the arrow. We must know
which agents on the right of a (textual) rule correspond to which agents on its left. There are several ways of defining such a mapping. We
opted for a simple convention: both sides of a rule, Eleft and Eright, are compared with one another proceeding from the left of each expression.
The comparison only checks agent names and interfaces, but is blind to the states of the sites mentioned. It ends at the first difference. This
procedure identifies a longest left-anchored substring – a prefix – common to both expressions. (It may be empty.) The prefix now establishes
a sequential correspondence between agents on the left and right hand sides of a rule. Anything after the common prefix is interpreted in terms
of deletions and introductions of agents, depending on whether an agent is missing on the right or left hand side, respectively. Subtleties of the
mapping rise to the user’s attention only when using textual input. An example may help.

A(x1),B(x1,yu) → A(x1),B(x1,yp)
˘
change state of B [3]

The common prefix in rule 3 establishes a correspondence between the agents mentioned on the left and the right. This rule states that if agent
A is bound at site x to B at site x and B is unphosphorylated at site y (more precisely, "site y is in state u"), B will be phosphorylated at y – a
common situation in signaling.

Let us now replace A(x1),B(x1,yp) with B(x1,yp),A(x1). By themselves, these expressions denote the same graph or complex. How-
ever, in the context of a rule, where a correspondence between agents on both sides has to be established to represent a set of actions, the
structural equivalence, Definition 1.4, is suspended. The left and the right hand side of the rule have no common prefix, which triggers the
addition and deletion actions:

A(x1),B(x1,yu) → B(x1,yp),A(x
1)

8
>>>>><

>>>>>:

delete the A referenced on the left

delete the B referenced on the left

add a B(x,yp)

add an A(x)

bind B(x,yp) at x to A(x) at x

[4]

1.4 Pattern matching. Matching is a process that establishes whether a more detailed expression E′ conforms to a less detailed expression
E. To gain some intuition, consider agents first. A specification A′ of an agent conforms to a specification A, if

(i) A′ and A coincide in agent name and all site names that A mentions, and
(ii) the state values (ι ∈ V | ϵ) and binding values (λ ∈ N | − | ?) of each site mentioned in A, are either equal or less specific than those
mentioned in A′. With regard to binding state, ’?’ is less specific than ϵ or ’− ’, and ’− ’ is less specific than a label i ∈ N. With regard to
internal state, ϵ is less specific than a value ι ∈ V.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Fig. 4. Rule application in Kappa. First, a match between the pattern on the left hand side of a rule (blue lens) and the mixture (bottom) is identified. The action specified

by the rule is then applied to the matching configuration, resulting in a new configuration according to the rule’s right hand side (red circle). Many matchings may be

possible for any given rule and many different rules may be applicable at any given moment. Rules and matchings are chosen for execution in a way that generates

probabilistically correct sequences of events, following a generalization [3] of the Doob-Gillespie algorithm [5, 6] for stochastic chemical kinetics.

The concept of a match can be extended to expressions (mixtures) E′ and E, by saying that E′ conforms to E, written as E′ ! E, if every
agent in E′ conforms to a distinct agent in E. In particular, anything conforms to an empty expression. Usually, E′ is a reaction mixture,
and E is the pattern on the lhs of a rule. We next formalize the notion of "being conformant” as a satisfaction relation !. Symbols refer to the
corresponding syntactical categories as in the agent Definition 1.1. The specificity ranking of binding states is such that ‘?’ (unknown) subsumes
‘ϵ’ (free) and ‘− ’ (bound), and ‘− ’ (bound) subsumes a binding label indicating a specific bond to an agent identified in the expression. Likewise,
the specificity ranking of internal states is such that ‘ϵ’ (unspecified) subsumes any specified state. In symbols:

ϵ

binding state: ?

""!!!!

##""
"" internal state: ϵ $$ ι ∈ V

− $$ λ ∈ N,

[5]

where the arrow means "is a superset of" (or, equivalently "is less specific than"): x → y ≡ x ⊇y. Equality applies between two λs that are
identical in value. Of course, we have ϵ = ϵ and ? = ? (question marks). In the following, a fraction denotes an inference from the precondition
(in the numerator) to the postcondition (in the denominator), i.e., A

B means "if A then B".

Definition 1.5 (Conforming, Matching). To establish whether E′ conforms to (matches) E, E′ ! E, apply the following criteria:

(i) site match nλ
′

ι′ ! nλι , if λ′ ⊆λ and ι′ ⊆ι

(ii) empty interface σ′ ! ∅

(iii) interface
s′ ! s σ′ ! σ
s′,σ′ ! s,σ

(iv) agent name
σ′ ! σ

N(σ′) ! N(σ)

(v) empty expression E′ ! ε

(vi) expression
a′ ! a E′ ! E
a′, E′ ! a, E
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Fig. 5. Pattern matching. The embedding (fitting) of less detailed graphs on the left into more detailed graphs on the right. Graph 1 on the left embeds into complex 1’

(a signaling assembly known as mTORC2, consisting of mTOR, Rictor, SIN1, and mLST8). Graph 1 agrees in all the names and states it mentions with graph 1’. Since

graph 1 omits the site l from agent mTOR, l’s state in graph 1’ is irrelevant. The label φ indicates the injective mapping from agents in 1 into agents in 1’; we say graph 1

embeds into graph 1’, φ, G1 ▹φ G′
1. The graphs G′

1 and G1 can be rendered in terms of their respective string expressions E′
1 and E1. Upon arranging the strings

according to φ, the criteria in Definition 1.5 establish thatE′
1 conforms toE1,E′

1 " E1. Graph 2, in contrast, does not fit complex 1’, as the former demands that SIN1
be bound to something at its site akt, but 1’ specifies site akt to be free. In graph 3, agent PIP on the left does not match PIP in complex 3’ on the right, as the latter
has site four in an unphosphorylated state, while the former requests a phosphorylated state. There is no disagreement on site three, as graph 3 does not care about
its binding state (the dotted line stands for a ’?’ in the textual representation, indicating "bound or unbound").

Definition 1.5 is understood as a relation between literal expressions (strings of text), established by stepping through the strings E′ and E
from left to right. However, finding a match of E′ to E may necessitate the inspection of several structural equivalences of E′, generated by
reordering agents, interfaces, and relabeling bonds using Definition 1.4. It is not part of Definition 1.5 to produce such a reordering; rather, the
reordering is an implicit input through the literal form of E′.

Embedding a graph into another graph. An expression E′ can be represented by a site graph G′, in which nodes are agents identified
by their sequential position in the expression (see Figure 2) and edges correspond to bonds between sites as indicated in the expression. The
concept of matching an expression E′ to a less specific expression E, E′ ! E, has a natural extension in the notion of embedding the graph G
(corresponding to E) into the graphG′ (corresponding to E′). An embedding ofG intoG′ is equivalent to first finding an expression E′′ that is
structurally the same as E′, E′′ ≡ E′, which amounts to a graph isomorphism between G′ and G′′ (corresponding to E′′), and then a matching

of E′ to E, which amounts to a graph inclusion from G into G′. In symbols: E′ ≡ E′′ ! E corresponds to G′′ iso
= G′ incl←− G. Keep in mind

that we think of a smaller (less detailed) graph G as being embedded into a larger (more detailed) graph G′, while a more detailed expression
E′ matches a less detailed expression E (the "pattern"). When dealing with graph embeddings it is more natural to simply think of the smaller
graph G being relabelled (isomorphism) to "fit" the larger one. Intuitively, an embedding of G into G′ (the first not larger than the second) is a
process whereby we move G over G′, trying to overlay G on G′ such that agent types match (as well as the states of the sites mentioned in G).
Several overlays may be possible, because either graph may contain multiple agents of the same type connected in the same way. Each overlay
generates a distinct embedding. For example, let G be the obvious graph of A1(x1),A2(y1) and G′ the graph of A1(x1),A2(y1,x2),A3(y2).
(Since isomorphisms play a role, we attach an identifier to each agent.) There are two embeddings of G into G′: (1) the inclusion of G into G′

and (2) a nontrivial isomorphism of G, i.e. the graph of A2(x1),A3(y1), that also embeds into G′. Figure 5 provides a few graphical examples
to fix the concepts. It is much more convenient to reason formally in terms of graphs than expressions, which is what we do in the main text and
in subsequent sections. We notate the embedding of G into G′ as G ▹ φ G′, where the subscript φ indicates a particular embedding.

1.5 Replacing a pattern. The execution of a rule Eleft → Eright consists in testing whether an expression S conforms to Eleft, S ! Eleft, as
defined in section 1.4, and then overwriting (updating) the matching region in S with Eright. Typically, the expression S represents the contents
of a reaction mixture. Here we formalize what it means to overwrite an expression El with another expression Er , El[Er]. The definition of
replacement below makes use of a "null”-agent ∅ for the purpose of describing agent deletion and addition. However, we have not defined a
null-agent in Definition 1.1. Instead, we shall use the following convention. Let prefix be the longest common left-anchored substring between
the lhs and the rhs in the rule lhs → rhs, as described in section 1.3. Let L (R) be the remainder of lhs (rhs) after the prefix, thus, lhs = prefix,L
and rhs = prefix,R. For the replacement rules to add the agents inR and delete those in L, we pad the rule with appropriately placed null-agents,
|R| null agents on the left and |L| on the right:

prefix, L, ∅, . . . , ∅| {z }
|R| times

−→ prefix, ∅, . . . , ∅| {z }
|L| times

, R.

Proper execution of replacement must avoid capturing (i.e. duplicating) bond labels that exist elsewhere in El. Our implementations automati-
cally avoid capture by relabeling using Definition 1.4. Furthermore, to apply a rule with an empty lhs (production of agents) or with an empty

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



rhs (deletion of agents), we need to extend the structural equivalences, Definition 1.4, and the matching relation, Definition 1.5, with a dummy
"empty agent", ∅, that matches an empty lhs expression and that is an empty rhs that can be used to overwrite the deleted agent(s). Thus,
Definition 1.4 is extended with E ≡ E, ∅, and Definition 1.5 with ∅ ! ∅.

Definition 1.6 (Replacement).

(i) overwrite binding state λl[λr] =

(
λl if λr → λl in [5],

λr otherwise.

(ii) overwrite internal state ιl[ιr] =

(
ιl if ιr → ιl in [5],

ιr otherwise.

(iii) overwrite site nλl
ιl [nλr

ιr ] = nλl[λr ]
ιl[ιr ]

(iv) interface unchanged σ[∅] = σ

(v) overwrite interface (s,σ)[sr,σr] = s[sr],σ[σr]

(vi) overwrite agent N(σ)[N(σr)] = N(σ[σr])

(vii) agent deletion N(σ)[∅] = ∅

(viii) agent introduction ∅[N(σr)] = N(σr)

(ix) expression unchanged E[ε] = E

(x) overwrite expression (a, E)[ar, Er] = a[ar], E[Er]

2 Glue-on-overlap procedure for fragments

Figure 6 illustrates an aspect of fragment construction. Consider whether pattern B can be made into a fragment with regard to rule r from
Figure 2 in the main text, r: A(au,b1),B(c1) → A(ap,b1),B(c1). Recall from the discussion of Figure 2 (main text) that we needB⋄⊂r⋄lhs.
While this is not the case for the B in Figure 6, B might be further specialized (refined) into B′ by adding more context, after which it might
qualify as a fragment for r. Refining B into B′, such that B′⋄ ⊂ r⋄lhs, amounts to glueing together B and rlhs. To do this, we first identify
a glueing region. The glueing region of B and rlhs is the set of agents and sites that both mention, along with a mutually compatible state
(following the specificity ranking given in [5]). If there is no such state, the glueing region is empty. In the middle of the diamond in Figure 6
we see thatB and rlhs both mention agent A with site a in state u. Thus, A(au) is the glueing region (shown at the top of the diamond). IfB had
left the internal state of site a unspecified, i.e. B :=C(a1),A(a,c1,d), then the glueing region with rlhs would be A(a), since an unspecified
internal state at site a is compatible with any specific state at that site, in particular u. In contrast, the pattern B :=C(a1),A(ap,c1,d) would
result in an empty glueing region.
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Fig. 6. Fragment construction by glue-on-overlap. Pattern B and the lhs component, rlhs, of rule r (Figure 2 of main text) have a glueing region, known in category
theory as a pullback. The glueing region acts an instruction for joining both patterns into a new one (the so-called pushout), shown at the bottom of the diamond. Patterns

D and rlhs are not joined (red cross), because their pullback does not contain a site modified by r. See text for details.
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We now can join B and rlhs by overlaying them on the glueing region, A(au). This yields a new pattern that qualifies as a fragment as far
as rule r is concerned. This new pattern is subject to a similar procedure with the next rule in line to be checked.

Such a refinement is not needed, however, unless a condition is met. The red circle in Figure 6 indicates the site and state modified by r,
which the glueing region must contain if a pattern is to be refined into a fragment candidate. For example, pattern D in Figure 6 does have a
glueing region with rlhs, which does not contain the site and state modified by r. Rule r still acts on instances of D, since any ground-level
instance that matches rlhs also matches D. However, since D does not care about the action of r, any instance of D transformed by r results
in another instance of D, with no net effect on the concentration of D. This only means that there is no point in further refining such a pattern
with regard to r. Nonetheless, a rule s might give rise to a fragment whose overlap with rule r does not contain sites and states modified by r.
Naturally, that fragment’s ODE will not receive any kinetic terms from r.

3 Illustration of syntactical criteria

To illustrate syntactical criteria, such as Cov1, we consider flows of control within and across agents. Consider Figure 4B in the main text and
imagine two rules r1 and r2 both of which modify the state at site b of agent A, but r1 conditions the modification of b on the state of site a,
while r2 conditions it on the state of c. To fix ideas, let r1: A(a0,b0) → A(a0,b1)@ k1 and r2: A(c1,b1) → A(c1,b0)@ k2, as shown in
Figure 7. Let a ground-level species be denoted by a triplet abc reporting the state (0 or 1) at each site and let ∗ be a wildcard for expressing
patterns. The lhs of r1, A(a0,b0), which is 00∗, is not a unit of the dynamics, as can be easily seen: d[00∗]/dt = d[000]/dt + d[001]/dt =
−k1[000] − k1[001] + k2[011] = −k1[00∗] + k2[011]. The reason is a configuration in 00∗ - specifically 001 - that satisfies the lhs of r1 and
the rhs of r2. As a consequence, the rate equation of [00∗] receives a term from the action of r2 (on 011). Thus, the concentration of 011matters
for describing the dynamics of the system, which means that the state at both controlling sites a and c must be known at any time. This forces
both sites into the same covering class as b.
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Fig. 7. Example illustrating directive Cov1 for the case shown in Figure 4B of the main text. Two rules, as described in the text, are shown at the top. The bottom

illustrates the action of the rules on microconfigurations (ground-level objects). The solid (dotted) rectangles cover the configurations that match the pattern on the lhs

(rhs) of each rule. See text for details.

The case of Figure 4D in the main text consists in two rules r1 and r2 that modify sites b and c, respectively, while both testing a condition
on site a. For example, let r1: A(a0,b0) → A(a0,b1)@ k1 and r2: A(a0,c0) → A(a0,c1)@ k2, as shown in Figure 8. Here, too, there
is a ground-level configuration, 000, whose concentration is affected by both rules, because it matches the lhs of r1 and r2. However, r2

transforms 000 into 001, which still matches the lhs of r1. In fact, this is an example of a situation in which the glueing region (section 2)
between the lhs of r1 and the lhs of r2 does not contain either modified site. Hence, r2 maps one subset of the extension of 00∗ into another
without affecting the concentration of 00∗. Indeed, 00∗ is a fragment, as we can easily check: d[00∗]/dt = d[000]/dt + d[001]/dt =
−k1[000] − k2[000] − k1[001] + k2[000] = −k1[00∗]. Agent A has therefore two covering classes, {a, b} and {a, c}, for a total of four
fragments: 00∗, 01∗, 0∗0, and 0∗1. In general, a covering class contains the backward closure of all sites that control a particular locus of
modification.

4 Independence and self-consistency

We discuss two simple examples to clarify the notions of independence [7, 8, 9] and self-consistency.

4.1 Example 1: Independence and tileable systems. Consider a scaffold protein C(a,b) with a specific binding site for A(a) and B(b), as
shown in Figure 9A. This system comprises six possible molecular species, A, B, C, A.C, C.B, A.C.B, where the dot indicates a bond. In this
section, we use mathematical font (slanted) when referring to molecular species or patterns and their concentration variables as they appear in

8 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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deterministic kinetic equations. The six species are related by four association and dissociation reactions, as shown on the left:

A + C
kA,C
1#

kAC
−1

A.C

A + C.B
kA,C
1#

kAC
−1

A.C.B

9
>>>>=

>>>>;

A(a),C(a) ←→ A(a1),C(a1)

B + C
kB,C
1#

kCB
−1

C.B

B + A.C
kB,C
1#

kCB
−1

A.C.B

9
>>>>=

>>>>;

B(b),C(b) ←→ B(b1),C(b1)

[6]

To assert that the binding sites are independent is to assert that the rate constant for the binding of A to C is the same as the rate constant for
the binding of A to C.B, and likewise for the interactions between C and B. This kinetic indistinguishability means that only four Kappa-rules,
shown on the right of [6], are needed to express the eight reactions on the left. The mutual independence of the interactions between A and the
scaffold C on the one hand and B and C on the other is expressed by omitting site a and b, repectively, from the corresponding interaction rules.
As a consequence, the binding reaction between A and C (right arrow in the first rule) expands into two microscopic reactions on the left with
identical rate constants, kA,C

1 .

The full dynamical system is given by:

d[A]
dt

= kAC
−1 ([A.C] + [A.C.B]) − kA,C

1 [A] ([C] + [C.B])

d[B]
dt

= kCB
−1 ([C.B] + [A.C.B]) − kB,C

1 [B] ([C] + [A.C])

d[C]
dt

= kAC
−1 [A.C] + kCB

−1 [C.B] − [C]
“
[A] kA,C

1 + [B] kB,C
1

”

d[A.C]
dt

= kA,C
1 [A][C] + kCB

−1 [A.C.B] − [A.C]
“
kAC
−1 + [B] kB,C

1

”

d[C.B]
dt

= kAC
−1 [A.C.B] + kB,C

1 [B][C] − [C.B]
“
kCB
−1 + [A] kA,C

1

”

d[A.C.B]
dt

= kA,C
1 [A][C.B] + kB,C

1 [B][A.C] − [A.C.B]
“
kAC
−1 + kCB

−1

”

[7]

This system can be coarse-grained by conceptually splitting the centerpiece C into two fragments (Figure 9A), one containing only the A-
binding site, the other only the B-binding site. This captures the fact that A and B cannot know about each other despite their interactions with
a shared C. Let us denote the former fragment with C∗ and the latter with ∗C, the asterisk indicating that we don’t care about the corresponding
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Fig. 9. Independence and self-consistency. The Figure depicts schematically Examples 1 (A) and 2 (B) described in the text. In both cases, the binding interactions on

the "left” and the "right” of agent C do not influence one another. However, in case (B), agent C internally synchronizes the sites a and b through a dependency on the
state of site c, but this correlation is not "readable” by the interactions that define the system. As in case (A), case (B) can be split into two self-consistently described
subsystems, but they are no longer independent. The coarse-grained variables that enable the separation into subsystems cannot be used to reconstitute the microscopic

dynamics.

binding site. The system then splits into two independent subsystems, self-consistently described by {A, C∗, A.C∗} and {B, ∗C, ∗C.B}.

[A]

[C∗] $[C] + [C.B]

[A.C∗] $[A.C] + [A.C.B]

[B]

[∗C] $[C] + [A.C]

[∗C.B] $[C.B] + [A.C.B]

Self-consistent means that each set of variables is closed with regard to its own dynamics:

d[A]
dt

= kAC
−1 [A.C∗] − kA,C

1 [A][C∗]

d[C∗]
dt

= kAC
−1 [A.C∗] − kA,C

1 [A][C∗]

d[A.C∗]
dt

= kA,C
1 [A][C∗] − kAC

−1 [A.C∗]

[8]

and

d[B]
dt

= kBC
−1 [∗C.B] − kB,C

1 [B][∗C]

d[∗C]
dt

= kBC
−1 [∗C.B] − kB,C

1 [B][∗C]

d[∗C.B]
dt

= kB,C
1 [B][∗C] − kBC

−1 [∗C.B]

[9]

C does not propagate any information between A and B, and it does not correlate them either. Independent then means that we can reconstruct
the microscopic dynamics from the description of both subsystems, as outlined next.

Suppose we pick a C at random from the reaction mixture and observe it to be bound to a B. The conditional probability that the same C
is also bound to an A is formally written as P (A.C∗|∗C.B). If, on the other hand, we choose not to observe the B-binding site of the C we
picked, that probability is P (A.C∗|∗C∗). Clearly, independence means that the two conditional probabilities are equal:

P (A.C∗|∗C.B) = P (A.C∗|∗C∗).

By definition of a conditional probability, we obtain:

P (A.C.B) =
P (A.C∗)P (∗C.B)

P (∗C∗) . [10]

These relationships are reflected by the corresponding (time-dependent) concentrations [A.C∗], [∗C.B], and [∗C∗]. Thus, equation (10) asserts

[A.C.B] =
([A.C] + [A.C.B])([C.B] + [A.C.B])

[C] + [A.C] + [C.B] + [A.C.B]
, [11]

10 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



from which it follows that
X $[A.C.B][C] − [A.C][C.B] = 0. [12]

It is straightforward to verify thatX(t) = 0 is an invariant of motion, provided the concentrations satisfiedX(0) = 0:

dX
dt

= −X(kA,C
1 [A] + kAC

−1 + kC,B
1 [B] + kCB

−1 ), [13]

where kA,C
1 , kC,B

1 denote association constants and kAC
−1 , kCB

−1 dissociation constants. Note thatX(t) will decay exponentially, ifX(0) ̸= 0.
Equation [10] is a manifestation of independence and can be generalized to define a class of systems whose fragments behave like tiles in the

following sense. Two fragments F1 and F2 can be "snapped” together (possibly in more than one way), F1 ∪F2, if they have a non-conflicting
valuation on the sites of agents both mention, F1 ∩F2, precisely as the glue-on-overlap in section 2. In our example, the fragments F1 = A.C∗
and F2 = ∗C.B can be snapped together, since they overlap in the agent name C and don’t conflict in the states of the sites they mention. (The
first fragment specifies the state of the A-binding site, which the second fragment ignores, and the second fragment specifies the state of C’s
B-binding site, which the first fragment ignores.) The overlap F1 ∩ F2 is ∗C∗.

If a self-consistent set of fragments F = {F1, . . . ,Fn} obeys the independence equation [10], we can extend a fragment Fi into a fragment
Fi ∪ Fj whose concentration is given by the product of the concentrations of Fi and Fj divided by the concentration of the snapping region,
the overlap Fi ∩ Fj . By extending fragments in this way, we can invert the coarse-graining. That is, we can reconstruct any molecular species
that can possibly occur in the system, while in the process computing its concentration via the tiling equation [10]. The microscopic dynamics
expressed in terms of F will be exact, provided the initial condition satisfied the independence relations of the form [12], otherwise it will
approach the exact dynamics exponentially according to [13]. Typical situations, however, are more subtle, as illustrated in the next example.

4.2 Example 2: Stealth correlation. Example 2, Figure 9B, has a similar setup as Example 1, but the central scaffold C(a,c,b) now has
three binding sites. The purpose of site c is to control whether sites a and b are available for binding interactions. Assume that site c of agent C
has to be bound (by something) to turn on the binding capability of the other two sites. (After appropriate name changes, this corresponds to the
control flow depicted in Figure 4D of the main text.) To make the point expeditiously, assume that all binding interactions are pseudo first-order
because of excess A, B, and a fourth agent that binds the controller site of C, Let us also assume that all interactions are irreversible. This enables
us to just focus on how agent C approaches full occupancy. Define a binding state of C as a triplet (acb) indicating the status of each site as either
occupied, o, or unoccupied, u. As in Example 1, the binding process at site a is independent of the binding state of site b, and vice versa. The
system is then described by the 5 reactions shown below on the left and whose dynamics is detailed on the right:

(uuu)
kc

−→ (uou)

(uou)
kl

−→ (oou)

(uoo)
kl

−→ (ooo)

(uou)
kr

−→ (uoo)

(oou)
kr

−→ (ooo)

with

d[uuu]
dt

= −kc[uuu]

d[uou]
dt

= −(kl + kr)[uou] + kc[uuu]

d[uoo]
dt

= −kl[uoo] + kr[uou]

d[oou]
dt

= kl[uou] − kr[oou]

d[ooo]
dt

= kl[uoo] + kr[oou]

[14]

Considering the absence of any information propagation between sites a and b, we can define new coarse-grained variables:

[uuu]

[uo∗] $[uou] + [uoo]

[oo∗] $[oou] + [ooo]

[∗ou] $[uou] + [oou]

[∗oo] $[uoo] + [ooo]

Again, as in Example 1, the system splits into two self-consistent sets of coarse-grained variables {(uu∗), (uo∗), (oo∗)} and {(∗uu), (∗ou), (∗oo)}.
Each fragment now includes the central binding site c, since it determines whether a or b can undergo binding. (Thus, by construction,
[uu∗] = [∗uu] = [uuu].)

d[uuu]
dt

= −kc[uuu]

d[uo∗]
dt

= −kl[uo∗] + kc[uuu]

d[oo∗]
dt

= kl[uo∗]

and

d[uuu]
dt

= −kc[uuu]

d[∗ou]
dt

= −kr[∗ou] + kc[uuu]

d[∗oo]
dt

= kr[∗ou]

[15]

However, unlike in Example 1, we cannot recombine the subsystems to reconstruct the microscopic dynamics via equation [10]. In analogy to
equation [12], we defineX $[ooo][uou] − [oou][uoo] as a measure of independence and obtain

dX
dt

= −X(ka + kb) + kc[ooo][uuu], [16]

indicating that the two subsystems remain correlated, because the state of the controller site c correlates the states of a and b. While the coarse
grained dynamics is still exact, it can no longer be inverted by tiling. As can be seen from Figure 10, the concentration of the fully occupied
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form [ooo] is underestimated by assuming independence (tiling equation [10]), because the injection of new instances of (uou), by virtue of
the first reaction in [14], keeps introducing correlations between sites a and b, thus maintaining [ooo] above what an observer would expect
by measuring [oo∗], [∗oo], and [∗o∗] and assuming independence. This deviation from independence ceases once the system has exhausted its
reservoir of (uuu) (having converted it all to (ooo), see Figure 10), since, after all, binding at site a is independent from binding at b. The
coarse-graining, which enabled us to describe the dynamics of the system in terms of two self-consistent subsystems, throws away correlation
information, preventing reconstitution of the original microscopic description. From a viewpoint internal to the system, this is no loss, as the
correlation cannot be observed from within the system (unless additional specific interactions are posited), and a microscopic description is
therefore irrelevant. As outside observers, however, we can reason over the reaction equations globally and notice that we could measure the
state of a , to give us information about the state of c, from which we could infer the state of b.

! " # $ % & '
!

#!

%!

'!

(!

"!!

[ooo]

[oo∗][∗oo]
[∗o∗]

!"#$%&a(b"!(a(y%u,"!-.

/!!!0

Fig. 10. Error from independence assumption. The Figure depicts the concentration dynamics of the fully occupied form of C, [ooo], according to the equations [ 14 ]
(green). The red curve shows the dynamics of [ooo] when it is computed using the independence equation [ 10 ], [ooo] = [oo∗][∗oo]/[∗o∗]. Although this relation is
violated in Example 2, the utter simplicity of this scenario makes the tiling approximation still appear reasonable. This would not be the case in more complex situations.

5 The early-EGF model

We use a canonical cell signaling pathway in mammalian cells, the epidermal growth factor receptor (EGFR or ErbB) pathway, to illustrate our
coarse-graining procedure. This pathway involves four receptor tyrosine kinases that interact with several extracellular ligands and each other.
More than 100 proteins are involved in the production and the processing of intracellular signals induced by EGF receptor activity. The EGF
system has a controling influence on cell division, cell fate and cell morphology.

The rule system below describes only a tiny set of early events (that are by no means agreed-upon) in EGFR signaling. In the present
context, our objective is not to provide an accurate model of the EGFR pathway, but rather to use this relatively small example to illustrate the
logic of our approach to coarse-graining in rule-based representations of complex molecular interaction systems.

In essence, a signal arrives at the cell membrane in the form of a ligand, EGF (E in our rules), which binds to the extra-cellular portion of
a receptor tyrosine kinase, EGFR (named R in our system), that reaches across the membrane. This binding process is the content of rule r02
(rule r01 describes the reverse process). Upon binding E, an R becomes capable of binding to a neighbouring R, also bound to a ligand (rule r03).
Receptor pairs can cross-activate one another, meaning that they mutually phosphorylate certain of their intra-cellular residues (rules r05, r07).
These phosphorylated residues now serve as binding sites for a variety of proteins in the cytoplasm, such as GRB2 (named G in our system)
and SHC (here named S). G can bind the phosphorylated site Y68p of R, as expressed in rules r12-r15. Concurrently, G can bind SOS (agent O),
while G is bound to R (r16), or bound to S (r20, r22), or standalone (r18). Using different rules for the same action is a means for differentiating
between (potentially) different kinetics (or simply rate constants) depending on context. Likewise, S can engage with R, while being free (r24,
r26) or bound to G (r28, r30). The contexts of G, R, and S compound combinatorially and occasionally interfere with one another. In fact, there
is a competition between two "mini-pathways” for recruiting O to the membrane receptor R: via G alone or via G bound to S. The competition
derives from S and R interacting with the same binding site at G, forcing a choice for any individual G, as can be clearly seen in the contact map
of the main text. These pathways can be tracked automatically with procedures that will be detailed in forthcoming manuscripts (but see [10]).
All rule actions are reversible, and several actions come in contextual variants (so-called refinements) reflecting differences in rate constants.

The textual exposition of the rules below can be rendered (and edited) without loss of information in a graphical format along the lines of
Figure 4A.

5.1 Rules.

r01: E
`
r1

´
, R

`
l1,r

´
−→ E(r) , R(l,r)

r02: E(r) , R(l,r) −→ E
`
r1

´
, R

`
l1,r

´

r03: E
`
r2

´
, E

`
r1

´
, R

`
l2,r

´
, R

`
l1,r

´
−→ E

`
r3

´
, E

`
r2

´
, R

`
l3,r1

´
, R

`
l2,r1

´

12 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



r04: E
`
r3

´
, E

`
r2

´
, R

`
l3,r1

´
, R

`
l2,r1

´
−→ E

`
r2

´
, E

`
r1

´
, R

`
l2,r

´
, R

`
l1,r

´

r05: E
`
r3

´
, E

`
r2

´
, R

`
l3,r1

´
, R

`
Y68u,l

2,r1
´
−→ E

`
r3

´
, E

`
r2

´
, R

`
l3,r1

´
, R

`
Y68p,l

2,r1
´

r06: R
`
Y68p

´
−→ R(Y68u)

r07: E
`
r3

´
, E

`
r2

´
, R

`
l3,r1

´
, R

`
Y48u,l

2,r1
´
−→ E

`
r3

´
, E

`
r2

´
, R

`
l3,r1

´
, R

`
Y48p,l

2,r1
´

r08: R
`
Y48p

´
−→ R(Y48u)

r09: R
`
Y481

p,r
−´
, S

`
Y7u,c

1
´
−→ R

`
Y481

p,r
−´
, S

`
Y7p,c

1
´

r10: S
`
Y7p,c

−´
−→ S

`
Y7u,c

−´

r11: S
`
Y7p,c

´
−→ S(Y7u,c)

r12: G(a,b) , R
`
Y68p

´
−→ G

`
a1,b

´
, R

`
Y681

p

´

r13: G
`
a1,b

´
, R

`
Y681

p

´
−→ G(a,b) , R

`
Y68p

´

r14: G
`
a,b−

´
, R

`
Y68p

´
−→ G

`
a1,b−

´
, R

`
Y681

p

´

r15: G
`
a1,b−

´
, R

`
Y681

p

´
−→ G

`
a,b−

´
, R

`
Y68p

´

r16: G
`
a1,b

´
, R

`
Y681

p

´
, O(d) −→ G

`
a2,b1

´
, R

`
Y682

p

´
, O

`
d1

´

r17: G
`
a2,b1

´
, R

`
Y682

p

´
, O

`
d1

´
−→ G

`
a1,b

´
, R

`
Y681

p

´
, O(d)

r18: G(a,b) , O(d) −→ G
`
a,b1

´
, O

`
d1

´

r19: G
`
a,b1

´
, O

`
d1

´
−→ G(a,b) , O(d)

r20: G
`
a1,b

´
, S

`
Y71

p,c
´
, O(d) −→ G

`
a2,b1

´
, S

`
Y72

p,c
´
, O

`
d1

´

r21: G
`
a2,b1

´
, S

`
Y72

p,c
´
, O

`
d1

´
−→ G

`
a1,b

´
, S

`
Y71

p,c
´
, O(d)

r22: G
`
a1,b

´
, S

`
Y71

p,c
−´
, O(d) −→ G

`
a2,b1

´
, S

`
Y72

p,c
−´
, O

`
d1

´

r23: G
`
a2,b1

´
, S

`
Y72

p,c
−´
, O

`
d1

´
−→ G

`
a1,b

´
, S

`
Y71

p,c
−´
, O(d)

r24: R
`
Y48p

´
, S(Y7u,c) −→ R

`
Y481

p

´
, S

`
Y7u,c

1
´

r25: R
`
Y481

p

´
, S

`
Y7u,c

1
´
−→ R

`
Y48p

´
, S(Y7u,c)

r26: R
`
Y48p

´
, S

`
Y7p,c

´
−→ R

`
Y481

p

´
, S

`
Y7p,c

1
´

r27: R
`
Y481

p

´
, S

`
Y7p,c

1
´
−→ R

`
Y48p

´
, S

`
Y7p,c

´

r28: G
`
a1,b

´
, R

`
Y48p

´
, S

`
Y71

p,c
´
−→ G

`
a2,b

´
, R

`
Y481

p

´
, S

`
Y72

p,c
1
´

r29: G
`
a2,b

´
, R

`
Y481

p

´
, S

`
Y72

p,c
1
´
−→ G

`
a1,b

´
, R

`
Y48p

´
, S

`
Y71

p,c
´

r30: G
`
a2,b1

´
, R

`
Y48p

´
, S

`
Y72

p,c
´
, O

`
d1

´
−→ G

`
a3,b2

´
, R

`
Y481

p

´
, S

`
Y73

p,c
1
´
, O

`
d2

´

r31: G
`
a3,b2

´
, R

`
Y481

p

´
, S

`
Y73

p,c
1
´
, O

`
d2

´
−→ G

`
a2,b1

´
, R

`
Y48p

´
, S

`
Y72

p,c
´
, O

`
d1

´

r32: G(a,b) , R
`
Y481

p

´
, S

`
Y7p,c

1
´
−→ G

`
a2,b

´
, R

`
Y481

p

´
, S

`
Y72

p,c
1
´

r33: G
`
a2,b

´
, R

`
Y481

p

´
, S

`
Y72

p,c
1
´
−→ G(a,b) , R

`
Y481

p

´
, S

`
Y7p,c

1
´

r34: G(a,b) , S
`
Y7p,c

´
−→ G

`
a1,b

´
, S

`
Y71

p,c
´

r35: G
`
a1,b

´
, S

`
Y71

p,c
´
−→ G(a,b) , S

`
Y7p,c

´

r36: G
`
a,b−

´
, S

`
Y7p,c

´
−→ G

`
a1,b−

´
, S

`
Y71

p,c
´

r37: G
`
a1,b−

´
, S

`
Y71

p,c
´
−→ G

`
a,b−

´
, S

`
Y7p,c

´

r38: G
`
a,b2

´
, R

`
Y481

p

´
, S

`
Y7p,c

1
´
, O

`
d2

´
−→ G

`
a3,b2

´
, R

`
Y481

p

´
, S

`
Y73

p,c
1
´
, O

`
d2

´

r39: G
`
a3,b2

´
, R

`
Y481

p

´
, S

`
Y73

p,c
1
´
, O

`
d2

´
−→ G

`
a,b2

´
, R

`
Y481

p

´
, S

`
Y7p,c

1
´
, O

`
d2

´

5.2 Compressed rules.

Each of the rules r01-r39 is subject to a compression procedure, as outlined in the main text. The compression of r04 (expressing the dissociation
of dimerized R) into cr04 has lost a symmetry. Rule r04 has a symmetry that generates two equivalent embeddings into any concrete receptor
dimer present in the reaction mixture. This symmetry is detected by the simulation algorithm [3], and causes the rate constant of r04 to be
adjusted by a factor of 1/2. However, the symmetry is lost upon compression. R(r−) on the left hand side of cr04 can still be matched in
two equivalent ways by any receptor dimer in the mixture, but the simulation algorithm would forgo a division by 2, because of no detectable
symmetry in the structure of cr04. This loss of symmetry is recognized by the compression process, which automatically compensates by
adjusting the rate constant of cr04 to be half that of r04 (which we have arbitrarily set to 1). This is of no consequence for constructing the set
of coarse-grained variables, but is required for preserving the quantitative kinetics of the rule system upon compression.

cr01: R
`
l−,r

´
−→ R(l,r)

cr02: E(r) , R(l) −→ E
`
r1

´
, R

`
l1

´

cr03: R
`
l−,r

´
, R

`
l−,r

´
−→ R

`
l−,r1

´
, R

`
l−,r1

´

cr04: R
`
r−

´
−→ R(r)@ 0.5

cr05: R
`
Y68?

u,r
−´

−→ R
`
Y68?

p,r
−´

cr06: R
`
Y68p

´
−→ R(Y68u)

cr07: R
`
Y48?

u,r
−´

−→ R
`
Y48?

p,r
−´

cr08: R
`
Y48p

´
−→ R(Y48u)

cr09: R
`
Y481,r−

´
, S

`
Y7?

u,c
1
´
−→ R

`
Y481,r−

´
, S

`
Y7?

p,c
1
´

cr10: S
`
Y7p,c

−´
−→ S

`
Y7u,c

−´

cr11: S
`
Y7p,c

´
−→ S(Y7u,c)
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cr12: G(a,b) , R
`
Y68p

´
−→ G

`
a1,b

´
, R

`
Y681

p

´

cr13: G
`
a1,b

´
, R

`
Y681

´
−→ G(a,b) , R(Y68)

cr14: G
`
a,b−

´
, R

`
Y68p

´
−→ G

`
a1,b−

´
, R

`
Y681

p

´

cr15: G
`
a1,b−

´
, R

`
Y681

´
−→ G

`
a,b−

´
, R(Y68)

cr16: G
`
a1,b

´
, R

`
Y681

´
, O(d) −→ G

`
a2,b1

´
, R

`
Y682

´
, O

`
d1

´

cr17: G
`
a1,b−

´
, R

`
Y681

´
−→ G

`
a1,b

´
, R

`
Y681

´

cr18: G(a,b) , O(d) −→ G
`
a,b1

´
, O

`
d1

´

cr19: G
`
a,b−

´
−→ G(a,b)

cr20: G
`
a1,b

´
, S

`
Y71,c

´
, O(d) −→ G

`
a2,b1

´
, S

`
Y72,c

´
, O

`
d1

´

cr21: G
`
a1,b−

´
, S

`
Y71,c

´
−→ G

`
a1,b

´
, S

`
Y71,c

´

cr22: G
`
a1,b

´
, S

`
Y71,c−

´
, O(d) −→ G

`
a2,b1

´
, S

`
Y72,c−

´
, O

`
d1

´

cr23: G
`
a1,b−

´
, S

`
Y71,c−

´
−→ G

`
a1,b

´
, S

`
Y71,c−

´

cr24: R
`
Y48p

´
, S

`
Y7?

u,c
´
−→ R

`
Y481

p

´
, S

`
Y7?

u,c
1
´

cr25: S
`
Y7?

u,c
−´

−→ S
`
Y7?

u,c
´

cr26: R
`
Y48p

´
, S

`
Y7p,c

´
−→ R

`
Y481

p

´
, S

`
Y7p,c

1
´

cr27: S
`
Y7p,c

−´
−→ S

`
Y7p,c

´

cr28: G
`
a1,b

´
, R

`
Y48p

´
, S

`
Y71,c

´
−→ G

`
a2,b

´
, R

`
Y481

p

´
, S

`
Y72,c1

´

cr29: G
`
a1,b

´
, S

`
Y71,c−

´
−→ G

`
a1,b

´
, S

`
Y71,c

´

cr30: G
`
a1,b−

´
, R

`
Y48p

´
, S

`
Y71,c

´
−→ G

`
a2,b−

´
, R

`
Y481

p

´
, S

`
Y72,c1

´

cr31: G
`
a1,b−

´
, S

`
Y71,c−

´
−→ G

`
a1,b−

´
, S

`
Y71,c

´

cr32: G(a,b) , S
`
Y7p,c

−´
−→ G

`
a1,b

´
, S

`
Y71

p,c
−´

cr33: G
`
a1,b

´
, S

`
Y71,c−

´
−→ G(a,b) , S

`
Y7,c−

´

cr34: G(a,b) , S
`
Y7p,c

´
−→ G

`
a1,b

´
, S

`
Y71

p,c
´

cr35: G
`
a1,b

´
, S

`
Y71,c

´
−→ G(a,b) , S(Y7,c)

cr36: G
`
a,b−

´
, S

`
Y7p,c

´
−→ G

`
a1,b−

´
, S

`
Y71

p,c
´

cr37: G
`
a1,b−

´
, S

`
Y71,c

´
−→ G

`
a,b−

´
, S(Y7,c)

cr38: G
`
a,b−

´
, S

`
Y7p,c

−´
−→ G

`
a1,b−

´
, S

`
Y71

p,c
−´

cr39: G
`
a1,b−

´
, S

`
Y71,c−

´
−→ G

`
a,b−

´
, S

`
Y7,c−

´

5.3 Fragments.

In this section we list the 38 self-consistent coarse-grained variables generated by the automatic procedure outlined in the main text and in
section 6. These 38 variables form a dynamical system (shown in section 7) whose state at any time t is identical to the state attained by the
microscopic dynamics (involving 356 variables) and subsequent coarse-graining.

F1: E
`
r1

´
, R

`
Y482

p,l
1,rR@r

´
, S

`
Y73

p,c
2
´
, G

`
a3,b4́ , O

`
d4́

F2: E
`
r1

´
, R

`
Y482

p,l
1,r

´
, S

`
Y73

p,c
2
´
, G

`
a3,b4́ , O

`
d4́

F3: G
`
a2,b1

´
, S

`
Y72

p,c
3
´
, R

`
Y483

p,l,r
´
, O

`
d1

´

F4: R
`
Y481

p,l,r
´
, S

`
Y7p,c

1
´

F5: G
`
a,b1

´
, O

`
d1

´

F6: E
`
r1

´
, R

`
Y482

p,l
1,r

´
, S

`
Y7p,c

2
´

F7: E
`
r1

´
, R

`
Y482

p,l
1,rR@r

´
, S

`
Y7p,c

2
´

F8: G
`
a2,b1

´
, S

`
Y72

p,c
´
, O

`
d1

´

F9: S
`
Y7p,c

´

F10: G
`
a1,b

´
, S

`
Y71

p,c
´

F11: G(a,b)
F12: E

`
r1

´
, R

`
Y482

p,l
1,rR@r

´
, S

`
Y73

p,c
2
´
, G

`
a3,b

´

F13: E
`
r1

´
, R

`
Y482

p,l
1,r

´
, S

`
Y73

p,c
2
´
, G

`
a3,b

´

F14: G
`
a1,b

´
, S

`
Y71

p,c
2
´
, R

`
Y482

p,l,r
´

F15: R
`
Y48p,l,r

´

F16: E
`
r1

´
, R

`
Y48p,l

1,r
´

F17: E
`
r1

´
, R

`
Y48p,l

1,rR@r
´

F18: E
`
r1

´
, R

`
Y482

p,l
1,rR@r

´
, S

`
Y7u,c

2
´

F19: E
`
r1

´
, R

`
Y482

p,l
1,r

´
, S

`
Y7u,c

2
´

F20: R
`
Y481

p,l,r
´
, S

`
Y7u,c

1
´

F21: S(Y7u,c)
F22: O(d)
F23: E

`
r1

´
, R

`
Y682

p,l
1,rR@r

´
, G

`
a2,b3

´
, O

`
d3

´

F24: E
`
r1

´
, R

`
Y682

p,l
1,r

´
, G

`
a2,b3

´
, O

`
d3

´
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F25: G
`
a2,b1

´
, R

`
Y682

p,l,r
´
, O

`
d1

´

F26: G
`
a1,b

´
, R

`
Y681

p,l,r
´

F27: E
`
r1

´
, R

`
Y682

p,l
1,r

´
, G

`
a2,b

´

F28: E
`
r1

´
, R

`
Y682

p,l
1,rR@r

´
, G

`
a2,b

´

F29: R
`
Y68p,l,r

´

F30: E
`
r1

´
, R

`
Y68p,l

1,r
´

F31: E
`
r1

´
, R

`
Y68p,l

1,rR@r
´

F32: E
`
r1

´
, R

`
Y48u,l

1,rR@r
´

F33: E
`
r1

´
, R

`
Y48u,l

1,r
´

F34: R(Y48u,l,r)
F35: E

`
r1

´
, R

`
Y68u,l

1,rR@r
´

F36: E
`
r1

´
, R

`
Y68u,l

1,r
´

F37: R(Y68u,l,r)
F38: E(r)

6 Translating rules into a dynamical system for fragments

6.1 Partial Complex. A partial complex is a connected graph (a component) that occurs on either side of a rule. In our static analysis, semi-
links in partial complexes are internally expanded into all possible binding partners, and labeled with a bond type of the form partner@site. For
example, R(Y481

p),S(Y7
2,c1),G(a2,bO@d) is a partial complex (it is the right hand side of cr30). Thus:

Definition 6.1 (Partial complex).

A partially specified complex (or partial complex for short) is a connected expression, such that

1. the set of sites shown for agent A is a subset of the interface of A
2. the internal state of a site may be omitted
3. the binding state of a site must be any of (i) free, (ii) bound, or (iii) a bond stub indicating the names of the bound agent and its binding site

We extend the concept of a match, E′ ! E, Definition 1.5, or the concept of an embeddingG ▹ φ G′ (see end of section 1.4), to expressions
containing a stub by simply extending the specificity ranking of binding states (section 1.4) in the obvious way.

Fragments, as defined in the main text, are partial complexes, too, but whose shape is constrained by the annotated contact map (ACM).
Our goal in this section is to sketch the construction of the kinetic system of differential equations describing the concentration dynamics for
fragments. To this end, we must evaluate how each rule in a model contributes to the production and consumption of fragments. For a rule to
be translatable into a set of reactions between fragments, we must ensure that any fragment that properly intersects a component on the lhs of
a rule, and whose intersection contains a site that is modified by the action, must contain that component. This is achieved by the syntactical
criteria, Cov1-Cov3 and Edg1, as explained in the main text.

6.2 Every lhs component of a rule is contained in some fragment. Directives Cov1-Cov3 ensure that there always is a class in the covering
of an agent that contains at least as many sites as any occurrence of that agent on the left of a rule. The fragment growth process (see main
text, subsection "Fragment assembly") then guarantees that fragments extend at least as much as any lhs component in a rule, except for pure
dissociation rules. By construction, fragments do not contain bonds that are soft in the ACM, and thus do not extend components with such
bonds. However, when such a component is cut at a soft bond, and the bond is replaced with two stubs, each piece can be embedded in a
fragment. This reflects the fact that the system of rules cannot detect any correlations between such pieces (or the bond would be solid). The
construction of fragments also ensures that when a lhs component Z contains a site that is modified, Z is contained in each fragment exhibiting
that site.

6.3 Expressing the concentration of a subfragment in terms of fragment concentrations. Before proceeding we need some clarification
on the notion of “concentration” in a formal rule-based approach that deals with patterns (partial complexes). What is the concentration of a
partial complex in a mixture of fully specified complexes (species)?

Counting embeddings. In a stochastic setting, in which a reaction mixture x is a multi-set of molecular species, one should distinguish
between two quantities for each partial complex Z: the number of embeddings φ (section 1.4) of Z into x, written |{φ | Z ▹ φ x}|, and the
number of embeddings corrected by the number of automorphisms of Z, auto(Z) = |{φ′ | Z ▹ φ′ Z}| (since Z may have symmetries):

[Z] := |{φ | Z ▹ φ x}|/auto(Z)

In the case where the partial complex Z is actually a (fully specified) species, the corrected number of embeddings is the number of occurrences
of Z in x, which yields the concentration, when divided by the volume, as in ODEs.

Given two partial complexes Z and Z′ such that Z embeds into Z′, the set {φ | Z ▹ φ Z′} of embeddings can be quotiented by the
equivalence relation ∼ , relating any pair of embeddings φ and φ′ such that φ′ can be written as φ ◦ σ for σ an automorphism of Z′. Again, we
have two choices; either we count embeddings, or embeddings up to ∼ . We write Z %φ Z′ when φ is an embedding equivalence class and we
have therefore:

|{φ | Z ▹ φ Z′}| = |{φ | Z %φ Z′}| × auto(Z′)

Orthogonal fragments. A subfragment is a partial complex (subsection 6.1) that embeds in a fragment. It is an important “technical object”
in our method. It shows up when we compute production rates for fragments whose concentration is affected by the dissociation of a solid bond
Z–Z′. Such a dissociation will give rise to a piece Z (and also Z′) that might embed into a fragment F . As the lhs component of a rule, Z–Z′
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embeds into a fragment and so will Z by virtue of the fragment growth process (see main text). To determine the contribution of the dissociation
rule to the production rate of F , we need the concentration of F–Z′. Yet, F–Z′ is not itself a fragment, but rather a subfragment. For our
method to result in a closed system of equations, we must be able to express the concentration of this subfragment in terms of fragments. It turns
out that this is indeed the case for any subfragment, as we show next. (We cannot, in general, extend a fragment and express its concentration
using other fragments, as this would require the independence conditions, equation [10], to hold. As we saw in Example 2, these conditions do
not hold in general.)

To compute the concentration of a subfragment, we need to use fragments that extend it. But we must be careful about which fragments
we use. A subfragment and a fragment, each identifies a set of fully specified molecular species into which they embed (i.e. their extension, as
explained in the main text, section “From rules to ODEs”). The concentration of a subfragment is the sum total of the concentrations of these
species (weighted by appropriate symmetry related constants). If we are to use a combination of fragment concentrations, we must ensure that
the fragments used indeed partition the set of molecular species into which the subfragment expands, or we would overcount. A set of fragments
that complies with this requirement is called orthogonal.

Let Z be a subfragment, F the set of fragments, and F1,F2 ∈ F two fragments that contain Z: Z ▹ φ F1 and Z ▹ φ′ F2. (See section 1.4,
paragraph labeled “embedding”, for a definition of the embedding relation ▹ φ.) We define two fragmentsF1,F2 that contain Z as “orthogonal”,
when the agents on which F1 and F2 agree exhibit the same sites. Orthogonal fragments differ with regard to internal states and binding states
at sites of agents they have in common, and, thus, constitute a set of patterns whose matching instances in a reaction mixture do not overlap.
This is important for expressing the concentration of the subfragment Z in terms of fragments, since we must avoid double counting matching
instances of Z in the reaction mixture. The set of fragments {F1, . . . ,Fn} from which we compute the concentration of Z should constitute a
refinement of Z, in the sense of partitioning the matching instances of Z.

The formal definition of orthogonality makes use of the concept of a formal path. A formal path p is a set of symbolic instructions for
navigating through a graph representing a Kappa complex. Starting at node (agent) A and following the directives provided by p will lead us
to a unique target node T, which we denote by A.p. The path p is expressed as a sequence of bonds to travel. For example, A.p might result
in A.a.s1.B1.s2 . . ..s2i−1.Bi.s2i.. . ..t.T (with s2i−1 ̸=s2i), which is a path that goes from the originating agent A to agent B1 over a link
between site a of A and site s1 of agent B1, and from there to agent B2 over a link between site s2 of agent B1 and site s3 of agent B2, and so on,
to enter the target agent T through its site t. If any step some site is missing, then A.p is not defined in the complex in question. An empty path
means that we stay at the originating agent A.

Definition 6.2 (Orthogonal fragments).

Let Z be a subfragment. Let F1 and F2 be two fragments, and φ, φ
′ be embedding classes such that Z %φ F1 and Z %φ′ F2. We say (F1,φ)

and (F2,φ
′) are Z-orthogonal, written as (F1,φ) ◃▹Z (F2,φ

′), if and only if for any agent A of Z and any path p at least one of these
statements is true:

1. φ(A).p is not defined in F1.
2. φ′(A).p is not defined in F2.
3. φ(A).p and φ′(A).p are both defined in F1 and F2, respectively, and have the same set of sites.

A fragment Fi may be matched in more than one way by a subfragment Z, yielding more than one embedding class φ. Let us collect all
embedding classes mapping Z to some fragment, and define C(Z) as a largest set of such embedding classes (it need not be unique) that are
mutually Z-orthogonal. Write ni for the number of embedding classes φ in C(Z) with target Fi, ie such that Z %φ Fi.

The concentration of Z can now be expressed as:

[Z] =
1

|{φ|Z ▹ φ Z}|
X

i

ni[Fi] auto(Fi) [17]

Equation [17] formalizes our intuition that the concentration of a partial complex Z is the sum of the concentrations of the fragments that
contain it, times a multiplicity counting the number of ways in which Z matches a given fragment. The only complexity comes from chosing
the fragments over which the sum runs in such a way that no two fragments overlap in the set of molecular instances they match. That is what
the orthogonality criterion is meant to ensure. Finally, we divide by the number of automorphisms of Z to compensate for any symmetries in Z.

6.4 Assembling the dynamical system for fragments – Version A. We assemble the system of differential equations for the fragments by
determining the mass action terms that each rule type contributes. The description offered in this subsection has a deliberately “algorithmic”
flavor. In the next subsection, we offer a version B that offers a more concise and abstract presentation which the reader might also find useful.

For the sake of simplifying exposition, we shall only be concerned with rules consisting of at most two components on the lhs, and whose
action modifies a single internal state or a single binding state. It is straightforward to generalize this to multiple components and to multiple
actions within the same rule. The k after the @-sign refers to the rate constant of the rule. Since we shall build a term for the fragment dynamics
from each component on the lhs of a rule separately, the rate constant γ that enters the fragment dynamics must compensate for the number of
automorphisms, auto(lhs), of the lhs: γ = k/auto(lhs). Thanks to [17] we can refer to the concentration of any subfragment, [Z], and be sure
we can replace with an expansion into fragment concentrations. To indicate that we are building up differential equations sequentially, we shall

use the symbol
+
= as meaning “add this term to the previous ones for this equation”.

Z,Z′ −→ Z∗,Z′ @k

This type of rule modifies the partial complex Z.
Consumption terms. The kinetic equation of each fragment that contains Z gains a consumption term

∀Fi ∀φ s.t. Z %φ Fi :
d[Fi]
dt

+
= −γ([Fi]auto(Fi))([Z

′]auto(Z′)).

16 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



The universal quantifier over φ means that the rate at which Fi is consumed depends on the number of ways that Z can be embedded in Fi.
The said quantification, here as well as in the subsequent cases, is over embedding classes, not over plain embeddings.

Production terms. The kinetic equation of each fragment containing Z∗ gains a production term

∀Fk ∀φ s.t. Z∗ %φ Fk and ∀Fi s.t. Z %φ⋆ Fi and Fk = F∗
i :

d[Fk]
dt

+
= γ([Fi]auto(Fi))([Z

′]auto(Z′)).

Clearly, the fragments Fk and Fi must be related by the rule action; Fk = F∗
i means that the fragment Fk is obtained by applying the rule

action to fragment Fi. The notation φ
⋆ indexing the embedding of Z into Fi is meant to specify that this embedding is related to the embedding

φ of Z∗ intoFk, since the relatedness of Z to its modified form Z∗ forces not only a relatedness ofFi toFk, but also of the way these fragments
extend the corresponding partial complexes Z and Z∗.

Z,Z′ −→ Z–Z′ @k

This type of rule binds the partial complexes Z and Z′.
Consumption terms: The kinetic equation of each fragment that contains Z gains a consumption term

∀Fi ∀φ s.t. Z %φ Fi :
d[Fi]
dt

+
= −γ([Fi]auto(Fi))([Z

′]auto(Z′)).

Likewise for Z′:

∀Fi ∀φ s.t. Z′ %φ Fi :
d[Fi]
dt

+
= −γ([Fi]auto(Fi))([Z]auto(Z)).

Production terms. On the production side, we must distinguish between solid and soft links in the ACM.

Z–Z′ solid link

∀Fk ∀φ1,φ2 s.t. Z–Z
′ %φ1%φ2 Fk and ∀Fi s.t. Z %φ⋆

1
Fi and ∀Fj s.t. Z

′ %φ⋆
2
Fj and Fk = Fi–Fj :

d[Fk]
dt

+
= γ([Fi]auto(Fi))([Fj ]auto(Fj)).

Again, we must express that the embeddings of Z–Z′, Z, and Z′ into Fk, Fi, and Fj , respectively, are related. The notation φ14φ2 denotes
the disjoint sum of φ1 and φ2: The domains of φ1, dom(φ1), and φ2, dom(φ2), have an empty intersection, and (φ1 4 φ2)(x) = φ1(x) if
x ∈ dom(φ1) or (φ1 4 φ2)(x) = φ2(x) if x ∈ dom(φ2).

Z–Z′ soft link
Assume the bond to be between site a of A ∈ Z and site b of B ∈ Z′, and let ZB@b and Z′A@a denote the partial complexes obtained from
severing the bond in Z–Z′ and replacing it with a binding-type label.

∀Fk ∀φ s.t. ZB@b %φ Fk and ∀Fi s.t. Z %φ⋆ Fi and Fk = FB@b
i :

d[Fk]
dt

+
= γ([Fi]auto(Fi))([Z

′]auto(Z′)).

Likewise for Z′:

∀Fk ∀φ s.t. Z′A@a %φ Fk and ∀Fi s.t. Z
′ %φ⋆ Fi and Fk = FA@a

i :
d[Fk]

dt
+
= γ([Fi]auto(Fi))([Z]auto(Z)).

Z–Z′ −→ Z,Z′ @k

This type of rule dissociates the partial complex Z–Z′.
Consumption terms. On the consumption side, we must distinguish between a solid and a soft link in the ACM.

Z–Z′ solid link
The kinetic equation of each fragment that contains Z–Z′ gains a consumption term

∀Fi ∀φ s.t. Z–Z′ %φ Fi :
d[Fi]
dt

+
= −γ([Fi]auto(Fi)).

Z–Z′ soft link (By definition, this is a “pure dissociation rule”.)
As above, assume the bond to be between site a of A ∈ Z and site b of B ∈ Z′, and let ZB@b and Z′A@a denote the partial complexes
obtained from severing the bond in Z–Z′ and replacing it with a bond type label.

∀Fi ∀φ s.t. ZB@b %φ Fi :
d[Fi]
dt

+
= −γ([Fi]auto(Fi)).

Likewise for Z′:

∀Fi ∀φ s.t. Z′A@a %φ Fi :
d[Fi]
dt

+
= −γ([Fi]auto(Fi)).

Production terms. Here, too, we must distinguish between solid and soft links.
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Z–Z′ solid link

∀Fi ∀φZ s.t. Z %φZ Fi and ∀Fk ∀φZ′ s.t. Fi–Z
′ %φ⋆

Z%φZ′ Fk and (Fk,φ⋆Z 4 φZ′) ∈ C(Fi–Z
′) :

d[Fi]
dt

+
= γ([Fk]auto(Fk)).

The above might benefit from a verbal expansion. In the reaction type Z–Z′ → Z, Z′, pick a fragment Fi that extends the partial complex
Z in a particular way (that’s an instance of the first two universal quantifiers). The production rate of Fi will be first order in a fragment Fk

that extends the single partial complex on the left hand side of the rule, Z–Z′. Yet, the Fk in question cannot extend any old Z–Z′, but must
extend an instance that contains the Fi that will emerge after the bond is split. Hence the condition that Fi–Z

′ %φ⋆
Z%φZ′ Fk. The injection

map associated with this embedding must be constrained by how we chose Fi to extend Z. Finally, all Fk that contribute to the production
of a given Fi must be mutually orthogonal with respect to Fi–Z

′, as defined in section 6.3, to avoid multiple-counting the molecular species
into which the Fk expand.
Analogous production terms arise for fragments that extend Z′ on the right hand side of the rule.

Z–Z′ soft link
As above, assume the bond to be between site a of A ∈ Z and site b of B ∈ Z′, and let ZB@b and Z′A@a denote the partial complexes
obtained from severing the bond in Z–Z′ and replacing it with a bond type label.

∀Fk ∀φ s.t. ZB@b %φ Fk and ∀Fi s.t. Z %φ⋆ Fi and Fk = FB@b
i :

d[Fi]
dt

+
= γ([Fk]auto(Fk)).

Likewise for Z′:

∀Fk ∀φ s.t. Z′A@a %φ Fk and ∀Fi s.t. Z
′ %φ⋆ Fi and Fk = FA@a

i :
d[Fi]
dt

+
= γ([Fk]auto(Fk)).

Our implementation is actually more straightforward and uniform than this enumeration suggests, because the algorithm makes direct use
of the embeddings φ, which remain abstract in a notation that does not exploit the structure of expressions. Version B to which to which we turn
now does present things in a more uniform way.

6.5 Assembling the dynamical system for fragments – Version B (not for the faint of heart). In this section we show more abstractly how to
write the system of ODEs governing the time evolution of ACM-based fragments. To simplify things and expedite the presentation, we suppose
that all bonds are solid; we also suppose that rule actions involve no agent deletion or creation, i.e. all actions are reversible, and we write α−1

for the action inverse to α. We will also use a reinforced version of property Q1 (defined in the main text); see below. We only aim at giving a
sense of the general construction, not its full development and justification, which will be detailed elsewhere.

Given a global state of the system x, a rule r, and a fragment F , we want to express how r affects the concentration of F . Specifically,
we want to express the negative (consumption) and positive (production) terms coming from r as functions of fragment concentrations (self-
consistency). The overall differential equation for F is then obtained by summing the contributions of all rules to F (see below for a complete
example).

In this section it is crucial to keep in mind the distinction made in the subsection above on “Counting embeddings”. As a reminder, there are
two possibilities for defining the “concentration” of F (or any complex) in a mixture x: the number of embeddings of F in the reaction mixture,
which we denote by |[F ; x]|, and the discounted concentration |[F ; x]|/|[F ;F ]| familiar from deterministic chemical kinetics. In this section
we shall use exclusively the number of embeddings and denote it with [F ; x] (henceforth omitting the |.| for cardinals), being aware that we are
abusing notation (and we shall do so even more below).
We next list a few conventions about embeddings, and rules.

- Given s, x two Kappa expressions – that is: mixtures (fully or partially specified), complexes (fully or partially specified), rule components,
etc. – [s; x] stands for the set of embeddings of s in x;

- Wewill not use the traditional discounted concentrations, [A; x]/[A; A], but rather the number of embeddings [A; x], which we will sometimes
write as [A] when x is clear from the context.

- We will use a more convenient notation fro rules where r = s,α, k consists of a left hand side s, an action which can be any combination of
(internal state) modification, binding and unbinding, and a rate k > 0. This formulation is equivalent to the more intuitive lhs → rhs @ k
notation that we have used so far.

- Given a rule r = s,α, k, a mixture x, the set of events (i.e. rule applications) associated with r in x is by definition in bijective correspondence
with [s; x] (we distinguish here between an embedding of s into x and the event that it determines). Given f ∈ [s; x], we write f(α) · x for
the outcome of the r-event associated with f .

- We write s1 ⊆⋆ s when s1 is a tuple of components of s that is modified by α.
- The rule activity is plainly k[s; x] (ie we do not divide the rate by [s; s] in this context which avoids the γ of the first presentation above). This
rule activity is the expected number of applications of r per time unit, i.e. the flux of r in the ODE limit.

In general the rate at which a rule r = s,α, k consumes/produces embeddings of F is:

δr(F) = k
P

f∈[s;x] ([F ; f(α) · x] − [F ; x])

Indeed, the activity of r can be written k
P

f∈[s;x] 1 and is the expected number of applications of r per time unit. The above formula expresses
the expected change in the number of embeddings of F due to the r-events occurring (synchronously) per time unit. Note that a rule can both
consume and produce F in the same event. We will evaluate both contributions of r to [F ; x], written as δ−r (F ) and δ+

r (F ), separately.
To evaluate the activity of a rule, we will assume, as is customary in deterministic chemical kinetics, a negligible occurrence of situations

in which the embeddings of lhs components are not jointly injective. In other words, if Z and Z′ are lhs rule components, we will overestimate
[Z, Z′; x] as [Z; x][Z′; x].
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Consumption terms

Choose an f ∈ [s; x]. For f to consume F , there must be a modified lhs component s1 whose image under f intersects an occurrence of F in x
on modified sites. By Q1 (see main text) f factorizes as f = γ(φ + I), with I the identity on s " s1, φ ∈ [s1;F ], and γ ∈ [F , s " s1; x].

We can summarise this factorization as follows:

s1, s " s1 φ+I $$ F , s " s1 γ $$ x

If we overapproximate [F , s " s1; x] as [F ; x][s " s1; x], we get the following bijective enumeration of the F -consuming events associated
with r:

∀s1 ⊆⋆ s, ∀φ ∈ [s1;F ] : δ−r,φ(F) = k[F , s " s1] = k[F ][s " s1] [18]

By Q2-3 (see main text), each contribution can be expressed as a function of fragment concentrations.

Given f , the φ part of the factorisation, and therefore also the γ part, is only determined up to a symmetry σ ∈ [F ;F ]. Indeed, if γφ = f ,
then γσσ−1φ = f . To avoid a redundant count, it appears that one should divide the above terms by [F ;F ]. However, each factorisation
consumes [F ;F ] embeddings of F in x, and both cancel each other out. Note that we use here a stronger version of Q1, namely that the γ, φ
decomposition is unique up to symmetries of F -this is only to make things simpler and is not a requirement of our algorithm.

Production terms

Choose an f ∈ [s; x], and write s′ := α · s for the rule rhs, x′ := f(α) · x for the state obtained by triggering the r-event associated with f , and
f ′ ∈ [s′; x′] for the unique post-event embedding corresponding to f .

For f to produce an F there must be a modified rhs component s′1 ⊆s′ that factorises f ′ as f ′ = γ′(φ′ + I) with φ′ ∈ [s′1;F ], for some
γ′ uniquely up to [F ;F ]. We can summarize the situation as follows:

s′ = s′1, s
′ " s′1 φ′+I $$ F , s′ " s′1 γ′ $$ x′

s φ+I $$

α

%%

(φ′ + I)(α−1)(F , s′ " s′1) γ $$

!!

(φ′+I)(α−1)

x

f(α)

%%

where the choice of φ′ uniquely determines φ, and therefore γ. Hence, F -producing fs are in bijection with s′1 ⊆⋆ α · s, φ′ ∈ [s′1;F ] up to
[F ;F ], and γ ∈ [(φ′ + I)(α−1) · (F , s′ " s′1); x].

Putting everything together we get a bijective enumeration of the F -producing events associated with r:

∀s′1 ⊆⋆ α · s, ∀φ′ ∈ [s′1;F ] : δ+
r,φ′(F) = k[(φ′ + I)(α−1) · (F ,α · s " s′1)] [19]

As in the consumption case, given f , the φ′ part of the factorization is only unique up to [F ;F ], but since each choice creates [F ;F ] new
embeddings of F , the terms are correct.

From the definition of fragments (see main text) it easily follows that the components of (φ′ + I)(α−1) · (F ,α · s " s′1) are subfragments.
By Q2-3, this is enough to guarantee that each contribution is expressible solely in terms of fragment concentrations.

A concrete dissociation example

We can illustrate the construction of the production terms with a concrete case of a dissociation rule.

Set s = A(a1),B(b1), with α · s = s′ = A(a),B(b), and:

F = A1(a,x1),A2(x1,a)
x = N ∗ (A1(a,x1),A2(x1,a2),B(b2)),

where the latter expression means that the mixture x consists of N copies of the indicated expression. The indices on the As distinguish the
two occurrences in F . The r-events are of the form fi = (A,B !→ A2i,B) and each produces F (twice). Specifically, one has [F ; x] = 0, and
[F ; fi(α) · x] = 2. The general formula mentions a s′1 which can only be A(a) in this case, so that α · s " s′1 = B(b), and a φ′ which can be
either φ′

1 := (A !→ A1) or φ
′
2 := (A !→ A2). By inverting the rule along both extensions φ

′
i + I , we get isomorphic partial complexes:

(φ′
1 + I)(α−1) · (F , B(b)) = A1(a2,x1),A2(x1,a),B(b2)

(φ′
2 + I)(α−1) · (F , B(b)) = A1(a,x1),A2(x1,a2),B(b2)

with equal contributions δ+
r,φ′

1
(F ) = δ+

r,φ′
2
(F ) = kN , and we find that the total rate at which embeddings of F are produced is 2kN , as it

should.
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7 The dynamical system for the early EGF model

This section shows the output generated by our automatic procedure for the rule system r01-r39 listed in section 5.1. The results have been
obtained entirely by static analysis, as detailed in the main text and section 6 of this Supporting Information. The dynamical system for
fragments constitutes an endogenously coarse-grained and self-consistent system that is sound with respect to the microscopic kinetics. Sound
means that the outcome is identical whether one first executes the deterministic microscopic kinetics with subsequent coarse-graining or first
coarse-grains with subsequent execution of the fragment dynamics. Note that the microscopic system was never represented explicitly (and thus
never executed). It was only represented implicitly by the system of rules (which were not executed either). Because of the ability to bypass
an explicit representation, the causal analysis of microscopic systems involving astronomic numbers of distinct microscopic states (molecular
species) becomes possible.

The entire fragmentation of the early EGF example, beginning with the reachability analysis, followed by rule compression, fragmentation,
and dynamical system generation took less than 0.2s on a 2GHz Intel Centrino Duo with 1Gb RAM. (It took 0.42s, if we include automatic
LaTeX report generation.) The mass action terms for the fragment dynamics resulting from each rule, as well as the fully assembled dynamical
system, are listed in the next section.

7.1 List of kinetic terms generated from each rule for each fragment. We report the kinetic production and consumption terms for each
fragment as generated by analysis of the compressed rule system of section 5.2. Rrule

frag denotes the kinetic terms pertinent to the dynamical

equation for the fragment indicated in the subscript, and which result from the rule identified in the superscript. ThusR39
7 = F1 means that our

static analysis generates from compressed rule cr39 one unimolecular production term (involving fragment F1) for fragment F7. For the sake
of a less cluttered presentation, we have set all rate constants to 1. (The right hand side of each Rrule

frag equation should be multiplied by the rate
constant associated with the rule indicated in the superscript.)

Kinetic terms generated from rule cr39:

R39
7 = F1

R39
6 = F2

R39
5 = F1 + F2 + F3

R39
4 = F3

R39
3 = −F3

R39
2 = −F2

R39
1 = −F1

Kinetic terms generated from rule cr38:

R38
7 = −F5· F7

R38
6 = −F5· F6

R38
5 = −F5· (F4+ F6+ F7)

R38
4 = −F4· F5

R38
3 = F4· F5

R38
2 = F5· F6

R38
1 = F5· F7

Kinetic terms generated from rule cr37:

R37
9 = F8

R37
8 = −F8

R37
5 = F8

Kinetic terms generated from rule cr36:

R36
9 = −F5· F9

R36
8 = F5· F9

R36
5 = −F5· F9

Kinetic terms generated from rule cr35:

R35
11 = F10

R35
10= −F10

R35
9 = F10

Kinetic terms generated from rule cr34:

R34
11 = −F9· F11
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R34
10= F9· F11

R34
9 = −F9· F11

Kinetic terms generated from rule cr33:

R33
14= −F14

R33
13 = −F13

R33
12 = −F12

R33
11 = F12 + F13 + F14

R33
7 = F12

R33
6 = F13

R33
4 = F14

Kinetic terms generated from rule cr32:

R32
14= F4· F11

R32
13 = F6· F11

R32
12 = F7· F11

R32
11 = −F11 · (F4+ F6+ F7)

R32
7 = −F7· F11

R32
6 = −F6· F11

R32
4 = −F4· F11

Kinetic terms generated from rule cr31:

R31
17= F1

R31
16= F2

R31
15= F3

R31
8 = F1 + F2 + F3

R31
3 = −F3

R31
2 = −F2

R31
1 = −F1

Kinetic terms generated from rule cr30:

R30
17= −F8· F17

R30
16= −F8· F16

R30
15= −F8· F15

R30
8 = −F8· (F15+ F16+ F17)

R30
3 = F8· F15

R30
2 = F8· F16

R30
1 = F8· F17

Kinetic terms generated from rule cr29:

R29
17= F12

R29
16= F13

R29
15= F14

R29
14= −F14

R29
13 = −F13

R29
12 = −F12

R29
10= F12 + F13 + F14

Kinetic terms generated from rule cr28:

R28
17= −F10· F17

R28
16= −F10· F16

R28
15= −F10· F15

R28
14= F10· F15
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R28
13 = F10· F16

R28
12 = F10· F17

R28
10= −F10· (F15+ F16+ F17)

Kinetic terms generated from rule cr27:

R27
17= F7

R27
16= F6

R27
15= F4

R27
9 = F4+ F6+ F7

R27
7 = −F7

R27
6 = −F6

R27
4 = −F4

Kinetic terms generated from rule cr26:

R26
17= −F9· F17

R26
16= −F9· F16

R26
15= −F9· F15

R26
9 = −F9· (F15+ F16+ F17)

R26
7 = F9· F17

R26
6 = F9· F16

R26
4 = F9· F15

Kinetic terms generated from rule cr25:

R25
21 = F18+ F19+ F20

R25
20= −F20

R25
19= −F19

R25
18= −F18

R25
17= F18

R25
16= F19

R25
15= F20

Kinetic terms generated from rule cr24:

R24
21 = −F21 · (F15+ F16+ F17)

R24
20= F15· F21

R24
19= F16· F21

R24
18= F17· F21

R24
17= −F17· F21

R24
16= −F16· F21

R24
15= −F15· F21

Kinetic terms generated from rule cr23:

R23
22 = F1 + F2 + F3

R23
14= F3

R23
13 = F2

R23
12 = F1

R23
3 = −F3

R23
2 = −F2

R23
1 = −F1

Kinetic terms generated from rule cr22:

R22
22 = −F22 · (F12 + F13 + F14)

R22
14= −F14· F22

R22
13 = −F13 · F22
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R22
12 = −F12 · F22

R22
3 = F14· F22

R22
2 = F13 · F22

R22
1 = F12 · F22

Kinetic terms generated from rule cr21:

R21
22 = F8

R21
10= F8

R21
8 = −F8

Kinetic terms generated from rule cr20:

R20
22 = −F10· F22

R20
10= −F10· F22

R20
8 = F10· F22

Kinetic terms generated from rule cr19:

R19
22 = F5

R19
11 = F5

R19
5 = −F5

Kinetic terms generated from rule cr18:

R18
22 = −F11 · F22

R18
11 = −F11 · F22

R18
5 = F11 · F22

Kinetic terms generated from rule cr17:

R17
28= F23

R17
27= F24

R17
26= F25

R17
25= −F25

R17
24= −F24

R17
23 = −F23

R17
22 = F23 + F24+ F25

Kinetic terms generated from rule cr16:

R16
28= −F22 · F28

R16
27= −F22 · F27

R16
26= −F22 · F26

R16
25= F22 · F26

R16
24= F22 · F27

R16
23 = F22 · F28

R16
22 = −F22 · (F26+ F27+ F28)

Kinetic terms generated from rule cr15:

R15
31 = F23

R15
30= F24

R15
29= F25

R15
25= −F25

R15
24= −F24

R15
23 = −F23

R15
5 = F23 + F24+ F25
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Kinetic terms generated from rule cr14:

R14
31 = −F5· F31

R14
30= −F5· F30

R14
29= −F5· F29

R14
25= F5· F29

R14
24= F5· F30

R14
23 = F5· F31

R14
5 = −F5· (F29+ F30+ F31)

Kinetic terms generated from rule cr13:

R13
31 = F28

R13
30= F27

R13
29= F26

R13
28= −F28

R13
27= −F27

R13
26= −F26

R13
11 = F26+ F27+ F28

Kinetic terms generated from rule cr12:

R12
31 = −F11 · F31

R12
30= −F11 · F30

R12
29= −F11 · F29

R12
28= F11 · F31

R12
27= F11 · F30

R12
26= F11 · F29

R12
11 = −F11 · (F29+ F30+ F31)

Kinetic terms generated from rule cr11:

R11
21 = F9

R11
9 = −F9

Kinetic terms generated from rule cr10:

R10
20= F4

R10
19= F6

R10
18= F7

R10
7 = −F7

R10
6 = −F6

R10
4 = −F4

Kinetic terms generated from rule cr9:

R9
18= −F18

R9
7= F18

Kinetic terms generated from rule cr8:

R8
34= F15

R8
33 = F16

R8
32 = F17

R8
17= −F17

R8
16= −F16

R8
15= −F15

Kinetic terms generated from rule cr7:

R7
32 = −F32
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R7
17= F32

Kinetic terms generated from rule cr6:

R6
37= F29

R6
36= F30

R6
35= F31

R6
31 = −F31

R6
30= −F30

R6
29= −F29

Kinetic terms generated from rule cr5:

R5
35= −F35

R5
31 = F35

Kinetic terms generated from rule cr4:

R4
36= F35

R4
35= −F35

R4
33 = F32

R4
32 = −F32

R4
31 = −F31

R4
30= F31

R4
28= −F28

R4
27= F28

R4
24= F23

R4
23 = −F23

R4
19= F18

R4
18= −F18

R4
17= −F17

R4
16= F17

R4
13 = F12

R4
12 = −F12

R4
7= −F7

R4
6= F7

R4
2 = F1

R4
1 = −F1

Kinetic terms generated from rule cr3:

R3
36= −F36· (F24+ F27+ F30+ F36)

R3
35= F36· (F24+ F27+ F30+ F36)

R3
33 = −F33 · (F24+ F27+ F30+ F36)

R3
32 = F33 · (F24+ F27+ F30+ F36)

R3
31 = F30· (F24+ F27+ F30+ F36)

R3
30= −F30· (F24+ F27+ F30+ F36)

R3
28= F27· (F24+ F27+ F30+ F36)

R3
27= −F27· (F24+ F27+ F30+ F36)

R3
24= −F24· (F24+ F27+ F30+ F36)

R3
23 = F24· (F24+ F27+ F30+ F36)

R3
19= −F19· (F24+ F27+ F30+ F36)

R3
18= F19· (F24+ F27+ F30+ F36)

R3
17= F16· (F24+ F27+ F30+ F36)

R3
16= −F16· (F24+ F27+ F30+ F36)

R3
13 = −F13 · (F24+ F27+ F30+ F36)

R3
12 = F13 · (F24+ F27+ F30+ F36)
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R3
7= F6· (F24+ F27+ F30+ F36)

R3
6= −F6· (F24+ F27+ F30+ F36)

R3
2 = −F2 · (F24+ F27+ F30+ F36)

R3
1 = F2 · (F24+ F27+ F30+ F36)

Kinetic terms generated from rule cr2:

R2
38= −F38· (F25+ F26+ F29+ F37)

R2
37= −F37· F38

R2
36= F37· F38

R2
34= −F34· F38

R2
33 = F34· F38

R2
30= F29· F38

R2
29= −F29· F38

R2
27= F26· F38

R2
26= −F26· F38

R2
25= −F25· F38

R2
24= F25· F38

R2
20= −F20· F38

R2
19= F20· F38

R2
16= F15· F38

R2
15= −F15· F38

R2
14= −F14· F38

R2
13 = F14· F38

R2
6= F4· F38

R2
4= −F4· F38

R2
3 = −F3 · F38

R2
2 = F3 · F38

Kinetic terms generated from rule cr1:

R1
38= F2 + F6+ F13 + F16+ F19+ F33

R1
37= F36

R1
36= −F36

R1
34= F33

R1
33 = −F33

R1
30= −F30

R1
29= F30

R1
27= −F27

R1
26= F27

R1
25= F24

R1
24= −F24

R1
20= F19

R1
19= −F19

R1
16= −F16

R1
15= F16

R1
14= F13

R1
13 = −F13

R1
6= −F6

R1
4= F6

R1
3 = F2

R1
2 = −F2
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7.2 The dynamical system for fragments.

.
F1 = R3

1 + R4
1 + R22

1 + R23
1 + R30

1 + R31
1 + R38

1 + R39
1

.
F2 = R1

2 + R2
2 + R3

2 + R4
2 + R22

2 + R23
2 + R30

2 + R31
2 + R38

2 + R39
2

.
F3 = R1

3 + R2
3 + R22

3 + R23
3 + R30

3 + R31
3 + R38

3 + R39
3

.
F4= R1

4+ R2
4+ R10

4 + R26
4 + R27

4 + R32
4 + R33

4 + R38
4 + R39

4
.

F5= R14
5 + R15

5 + R18
5 + R19

5 + R36
5 + R37

5 + R38
5 + R39

5
.

F6= R1
6+ R2

6+ R3
6+ R4

6+ R10
6 + R26

6 + R27
6 + R32

6 + R33
6 + R38

6 + R39
6

.
F7= R3

7+ R4
7+ R9

7+ R10
7 + R26

7 + R27
7 + R32

7 + R33
7 + R38

7 + R39
7

.
F8= R20

8 + R21
8 + R30

8 + R31
8 + R36

8 + R37
8

.
F9= R11

9 + R26
9 + R27

9 + R34
9 + R35

9 + R36
9 + R37

9
.

F10= R20
10+ R21

10+ R28
10+ R29

10+ R34
10+ R35

10
.

F11 = R12
11 + R13

11 + R18
11 + R19

11 + R32
11 + R33

11 + R34
11 + R35

11
.

F12 = R3
12 + R4

12 + R22
12 + R23

12 + R28
12 + R29

12 + R32
12 + R33

12
.

F13 = R1
13 + R2

13 + R3
13 + R4

13 + R22
13 + R23

13 + R28
13 + R29

13 + R32
13 + R33

13
.

F14= R1
14+ R2

14+ R22
14+ R23

14+ R28
14+ R29

14+ R32
14+ R33

14
.

F15= R1
15+ R2

15+ R8
15+ R24

15+ R25
15+ R26

15+ R27
15+ R28

15+ R29
15+ R30

15+ R31
15

.
F16= R1

16+ R2
16+ R3

16+ R4
16+ R8

16+ R24
16+ R25

16+ R26
16+ R27

16+ R28
16+ R29

16+ R30
16+ R31

16
.

F17= R3
17+ R4

17+ R7
17+ R8

17+ R24
17+ R25

17+ R26
17+ R27

17+ R28
17+ R29

17+ R30
17+ R31

17
.

F18= R3
18+ R4

18+ R9
18+ R10

18+ R24
18+ R25

18
.

F19= R1
19+ R2

19+ R3
19+ R4

19+ R10
19+ R24

19+ R25
19

.
F20= R1

20+ R2
20+ R10

20+ R24
20+ R25

20
.

F21 = R11
21 + R24

21 + R25
21

.
F22 = R16

22 + R17
22 + R18

22 + R19
22 + R20

22 + R21
22 + R22

22 + R23
22

.
F23 = R3

23 + R4
23 + R14

23 + R15
23 + R16

23 + R17
23

.
F24= R1

24+ R2
24+ R3

24+ R4
24+ R14

24+ R15
24+ R16

24+ R17
24

.
F25= R1

25+ R2
25+ R14

25+ R15
25+ R16

25+ R17
25

.
F26= R1

26+ R2
26+ R12

26+ R13
26+ R16

26+ R17
26

.
F27= R1

27+ R2
27+ R3

27+ R4
27+ R12

27+ R13
27+ R16

27+ R17
27

.
F28= R3

28+ R4
28+ R12

28+ R13
28+ R16

28+ R17
28

.
F29= R1

29+ R2
29+ R6

29+ R12
29+ R13

29+ R14
29+ R15

29
.

F30= R1
30+ R2

30+ R3
30+ R4

30+ R6
30+ R12

30+ R13
30+ R14

30+ R15
30

.
F31 = R3

31 + R4
31 + R5

31 + R6
31 + R12

31 + R13
31 + R14

31 + R15
31

.
F32 = R3

32 + R4
32 + R7

32 + R8
32

.
F33 = R1

33 + R2
33 + R3

33 + R4
33 + R8

33
.

F34= R1
34+ R2

34+ R8
34

.
F35= R3

35+ R4
35+ R5

35+ R6
35

.
F36= R1

36+ R2
36+ R3

36+ R4
36+ R6

36
.

F37= R1
37+ R2

37+ R6
37

.
F38= R1

38+ R2
38

8 A comparison

For the purpose of comparison, and as a further test case, we applied our procedure to a model of crosstalk between EGF and insulin receptors,
treated by Conzelmann et al. in [11] (the "CFG model"). We also applied our procedure to a simplification of the CFG-model that consists in
removing contextual specifications on the lhs of dissociation rules (turning them into "pure dissociation rules" per our terminology in the main
paper, section on "Syntactical criteria for annotating the contact map".) The automatically generated reports are available as separate additional
information, as they comprise 86 and 39 pages, respectively.
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The CFGmodel (table 7 of [11]) consists of 76 rules giving rise to 2899 molecular species. Conzelmann et al. report their system to comprise
5182 species. The discrepancy is a consequence of operating without a formal agent-based language. The authors of [11] have therefore no
way of accounting for symmetries that might be present in molecular species. Because of extensive dimer formation, symmetries are rampant,
shrinking the number of distingushable species by 44%. The method for reducing CFG as described in [11] yields 391 coarse-grained variables.
Our automatic procedure yields 208 fragments. (In [11], the 391 variables are subsequently reduced to 87 by applying a strategy for detecting
systemic modules, which is an alltogether different method than coarse-graining as we understand it. This method could be applied to our ODE
system as well.)

Context-dependency of dissociation causes soft bonds to become solid (see directive Edg1 in the main paper). This, in turn, gives rise to
larger fragments. Larger fragments often entail more numerous fragments, since a family of fragments is obtained by generating all possible
state valuations on a chosen class of sites. This effect is illustrated by removing the context-dependency of dissociation in the CFG model. The
resulting simplified model still consists of 76 rules and preserves the 2899 possible species, but our procedure now generates only 88 fragments.
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