
Graphs, Rewriting and Pathway Reconstruction
for Rule-Based Models
Vincent Danos

3
, Jérôme Feret

4
, Walter Fontana

5
, Russell Harmer

1
,

Jonathan Hayman
4,2

, Jean Krivine
1
, Chris Thompson-Walsh

2
, and

Glynn Winskel
2

1 CNRS & Université Paris-Diderot, Paris, France

2 Computer Laboratory, University of Cambridge, UK

3 LFCS, School of Informatics, University of Edinburgh, UK

4 LIENS (INRIA/ÉNS/CNRS), Paris, France

5 Harvard Medical School, Boston, Massachusetts

Abstract
In this paper, we introduce a novel way of constructing concise causal histories (pathways) to
represent how specified structures are formed during simulation of systems represented by rule-
based models. This is founded on a new, clean, graph-based semantics introduced in the first
part of this paper for Kappa, a rule-based modelling language that has emerged as a natural
description of protein-protein interactions in molecular biology [1]. The semantics is capable
of capturing the whole of Kappa, including subtle side-e�ects on deletion of structure, and its
structured presentation provides the basis for the translation of techniques to other models. In
particular, we give a notion of trajectory compression, which restricts a trace culminating in
the production of a given structure to the actions necessary for the structure to occur. This is
central to the reconstruction of biochemical pathways due to the failure of traditional techniques
to provide adequately concise causal histories, and we expect it to be applicable in a range of
other modelling situations.

1998 ACM Subject Classification F.1.1 Models of Computation, F.3.1 Specifying and Verifying
and Reasoning about Programs, J.3 Biology and genetics, I.6.6 Simulation Output Analysis

Keywords and phrases concurrency, rule-based models, graph rewriting, pathways, causality

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.276

1 Introduction

Kappa [8] has emerged as a powerful tool in modelling biochemical systems, supporting
sophisticated and e�cient simulation [5] and static analysis [6] techniques. It is centered
around rules that describe how links between sites on entities called agents are modified
when local conditions on the link structure (or, more generally, the state of sites) are satisfied.
In biological applications, agents typically represent proteins and links correspond to non-
covalent associations between domains (sites) of proteins; rules then are intended to capture
empirically su�cient conditions for modifications in the binding (or other) state of protein
molecules. The use of rule-based approaches has the potential to make a profound impact
in these fields [1], making it possible to analyze systems that would be intractable using
traditional systems of ordinary di�erential equations.

Kappa has an intuitive graphical interpretation. In this paper, we formalise the structures
involved and characterize the rewriting operation using a single-pushout (SPO) technique
[13]. The aim is to develop a natural, stable foundation for Kappa, and the use of morphisms

© Vincent Danos, et al;
licensed under Creative Commons License NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 276–288

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.276
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Danos et al. 277

illuminates choices made in earlier work. The foundation will provide a basis for connections
to existing work (such as [3, 9]) on graph rewriting. Critically, the semantics captures
side-e�ects in the application of rules; these are important in the e�cient and natural
representation of complex systems, so the careful analysis of them underpins the provision
of a rewriting semantics for the whole of Kappa. This is a significant progression from the
rewriting semantics presented in [7], where, with the aim of developing a theory of dynamic
restriction of reductions by type, it was appropriate to study a side-e�ect free form of Kappa,
specifically one without external links and where only whole connected components could be
deleted, that permitted a double-pushout (DPO) semantics. As we shall see, DPO rewriting
could not have been used without restricting to a side-e�ect-free fragment of Kappa.

In the second half of the paper, we introduce forms of trajectory compression, novel
causality analyses that have been implemented in KaSim, the Kappa simulator [14]. When a
specified pattern is seen in the state during simulation, for example two of a particular kind of
agent being linked together, they allow the automatic generation of a refined causal account
of the rule applications that led to the production of the pattern, called by biologists its
pathway. Traditional techniques fail to provide su�ciently concise histories, leaving in place
rule applications that a biologist would not expect to see in a pathway; compression addresses
this important problem. The forms of compression introduced progressively increase in
their ability to remove actions that are irrelevant to the production of the pattern, for
example being able to remove pairs of events that remove and subsequently re-introduce
structure upon which the pattern depends. It should be emphasized that, though we present
compression for Kappa, we see these as general operations. When a user is involved in
verifying any kind of model based on rewriting and the model indicates that a specified kind
of event of interest can occur, there is the potential to apply these forms of compression to
provide the modeller with a concise diagnosis for the event’s occurrence.

2 Kappa

Kappa models how structures called mixtures are a�ected by rules. A mixture describes the
state of sites on entities called agents. Agents and sites are labelled; each agent has at most
one site with each label, and a signature governs which sites are allowed on each type of
agent. Sites can be linked to other sites and can also be tagged to record any other internal

properties that hold. A natural level of abstraction for viewing biochemical pathways is to
view proteins as agents, the signature lists the (functional) sites of each type of protein, and
internal properties can be used for example to model the phosphorylation state of each site.

Rules are applied to transform mixtures. Each rule consists of three site graphs (patterns):
a left-hand side, a domain of definition and a right-hand side. A rule can be applied when
its left-hand side is matched in the mixture. The domain of definition is a sub-pattern of
the left-hand side; anything matched by something in the left-hand outside the domain of
definition is deleted by application of the rule. The right-hand side extends the domain of
definition with new agents, links and properties to be added to the mixture.

Significantly, to reduce the number of rules that need to be written, the test pattern of
a rule does does not need to specify the full state of all agents involved, but only a partial
aspect of some agents; this is neatly summed-up as: “Don’t care? Don’t write.” If whether
the action can occur is not determined by the state of a site, the site does not have to occur
in the test pattern. However, the application of a rule induces a reaction, i.e. a transition in
which agents are fully specified, in the mixture.

Example rules and a sequence of reactions, called a trajectory, are presented in Figure 1.

FSTTCS 2012



278 Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models

L R Domain of def.

empty empty

K XK
s

X
a
p

s a
K X

s a

K XK
s

X
a s a

K X
s a

u

KK
s s

K
s

K

p

p p

uK

K

X

Xp

K

K

X

Xp

K

K

X

X

pK

K

X

X

pK X

Xp

p p

p

p

M1 M2 M3

M5 M4

s
s a

a s
s a

a s
s a

a

s
s a

as
a
a

Figure 1 Example set of rules (left) and trajectory (right). Reaction —1 is obtained by applying

r1 to the top two agents; —2 by applying r2 to the bottom two agents; —3 by applying r3 to the

top-left agent; —4 by applying r4 to the lower-left agent.

We adopt the convention of drawing agents as large circles (labelled K and P ), sites as small
circles (labelled a and s) and using a sans-serif font to indicate the internal properties that
hold at sites (u for unphosphorylated and p for phosphorylated).

Since rules do not have to fully specify the state of all agents involved, rule applications
can have side-e�ects: changes to the mixture outside the image of the test pattern. For
example, the rule r4 in Figure 1 deletes a K-agent without reference to any of its sites;
as seen in the reaction labelled —4 in the trajectory, its application has the side-e�ect of
removing the link to the lower X-agent. As mentioned in the introduction, Kappa allows
such actions to allow the e�cient representation of systems, and this will motivate our use of
SPO rewriting to capture these highly intricate operations. This is in contrast to rewriting as
described in [7], which considered a side-e�ect free fragment of Kappa, in which, for example,
any deleted agent has to have all its sites specified in the rule.

To allow further compact representation, test patterns do not need to specify both ends
of links: links can be one-ended, signifying the existence of a link to some agent; we call such
links external links. Rule r3 which allows reaction —3 shows such a link being used to specify
a link to be deleted. External links in a pattern can additionally specify the type of agent
to which the link must connect and, optionally, the identifier of the site. In this paper, for
conceptual clarity, we shall take the view that the right-hand side of an applied rule should
be matched in the produced mixture. Some care will therefore be needed to manage the
interaction of side-e�ects and external links; we shall do so by requiring the images of external
links under matchings to connect to agents outside the image of the matching. Thereby,
for example, we rule out application of the rule X

a
K

s
X

a
K

s
(with domain of

definition equal to the right-hand side) to the mixture M4 since it would specify that the
link connecting the lower two agents were simultaneously to be destroyed and preserved.
The techniques presented in this paper are, however, completely amenable to other design
decisions such as choosing to favour deletion in these cases, and the more abstract framework
referred-to in the conclusion is of use when studying them.

We briefly remark that, in full Kappa, rules can be equipped with rate constants: values
that influence how likely it is that an occurrence of a rule’s test pattern in the mixture leads
to application of the rule. In this paper, however, it will not be necessary to consider any
stochastic aspects of the calculus.



Danos et al. 279

3 �-graphs and morphisms

Graphs with a given signature, �-graphs, shall play a central rôle in the semantics for the
Kappa that we now proceed to give: they shall include mixtures and represent patterns (site
graphs), and can be used to represent types (contact graphs).

I Definition 1. A signature is a 4-tuple � = (�ag, �st, �ag≠st, �prop), where �ag is a set of
agent types, �st is a set of site identifiers, �ag≠st : �ag æ Pfin(�st) is a site map, and �prop is
a set of internal property identifiers.

The set of agent types �ag consists of labels to describe the nature of the agents of interest,
for example the set of kinds proteins to be considered, and we use capital letters A, B, A

Õ
, . . .

to range over them. The set �st represents the set of labels that can appear to identify sites
on agents and is ranged over by i, j, i

Õ
, . . .. The function �ag≠st specifies the site identifiers

that can be present on agents: any site on an agent of type A must be labelled with an
identifier in �ag≠st(A). Finally, the set �prop indicates the set of internal properties that sites
might possess; for example, {u, p} to represent ‘unphosphorylated’ and ‘phosphorylated’.

As discussed in the previous section, there are three forms of external link. The first
form, written ≠, indicates just that the link connects to some other site. The second form,
written A for some A œ �ag, indicates that the link connects to some site on some agent of
type A. The final form, written (A, i) for some A œ �ag and i œ �ag≠st(A), indicates that the
link connects to site i on some agent of type A. The set of all possible external link labels is
defined to be Ext = {≠} fi �ag fi {(A, i) : A œ �ag & i œ �ag≠st(A)}.

I Definition 2. A �-graph comprises a set A of agents, an agent type assignment type : A æ
�ag, a set S of sites satisfying S ™ {(n, i) : n œ A & i œ �ag≠st(type(n))}, a symmetric link

relation L ™ (S fi Ext)2 \ Ext2, and a property set pk for each k œ �prop satisfying
pk ™ {(n, i) : n œ A & i œ �ag≠st(type(n))}

Note that any agent has at most one site with any given identifier: an agent n cannot have
two sites identified i. In patterns, we will represent the absence of any link on a site through
the site being in S but not occurring in any element of the link relation. Finally, the set pk

represents the set of sites that have internal property k. It is not in general the case that
pk ™ S. The intuition is that we wish the set S to be the set of sites for which we represent
knowledge of linkage. In a mixture, this will be all sites, but in a pattern it will be the sites
that we require either to be or not to be linked. If we do not care about a site’s link state in
a pattern, it will not be in S, but we may still wish to modify or test its internal properties,
so it may be in the set pk for some k.

It is useful to introduce a few notational conventions. For a �-graph G, we write AG

for its set of agents, type
G

for its typing function, SG for its set of link sites, LG for its link
relation and pk,G for the set of sites satisfying property k. We use m, n to range over agents
and x, y to range over elements of S fi Ext.

Mixtures, representing the state to which rules are applied, and site graphs, representing
patterns, are forms of �-graph. In particular, site graphs have no links that immediately
loop back to the same site and have at most one link from any site. Mixtures additionally
specify the link state of all sites and have no external links.

I Definition 3. A site graph is a �-graph such that its link relation L is irreflexive and if
((n, i), x) œ L and ((n, i), y) œ L then x = y, for all n, i, x and y. A mixture is a site graph
that additionally satisfies L ™ S ◊ S and S = {(n, i) : n œ A & i œ �ag≠st(type(n))}.

FSTTCS 2012



280 Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models

It should be noted that Kappa as presented here is slightly di�erent from past presentations
in that we allow a set of properties to hold at a site in a mixture instead of precisely one.
This streamlines the coming account of rewriting, makes no di�erence to expressivity, and
the old definition could be handled with a few straightforward minor changes.

3.1 Homomorphisms and partial morphisms
Homomorphisms between �-graphs are structure-preserving functions from the agents of one
�-graph to the agents of another. They preserve structure in the sense of preserving the
presence of sites, preserving properties held on sites and ensuring that if there is a link on a
site, the corresponding site on the image of the agent has a link higher in the link information

order. Given a typing function type, this is the least reflexive, transitive relation Ætype s.t. for
all A œ �ag and i œ �ag≠st(A) and n s.t. type

G
(n) = A: ≠ Ætype A Ætype (A, i) Ætype (n, i)

I Definition 4. A homomorphism of �-graphs h : G æ H is a (total) function on agents
h : AG æ AH satisfying:

type
G

(n) = type
H

(h(n)) for all n œ AG

if (n, i) œ SG then (h(n), i) œ SH

{(h(n), i) : (n, i) œ pk,G} ™ pk,H for all k œ �prop
if ((n, i), x) œ LG then there exists y s.t. ((h(n), i), y) œ LH and ĥ(x) Ætype

H
y, where

ĥ(m, j) = (h(m), j) for any (m, j) œ SG and ĥ(x) = x for any x œ Ext.
It is worth remarking that we could have taken homomorphisms to be functions on agents,
sites, links and properties as in [7]. Since in this paper we will primarily focus on site graphs,
no di�erence arises from using this simpler definition.

I Definition 5. A partial morphism h : G Ô H between site graphs G and H is a span
G D?

_oo h // H where h is a homomorphism and D is a site graph that is a subgraph
of G, i.e.: AD ™ AG and SD ™ SG and LD ™ LG and pk,D ™ pk,G for all k œ �prop.

We will write dom(h) for the site graph representing the domain of definition of a partial
morphism h, and allow ourselves to write n œ dom(h) to mean that n is in its set of agents,
(n, i) œ dom(h) to mean that (n, i) is in its set of link sites, and so on. We additionally write
(n, i) œ domprop,k(h) if (n, i) is in its set representing the property k.

Partial morphisms f : G Ô H and g : H Ô K compose in the usual way, with the
domain of definition of their composition dom(g ¶ f) containing elements (agents/sites/links)
of dom(f) such that their image under f is in dom(g). This corresponds to taking a pullback
of the homomorphism f0 : dom(f) æ H against dom(g) Òæ H in the category �-Site of
site graphs with homomorphisms between them. We write �-Siteú for the category of site
graphs connected by partial morphisms.

4 Rewriting

Matchings will be used to express how patterns (site graphs) are found in mixtures. There
are three key aspects. Firstly, distinct agents in patterns must match distinct agents in the
mixture. Secondly, sites with no link in the pattern should have no link in the mixture,
allowing patterns to express the absence of links on sites. Finally, as discussed in Section 2,
the image of an external link in the pattern cannot connect to any agent in the image of the
pattern. We write e : G ⇢ H to signify that e is a matching.

I Definition 6. A matching of the site graph G in H is an injective homomorphism e : G æ H

such that, for all (n, i) œ SG:



Danos et al. 281

A B
s t

C
u

B
t

B
t

A C
u

A B
s t

C B
u t

A C
u

Figure 2 An SPO application (left) that cannot be a DPO application (right)

if there exists y s.t. ((e(n), i), y) œ LH then there exists x such that ((n, i), x) œ LG, and
if there exist m and j s.t. ((e(n), i), (e(m), j)) œ LH then ((n, i), (m, j)) œ LG.

Every rule is associated with a single action map, a special kind of partial morphism, to
describe its e�ect. Via matchings, action maps specify what is deleted from the mixture
when they are applied and what is added: anything matched by the left-hand side but not
in the domain of definition is deleted by application of the rule, and anything added to the
domain of definition in the progression to the right hand side is created.

Action maps have three important aspects. Firstly, the right leg of the span is injective,
so rules cannot ‘merge’ agents together. Secondly, we wish it always to be the case that if
the left-hand side of a rule matches part of the mixture, following application of the rule to
that part, it matches the right-hand side of the rule. Finally, we wish to ensure that action
maps preserve the property of being a mixture. Property (2) below ensures that sites are
not added to or deleted from existing agents: we might otherwise introduce a site onto a
preserved agent that failed to match due to the presence/absence of links, or fail to generate
a mixture by deleting a site from a preserved agent. Property (3) ensures that any preserved
external link is not promoted up the link information order; this is again to ensure that the
right-hand side of the pattern will be consistent with the obtained mixture. Property (4)
ensures that any link that is created is not an external link. Property (5) ensures that if an
agent is created then so are all the sites consistent with the signature.

I Definition 7. An action map – : L R is a partial morphism of site graphs s.t.
1. – is partial injective, i.e. for all m, n œ dom(–), if –(n) = –(m) then n = m

2. for any n œ dom(–), (n, i) œ SL i� (–(n), i) œ SR i� (n, i) œ dom(–)
3. for any x œ Ext and ((m, i), x) œ dom(–), ((–(m), i), x) œ LR

4. if ((m, i), x) œ LR and @n, y s.t. –(n) = m and ((n, i), y) œ dom(–) then there exists
(p, j) œ SR s.t. x = (p, j).

5. if m œ AR and m ”œ image(–) then (m, i) œ SR for all i œ �ag≠st(type(m)).

The e�ect of applying a rule to a mixture is characterized abstractly as the following
pushout in �-Siteú; this result will be used extensively in the following section on compression
and causality. The result is dependent on the definitions of matchings and action maps since,
in general, �-Siteú does not have pushouts.

I Theorem 8. Given an action – : L R and a matching e : L ⇢ M , there is a pushout

in the category �-Siteú as follows. Furthermore, N is a mixture, u is a matching and — is

an action map. L
– � ,2

✏✏
e

✏✏

R
✏✏
u

✏✏
M

— � ,2N

We now give a simple example showing the necessity, due to side-e�ects, of SPO rather
than DPO rewriting. The SPO characterization gives the application to the left of Figure 2

FSTTCS 2012



282 Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models

where the deletion of an A-agent has the side-e�ect of deleting a link. DPO rewriting allows
a rule with an action map – : L R with domain D and right leg –0 : D æ R to be applied
to M to yield M

Õ if there is a morphism d : D æ D
Õ such that M is the pushout of D Òæ L

against d and M
Õ is the pushout of –0 : D æ R against d. Hence, for DPO rewriting to

produce the same derivation, there would have to exist D
Õ that would allow both the squares

in the diagram to the right of Figure 2 to be pushouts, which is clearly impossible.

5 Trajectory compression

The pushout theorem described in the previous provides a foundation for understanding how
KaSim, the Kappa simulator, simulates biochemical systems. Given an initial mixture and
a set of rules described by action maps, KaSim rewrites mixtures to obtain a trajectory, a
finite sequence of mixtures connected by action maps. Each step in the sequence is justified
by a pushout in which each action map –i is associated with a rule ri:

M1
—1 � ,2M2 Mn

—n � ,2Mn+1 where

Li
✏✏
ei

✏✏

–i

� ,2Ri
✏✏

ui

✏✏
Mi

—i � ,2Mi+1
One of the key practical uses of a trajectory is to form a causal account called a pathway

of how specified patterns (site graphs) called observables come to exist in the mixture. The
occurrence of an observable can be regarded simply as the application of a rule that tests if
a given pattern is matched, making no change to the mixture. A natural first approach is
therefore based on consideration of the independence of consecutive actions, called sequential
independence in graph rewriting, the intention being to draw upon the well-developed theory
of independence models for concurrency. Approximately, two consecutive rule applications
are independent if they overlap only on their preserved parts. Critically, any consecutive
pair of independent rule applications can be permuted, applying the same rules to the same
agents, to yield another valid trajectory to the same ultimate state. Using independence,
we may derive from the trajectory a partial order of causal dependence: a rule application
causally depends on the rule applications that it always occurs after, under any sequence
of permutations of consecutive independent rule applications. This construction forms part
of the adjunction between event structures and Mazurkiewicz trace languages in [15] . The
pathway of a given observable in a trajectory is the restriction of this partial order to the rule
applications upon which the rule application representing the observable causally depends.
In general, since the pathway is constructed by removing unnecessary rule applications from
the trajectory, we call it the Mazurkiewicz compression of the original trace.

In practice, however, this classical approach produces pathways that contain rule applica-
tions that a biologist would normally ignore, leaving in place sequences of rule applications
that have no combined e�ect from the perspective of the ultimate production of the observable.
For example, consider the following two rules:

B
a

A
b

B
a

A
b

B
a

A
b

B
a

A
b

B
a

A
b

C

Application of r to a mixture exactly the same as its left-hand side followed by application
of r

Õ first destroys the link and then re-creates it, in the process creating a C agent. Let the
observable be that sites a and b are linked, giving the rule robs:

B
a

A
b

B
a

A
b

B
a

A
b

There is a trajectory consisting of r, then r
Õ and then finally robs. Considering consecutive

rule applications, the observable cannot occur immediately prior to the application of r
Õ, and

r
Õ cannot be applied until r has applied, so no Mazurkiewicz compression of this trajectory



Danos et al. 283

with respect to the observable can take place. Mazurkiewicz compression therefore cannot
compress to show that the observable is matched by the same part of the graph in the initial
mixture. In general, it leaves in place sequences of events that needlessly cycle in removing
and adding structure tested by the observable.

The weakness of Mazurkiewicz compression is addressed by weak compression, a novel
technique that draws its power from the ability simply to test if rules can be applied to
the same agents at arbitrary prior points in the given trajectory whilst ensuring that the
observable is eventually matched in the same way. This is in contrast to the consideration
of independence of rules only with their immediately prior rule application. Though in this
paper we only discuss its application to Kappa, there is potentially great scope for applying
it in other rewriting settings such as traditional graph rewriting and multiset rewriting.

Finally, we introduce strong compression, which lifts the requirement above that the rule
generating the action being compressed is applied to same agents. Though this seemingly
loses a significant amount of fidelity in trajectories, in many situations the particular identity
of the agents to which rules are applied is not of significance. For example, a kinase may
be required to be linked to a protein for a particular sequence of phosphorylation rules
to be applied (this is called processive phosphorylation); we often wish to disregard the
possibility of the link being broken mid-sequence and then some other instance of the same
kind of kinase re-establishing the link for the process to continue. It is also worth noting that
strongly-compressed traces of a given observable can be extracted statically, i.e. without the
need to run any simulation.

Though in this paper we focus on their foundations, both weak and strong compression
have been implemented using constraint satisfaction techniques, weak in KaSim and both in
the earlier simplx simulator, and they have been found to be of real value when analysing
realistic models. The syntax to invoke them and further examples are available at [14].

5.1 Weak compression
Define the equivalence ≥ag to relate partial morphisms f, g : G æ H i� Adom(f) = Adom(g)
and ’n œ Adom(f) : f(n) = g(n). Partial morphisms are ≥ag-related i� they are between
the same site graphs and are equally defined on agents, though not necessarily on sites,
properties or links.

Suppose that we have an action map — : M M0 and there is a rule r0 with action
map –0 : L0 R0 and a matching e0 : L0 ⇢ M0. The application of r0 to M0 can be
weakly compressed to occur prior to the action —, which may represent the composition of
action maps induced by rule applications, if there is a matching e

Õ
0 : L0 ⇢ M such that

— ¶ e
Õ
0 ≥ag e0. This implies that r0 can be applied to the same agents (tracking their identity

through —) in M as it was in M0 through the original matching.

I Lemma 9. Let — : M M0 and –0 : L0 R0 and there be a matching e0 : L0 ⇢ M0. Let

M1 be a pushout of –0 against e0 with pushout morphisms —0 : M0 M1 and u0 : R0 ⇢ M1.

If there is a matching e
Õ
0 : L0 ⇢ M such that — ¶ e

Õ
0 ≥ag e0 then, letting M

Õ
0 be the pushout

of –0 against e
Õ
0 with pushout morphisms —

Õ
0 : M M

Õ
0 and u

Õ
0 : R0 ⇢ M

Õ
0, there is a

morphism “0 : M
Õ
0 æ M1, unique up to ≥ag, such that “0 ¶ —

Õ
0 ≥ag —0 ¶ — and “0 ¶ u

Õ
0 ≥ag u0.

Furthermore, “0 is an action map.

The situation can be summarized as in the left of Figure 3, drawing the pushouts M
Õ
0 and

M1 described in Theorem 8. Note that the map “0 might not be derivable as a trajectory
of rules in the given Kappa system. It describes the residual of the compression: an action

FSTTCS 2012



284 Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models

M
Õ
0

“0 � ,2M1

R0
ffu

Õ
0

ff

88 u0

88
≥ag

L0xxe
Õ
0

xx

&&
e0

&&

–0
_LR

≥ag

M
—

� ,2

—
Õ
0

_LR

M0

—0

_LR

Figure 3 Steps of compression. Left: A single step of compression. Right: Multiple steps of

compression, each justified by a single step of compression as drawn on the left.

summarizing the e�ect of the intermediate actions on the mixture formed by moving the
application of the action map –0 : L0 R0 forward, excluding the modified part.

If — ¶e
Õ
0 = e0 as opposed to — ¶e

Õ
0 ≥ag e0, we call the compression simple. All permutations

of independent individual actions will be simple, though the discussion following the example
at the end of this section will explain why weak compression is more often of interest. In the
case of simple compressions, ≥ag in Lemma 9 can be replaced by equality, and the partial
morphism “0 exists as a consequence of the left-hand pushout.

Suppose that we are given a trajectory M1
—1≠æ · · · —n≠1≠æ Mn

—n≠æ Mn+1 derived as shown
at the beginning of Section 5 and that we wish to produce a causal account for the last
action, —n : Mn æ Mn+1. Intuitively, the goal is to remove as many rule applications as
possible from this original trajectory, leaving in place —n, to yield a valid trajectory from M1
where each of the rule applications that are selected to remain involve matching the same
agents as in the original trajectory. The standard notions of independence on the compressed
trajectory can then be applied to obtain a pathway.

Formally, a set of indices {i, j, k, . . . , m} ™ {1, . . . , n ≠ 1}, taking i < j < k < . . . < m,
represents a weak compression if there is a sequence of compression steps as drawn in the
right of Figure 3. The first step is generated by a matching e

Õ
i

: Li æ M1 commuting (on
agents) with the original matching through the composition of the prior rule applications,
i.e. ei ≥ag —i≠1 ¶ . . . ¶ —1 ¶ e

Õ
i
. This generates a rule application —

Õ
i

: M1 æ M
Õ
i

and a residual
“i : M

Õ
i

æ Mi+1. Each later step requires there to exist a matching that commutes (on agents)
through the composition of the prior rule applications and the previous residual. For example,
for j, there must exist a matching e

Õ
j

: Lj æ M
Õ
i

such that —j≠1 ¶ . . . ¶ —i+1 ¶ “i ¶ e
Õ
j

≥ag ej ;
this generates a rule application —

Õ
j

: M
Õ
i

æ M
Õ
j

and a residual “j : M
Õ
j

æ Mj+1. Finally, we
require a single step of compression to establish that there is an application of the same rule
as that generating —n in M

Õ
m

, with the matching being unchanged on agents.
If {i, j, k, . . . , m} is a minimal (with respect to set inclusion) representation of a weak

compression, the trajectory M1
—

Õ
i

M
Õ
i
· · ·

—
Õ
m

M
Õ
m

—
Õ
n

M
Õ
n

is maximally weak compressed with
respect to the rule application Mn

—n

Mn+1.

I Example 10. Consider the following site graph G0:
X

p
Xa a

This represents an observable matched when there are two X-type agents with no link at
their a sites and, on at least one, a is phosphorylated.



Danos et al. 285

K

K

X

X

u

p

K

K

X

X

K X

X

p

p

K

K

X

X
p

K X

X

p

p

K

K

X

X

p

p

K

K

X

X

p

p

p
K

K

X

X

p p

p

p

M1
M2 M3

M5M4M3'

M0' M5

Figure 4 An example of weak compression. Sites on X are a and on K are s.

Returning to the Kappa rules and trajectory in Figure 1, this matches the mixture M5.
Let the matching e0 : G0 ⇢ M5 take the left X in G0 to the top X in M5 and the right X

in G0 to the bottom X in M5. Weak compression can be applied as shown in Figure 4 to
compress the trajectory M1

—1
M2

—2
M3

—3
M4

—4
M5

—0
M5 where —0 is the action testing

the observable G0. The residual map “3 records the creation of a link between the bottom two
agents. The domain of definition of “0 is equal to M4 with the lower K-agent removed, but
otherwise “0 acts as the identity on agents. The result is a maximally compressed trajectory
with the sequence of rule applications —

Õ
1, —

Õ
3 and —

Õ
0, showing that the pattern can be matched

in the same way as it was for the original trajectory simply following application of the rule
r1 to phosphorylate the site a on the top X, and r3 to remove the created link. We have
‘compressed’ the trajectory by removing the actions that unnecessarily a�ected the bottom
X-agent. Mazurkiewicz compression could not have been applied to this trajectory since
the action that tests the observable is not independent of the rule application that removes
the link from the lower X-agent, which itself is not independent of the rule application that
creates this link.

In fact, the example above shows a simple compression. Whilst, as we have seen, simple
compression allows a rule application to be pushed back along a trajectory that temporarily
adds and then removes links or properties that prevent application of the rule, it does not
allow the event to be pushed back if links or properties are temporarily removed. This
asymmetry is addressed by requiring commutation up to ≥ag in weak compression.

We conclude this section by noting that, in contrast with Mazurkiewicz compression,
there are trajectories that have more than one maximal weak compression. For example,
recalling the rules in Figure 1, from an initial mixture where an X-agent is linked to a
K-agent, r3, r2 and r4 could be applied in sequence followed by an observable testing that
the site a on X is unlinked. Both the application of r3 followed by the observable and the
application of r4 followed by the observable are maximal weak compressions.

5.2 Strong compression
Weak compression tests whether rules can be applied to act on the same agents at earlier
points in the given trajectory. Strong compression relaxes this requirement: it asks whether
a given rule in a trajectory can be applied through any matching; the rule does not have to
be applied to the same agents. Though seemingly a very strong notion, as mentioned at the
beginning of Section 5, it is appropriate in situations where we wish to ignore the identity of
agents, for example in pathways for processive phosphorylation.

FSTTCS 2012



286 Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models

We begin by saying that a sequence of rules s1 . . . sm is realisable from mixture N1 if
there is a trajectory N1

‡1
N2

‡2
. . .

‡m

Nm+1 and the rule applied to generate ‡i is si.
Consider a trajectory M1

—1
M2

—2
. . .

—n

Mn+1 where the rule applied to generate
—i is ri. A strong compression with respect to the rule application —n : Mn Mn+1 is
a sequence s1 . . . sm that is realisable from M1 for which there is a monotone injection
f : {i : 0 < i Æ m} æ {j : 0 < j Æ n} such that si = rf(i) and f(m) = n. The compression
is maximal if no rule can be removed from the sequence to yield a shorter strong compression.
Labelling the action maps with the rules that generate them, we obtain:

N1
‡1
s1

//
=

}} ✏✏

N2
‡2
s1

//

{{ ✏✏

Mf(3)

{{ ✏✏
M1

—1
r1
// Mf(1)

—f(1)

s1
// Mf(1)+1

—f(1)+1

rf(1)+1
// Mf(2)

—f(2)

s2
// Mf(2)+1

—f(2)+1

rf(2)+1
// Mf(3)

Any simple or weak compression is a strong compression, in which case the earlier
constructions yield action maps for the dotted arrows. In the case of simple compression, the
dotted areas commute up to equality, whereas they commute up to ≥ag for weak compression

I Example 11. The following example shows how strong compression can be applied to
disregard the identity of kinase agents in processive phosphorylation. In the following three
rules, for clarity we have omitted site identifiers. The first is a reversible rule, so it can be
applied in either direction, representing a kinase binding to/unbinding from a protein. The
second and third rules represent the phosphorylation of upper and lower sites on the protein.

PK PK PK PK
u p

PK PK
pu

Taking the observable to be a P -type agent with upper and lower sites phosphorylated, we
have the following trajectory (labelling reactions only with the rules that give rise to them).

K
P
u

uK

K
P
p

uK

K
P
p

uK

K
P
p

uK

K
P
p

pK

K
P
p

pK
t br r' robs

Strong compression can be applied to this to obtain a trajectory consisting of rules t and b

without the intervening r
Õ and r events, where now only one of the two kinases acts.

K
P
u

uK

K
P
p

uK

K
P
p

pK

K
P
p

pK
t b robs

6 Related work and conclusion

In this paper, we have seen how a semantics based on SPO graph rewriting [13] can be
given to Kappa through the careful specification of various kinds of morphism. We then
studied forms of trajectory compression, novel techniques that used the SPO characterization
of rewriting and underlie the automatic reconstruction of biochemical pathways. This was
motivated by traditional techniques based on the permutation of consecutive independent
rule applications providing causal accounts with too much redundant information.

The necessity of an SPO instead of DPO semantics, due to Kappa allowing side-e�ectful
actions, was shown in Section 4. It is worth remarking on the related work in [7] which
developed a theory of dynamic restriction by type, where reduction is restricted to graphs
over a given contact graph. There, a side-e�ect-free fragment of Kappa was considered, ruling
out side e�ects by not having external links and only allowing rules to delete fully-specified
connected components, and was shown to permit a DPO semantics.



Danos et al. 287

The SPO result and characterization of compression provide an important concrete
foundation for a number of areas of further research. Firstly, though there has not been space
to present it here, the work in [7] on dynamic restriction translates to the SPO semantics.
The analogue of the adjunction representing change of contact graph presented there, with the
presence of external links introduced in this paper, can furthermore be used as a foundation
for understanding views, special kinds of graph that are important in techniques based on
static analysis for computing an approximation of the set of reachable connected components
(complexes) [6]. We also intend to study how this adjunction can be used to describe techniques
for providing a flexible degree of context-sensitivity in the abstraction of information flow that
is used for reducing quantitative semantics [4]. Additionally, demonstrating the generality
of the approach to rewriting, in [10] it is shown how it supports the addition of regions to
site graphs to represent membranes. More abstractly, it would be interesting to determine
whether sesqui-pushout rewriting [3] could fruitfully be applied to model Kappa, and to
connect to the wider graph-rewriting literature, for example by comparing to [9]. Another
potentially interesting connection that could be made is to the framework recently introduced
in [11], which shows how negative application conditions in DPO rewriting can be specified
using ‘open maps’. Negative application conditions should allow us to understand abstractly
constraints of the form seen in matchings, where we require the image of any unlinked site
under a matching to itself be unlinked. Finally on rewriting, the work here suggests a more
general framework in which to characterize pushouts of partial maps, where we represent how
the preservation of elements such as links depends on the preservation of other elements such
as their corresponding agents. This can be used to tease-apart the concrete proofs presented
here and reveals the robustness of the pushout result when the ‘externality’ constraint on
matchings is relaxed.

On compression, though we chose to formulate the technique for Kappa, we see such
techniques for automatically providing more concise causal accounts of rule applications as
being applicable much more widely in the verification of concurrent and distributed systems.
Towards this, in future work we shall give an abstract framework to describe compression
in any category of structures with distinguished forms of action and matching morphisms
alongside a full description of its algorithmic techniques. This shall be used to show how it
translates equally-well to other models such as Petri nets, traditional graph rewriting and
other models for biochemical pathways such as BioNetGen[2], which di�ers from Kappa in
allowing rules to have non-local tests (though, in terms of complexity, there is an inherent
cost in dealing with these). The more abstract framework for compression may also provide
a useful setting for a comparison with [12], which can be seen as defining when a single
rule application can be permuted with a number of prior rule applications in the style of
Mazurkiewicz compression. This would provide a form of compression between Mazurkiewicz
and weak compression, in which the residual represents the composition of a number of rule
applications. It is worth noting that this will be less powerful than weak compression since it
will leave in place rule applications in asymmetric conflict with production of the observable.
Finally, we are currently studying a framework that allows the description of other more
sophisticated forms of compression lying between weak and strong, for example compression
allowing the identity only of particular types of agent to be disregarded.

Acknowledgments: JH and GW gratefully acknowledge the support of the ERC through
the Advanced Grant ECSYM, JF and JH the support of the ANR AbstractCell Chair of
Excellence and JK the ANR Avenir ICEBERG.

FSTTCS 2012



288 Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models

References
1 J. A. Bachman and P. Sorger. New approaches to modeling complex biochemistry. Nature

Methods, 8(2):130–131, 2011.
2 M. L. Blinov, J. Yang, J. R. Faeder, and W. S. Hlavacek. Graph theory for rule-based

modeling of biochemical networks. In Proc. CSB, number 4230 in LNCS, 2006.
3 A. Corradini, T. Heindel, F. Hermann, and B. König. Sesqui-pushout rewriting. In

Proc. ICGT, 2006.
4 V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Abstracting the di�erential

semantics of rule-based models: exact and automated model reduction. In Proc. LICS,
2010.

5 V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable simulation of cellular signaling
networks. In Proc. APLAS, 2007.

6 V. Danos, J. Feret, W. Fontana, and J. Krivine. Abstract interpretation of cellular signalling
networks. In Proc. VMCAI, 2008.

7 V. Danos, R. Harmer, and G. Winskel. Constraining rule-based dynamics with types.
MSCS, 2012.

8 V. Danos and C. Laneve. Formal molecular biology. TCS, 325, 2004.
9 H. Ehrig, J. Padberg, U. Prange, and A. Habel. Adhesive high-level replacement systems:

A new categorical framework for graph transformation. In Proc. ICGT ’04, volume 74 of
Fundamenta Informaticae, 2006.

10 J. Hayman, C. Thompson-Walsh, and G. Winskel. Simple containment structures in rule-
based modelling of biochemical systems. In Proc. SASB, 2011.

11 R. Heckel. DPO transformation with open maps. In Proc. ICGT, number 7562 in LNCS,
2012.

12 F. Hermann. Permutation equivalence of DPO derivations with negative application con-
ditions based on subobject transformation systems. ECEASST, 16, 2008.

13 M. Löwe. Algebraic approach to single-pushout graph transformation. TCS, 109, 1993.
14 kappalanguage.org. The kappa simulator.
15 G. Winskel and M. Nielsen. Models for concurrency. In Handbook of Logic and the Found-

ations of Computer Science. OUP, 1995.

kappalanguage.org

	Introduction
	Kappa
	-graphs and morphisms 
	Homomorphisms and partial morphisms

	Rewriting
	Trajectory compression
	Weak compression
	Strong compression

	Related work and conclusion

