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Abstract. Modelling is becoming a necessity in studying biological sig-
nalling pathways, because the combinatorial complexity of such systems
rapidly overwhelms intuitive and qualitative forms of reasoning. Yet, this
same combinatorial explosion makes the traditional modelling paradigm
based on systems of differential equations impractical. In contrast, agent-
based or concurrent languages, such as κ [1,2,3] or the closely related
BioNetGen language [4,5,6,7,8,9,10], describe biological interactions in
terms of rules, thereby avoiding the combinatorial explosion besetting
differential equations. Rules are expressed in an intuitive graphical form
that transparently represents biological knowledge. In this way, rules
become a natural unit of model building, modification, and discussion.
We illustrate this with a sizeable example obtained from refactoring two
models of EGF receptor signalling that are based on differential equa-
tions [11,12]. An exciting aspect of the agent-based approach is that it
naturally lends itself to the identification and analysis of the causal struc-
tures that deeply shape the dynamical, and perhaps even evolutionary,
characteristics of complex distributed biological systems. In particular,
one can adapt the notions of causality and conflict, familiar from con-
currency theory, to κ, our representation language of choice. Using the
EGF receptor model as an example, we show how causality enables the
formalization of the colloquial concept of pathway and, perhaps more sur-
prisingly, how conflict can be used to dissect the signalling dynamics to
obtain a qualitative handle on the range of system behaviours. By taming
the combinatorial explosion, and exposing the causal structures and key
kinetic junctures in a model, agent- and rule-based representations hold
promise for making modelling more powerful, more perspicuous, and of
appeal to a wider audience.

1 Background

A large majority of models aimed at investigating the behavior of biological path-
ways are cast in terms of systems of differential equations [11,12,13,14,15,16].
The choice seems natural. The theory of dynamical systems offers an exten-
sive repertoire of mathematical techniques for reasoning about such networks.
It provides, at least in the limit of long times, a well-understood ontology of
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behaviors, like steady states, oscillations, and chaos, along with their linear sta-
bility properties. The ready availability of numerical procedures for integrating
systems of equations, while varying over parameters and initial conditions, com-
pletes a powerful workbench that has successfully carried much of physics and
chemical kinetics. Yet, this workbench is showing clear signs of cracking under
the ponderous combinatorial complexity of molecular signalling processes, which
involve proteins that interact through multiple post-translational modifications
and physical associations within an intricate topology of locales [17].

Representations of chemical reaction networks in terms of differential equa-
tions are about chemical kinetics, not the unfolding of chemistry. In fact, all
molecular species made possible by a set of chemical transformations must be
explicitly known in advance for setting up the corresponding system of kinetic
equations. Every molecular species has its own concentration variable and an
equation describing its rate of change as imparted by all reactions that pro-
duce or consume that species. These reactions, too, must be known in advance.
Many ion channels, kinases, phosphatases, and receptors – to mention just a
few – are proteins that possess multiple sites at which they can be modified
by phosphorylation, ubiquitination, methylation, glycosidilation, and a plethora
of other chemical tagging processes. About one in a hundred proteins have at
least 8 modifiable sites, which means 256 states. A simple heterodimer of two
distinct proteins, each with that much state, would weigh in at more than 65,000
equations. It is easily seen that this combinatorics can rapidly amount to more
possible chemical species than can be realized by the actual number of molecules
involved in a cellular process of this kind. The problem is not so much that a
deterministic description is no longer warranted, but rather that the equations,
whether deterministic or stochastic, can no longer be written down—and if they
could, what would one learn from them?

This difficulty is well recognized. One way out is to use aggregate variables
describing sets of modification forms. For example, one might bundle together all
phosphoforms of a receptor, regardless of which sites are phosphorylated. This,
however, is problematic. First, the choice of what to aggregate and not is unprin-
cipled. Second, the appropriate level of aggregation may change over time as the
system dynamics unfolds. Third, the aggregation is error prone, since it has to be
done without a prior microscopic description. A further, more subtle, difficulty
is that an extensional system of differential equations describes the constituent
molecules only in terms of interactions that are relevant in a given context of
other molecules. It does not characterize molecular components in terms of their
potential interactions that could become relevant if the composition of the sys-
tem were to change. As a consequence, “compositional perturbations”, such as
adding a novel molecular component (a drug) or modifying an extant one (to
model the effects of knocking out a site or adding a new domain) are virtu-
ally impossible to carry out by hand, since they require, again, enumerating all
chemical consequences in advance and then rewriting all affected equations.

These problems have led to recent attempts at describing molecular reac-
tion networks in terms of molecules as “agents”, whose possible interactions are
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defined by rules that specify how a local pattern of “sites” and their “states” is
to be rewritten [18,19]. This resembles good old organic chemistry, except that
biologists think of post-translational modifications less as chemical transforma-
tions (which, of course, they ultimately are) than as state changes of the same
agent. A phosphorylated kinase is, at some useful level of description, still the
same entity - though in a different state - than its unphosphorylated version.
Indeed, biologists think of the state of an agent as a specific set of interaction
capabilities. The discontinuous change of such capabilities despite an underlying
continuity in agent-type hinges on the large size of a protein, which allows for
a significant change in hydrophobic and electrostatic dispositions without much
changing the protein’s overall chemical identity.

A rule may specify, for example, that if site Y996 of protein A is phospho-
rylated, protein B can bind to it with its site SH2. Since this rule applies re-
gardless of whether A or B are bound to other partners or possess other sites
with particular states, it captures a potentially large set of individual reactions
between distinct molecular species. The need for spelling out all these reactions
was spelling problems for “flat” (extensional) reaction network representations,
whereas modifying or extending a reaction system is now as simple as modifying
a single rule or merging sets of rules, respectively.

Our stance in this paper is to forgo writing out differential equations, and di-
rectly operate at the level of rules defining the interactions among a set of agents.
Biological signalling and control processes are, in fact, massively distributed sys-
tems, and this has led Regev et al. to propose Milner’s π-calculus [20], a minimal
language for describing concurrent systems, as a language for modelling biologi-
cal systems [21,22,23]. Since then, numerous variants of representations empha-
sizing different types of biological processes have been put
forward [19,24,25,26,27]. We shall use the language κ [2,3], as a direct and trans-
parent formalisation of molecular agents and their interactions in signalling net-
works. Most of the points we shall advance here are, however, independent of
any committment to a particular syntax, as long as domain-level modifications
and bindings can be represented, and one can condition those on the binding
and internal states of the various entities participating to a reaction.

Taking concurrency seriously means understanding the organization of such
systems in terms of observables defined from within rather than outside these
systems. Time is a particular case in point. In molecular systems, the temporal
precedence among events cannot be defined (at first) on physical time, since cells
or molecules do not bear watches, let alone synchronized ones. It is well known
in concurrency that temporal precedence is a logical relation that gives rise to a
partial order, as opposed to a total order. Some events must occur before others
can happen, while other events may happen in any sequence, reflecting their
mutual independence. Clearly, in any particular physical realization one will
observe a particular sequence of events. The issue, however, is to uncover which
aspects of that sequence are necessary and which contingent. The issue is to
discover the invariant structure underlying all observable sequences. Differential
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equations are unable to resolve this causality, precisely because they treat time
as global, as if everything proceeded in a synchronized fashion.

In contrast, concurrency approaches have long sought to understand the
dependencies that constrain an observable event. The traditional notions of
causality developed in concurrent models (such as Petri nets, a language which
is equivalent to structure-less reactions [28,29]) can be adapted to κ, and used
to clarify how a path toward a specified event has unfolded from initial condi-
tions. It is worth mentioning that κ can be seen as an applied graph-rewriting
framework, and as such, belongs to a family of formalisms where the notions
of causality, conflict, and the attendent concept of event structures, are well-
understood [30]. Similar notions of causality have been derived for π-calculus
itself, and some have been put to use in a bio-modelling scenario with an ambi-
tion to decribe the inner workings of a pathway by deriving causal traces (aka
minimal configurations in the event structure terminology) [31,32]. What we
shall use here is a related but subtler notion of minimal causal path, or story,
which seems an appropriate formalization of what biologists colloquially call a
“signalling pathway”, and may have an interest which is independent of the in-
tended application. Used in conjunction with stochastic simulation, stories can
generate insights into the collective properties of rule-based systems. We will
show how this works using an EGF receptor signalling model that would be
quite large and unwieldy by traditional standards. On the basis of relationships
of inhibition (or conflict) between rules, we will also see that one can identify key
junctures in the system’s dynamics that yield explanatory insights and suggest
numerical experiments.

To introduce the framework, we warm up with a simple example of an ubiq-
uitous control motif in cellular signal processing: a futile cycle of enzymatic
modification and demodification of a target substrate. In general, we have set
for an easy and accessible style of explanation, where definitions are precise but
not formal. The interested reader will find it easy to reconstruct the technical
underpinnings, as we have given a measure of further technical details in an ap-
pendix. It may also be worth mentioning that the notions presented here have
been implemented, and in both the short preliminary example and the larger
EGF receptor one, we have used those implementations to obtain the various
simulations, causal traces, and stories.

2 A Futile Cycle

2.1 Agents and Rules

The κ description of a system consists of a collection of agents and rules. An
agent has a name and a number of labeled sites, collectively referred to as the
agent’s interface. A site may have an internal state, typically used to denote its
phosphorylation status or other post-translational modification. Rules provide a
concise description of how agents interact. Elementary interactions consist of the
binding or unbinding of two agents, the modification of the state of a site, and
the deletion or creation of an agent. This seems limited, but closely matches the
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style of reasoning that molecular biologists apply to mechanistic interactions in
cellular signalling. While this approach does not address all aspects of signaling
(such as compartmentation), it does cover a substantive body of events sufficient
for the present purpose.

To develop the main concepts, we start with a system consisting of three
agents: a kinase K, a target T with two phosphorylatable sites x and y, and a
phosphatase P. We first describe a phosphorylation event by means of three ele-
mentary actions and their corresponding rules: (1) the kinase K binds its target
T either at site x or y; (2) the kinase may (but need not) phosphorylate the
site to which it is bound; (3) the kinase dissociates (unbinds) from its target.
For ease of reference, we label rules with a mnemonic on the left. Using a tex-
tual notation, we represent internal states as ‘~u’ (unphosphorylated), and ‘~p’
(phosphorylated), and physical associations (bindings or links) as ‘!’ with shared
indices across agents to indicate the two endpoints of a link. The left hand side
of a rule specifies a condition in the form of a pattern expressed as a partial
graph, which represents binding states and site values of agents. The right hand
side of a rule specifies (usually elementary) changes to agents mentioned on the
left. A double arrow indicates a reversible rule, the name refers to the forward
version of the rule say r, while the opposite rule is written r_op. With these
conventions, the phosphorylation process of sites x or y translates into:

’KT@x’ K(a),T(x) <-> K(a!1),T(x!1)
’Tp@x’ K(a!1),T(x~u!1) -> K(a!1),T(x~p!1)
’KT@y’ K(a),T(y) <-> K(a!1),T(y!1)
’Tp@y’ K(a!1),T(y~u!1) -> K(a!1),T(y~p!1)

Note that not all sites of an agent interface need to be present in a rule, eg in the
first rule KT@x, T’s interface does not mention y. Likewise, if a site is mentioned
at all, its internal state may be left unspecified, eg in the same first rule one does
not say whether site x in T is phosphorylated or not. This is the ‘don’t care, don’t
write’ convention, only the information which is conditioning the triggering of a
rule needs to be represented.

The action of the phosphatase P, which undoes the action of K, is described
by a set of similar rules:

’PT@x’ P(a),T(x) <-> P(a!1),T(x!1)
’Tu@x’ P(a!1),T(x~p!1) -> P(a!1),T(x~u!1)
’PT@y’ P(a),T(y) <-> P(a!1),T(y!1)
’Tu@y’ P(a!1),T(y~p!1) -> P(a!1),T(y~u!1)

It is possible to associate rate constants with each rule, as we shall do later. We
refer to this rule set as the Goldbeter-Koshland (GK) loop [33]. It is a frequent
motif that appears in many variants throughout cellular signal transduction. No-
tice how the specification of elementary actions forces us to make our mechanistic
choices explicit. The example views phosphorylation of T by K as a distributed
mechanism, whereby the kinase lets go of its target before phosphorylating it
(or another instance) again, since it cannot remain bound to site x and phos-
phorylate site y. Other variants of multisite phosphorylation involve a processive
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mechanism whereby the same kinase acts sequentially on some or all sites of its
target. Further variants still would have to specify whether multiple kinases can
be bound to the same target or not.

2.2 The Contact Map

Large rule sets can be difficult to understand, and it is important to have a suite
of views that report at a glance information implied by the rules. Such cognitive
devices are useful for a piecewise modular construction of the system of interest.
They also allow for a modicum of reasoning about the system. A first useful view
of the rule set is the contact map, which is akin to a protein-protein interaction
(PPI) map and is shown in Fig. 1. The contact map is a graph whose nodes
are the agents with their interfaces and whose edges represent possible bindings
between sites. Potential site modifications are indicated by a colour code. The
contact map does not provide causal information, in the sense that it does not
specify which conditions must be met for a modification or binding to occur. It
only shows possibilities.

T

PK

x y

a a

Fig. 1. A Goldbeter-Koshland contact map: nodes represent the three kinds of agents
in the rule set, together with their sites, and each site is connected to sites it can bind
to; whether a site can be modified is indicated by a colour code (green). Although very
simple, the associated rule set generates already 38 non-isomorphic complexes (36 of
which contain T).

2.3 Stochastic Simulation

With a rule set in place, one can generate time courses, or stochastic trajectories,
for user-defined observables. Here we choose an initial state consisting of a 100 of
each of the three agents with their interfaces in defined states, T(x~u,y~u), K(a),
P(a). We decide to track two observables: (1) the number of doubly phosphory-
lated target molecules, regardless of whether sites x and y are bound to enzymes,
which is written as T(x~p?,y~p?), and (2) the number of target instances T that
are fully phosphorylated but free on both sites x and y, T(x~p,y~p). As can be
verified in Fig. 2, the latter observable has to be smaller since it is more stringent.
The trajectories are obtained using an entirely rule-based version of Gillespie’s
kinetics which generates a continuous time Markov chain [34]. At any given time
a rule can apply to a given state in a number of ways. That number is multiplied
by the rate of the rule and defines the rule’s activity or flux in that state of
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the system. It determines the likelihood that this rule will fire next, while the
total activity of the system determines probabilistically the associated time ad-
vance. This simulation principle can be implemented within κ with rather nice
complexity properties, since the cost of a simulation event (triggering a rule)
can be made independent on the size of the agent population and depends only
logarithmically in the number of rules. This is very useful when it comes to
larger systems. One thing to keep in mind is that any obtained trajectory is but
one realization of a stochastic process that will differ slightly when repeated.
Sometimes, but not always, their average behaviour can be captured in a suit-
able differential system. Also, and evidently, the trajectories will depend on the
choice of rates (see the captions to Fig. 2(a) and 2(b)).

2.4 Precedence and Stories

The trajectory samples obtained above represent an agent-centric view of the
system’s evolution. For instance, they do not answer directly the question of
which succession of events results in a fully phosphorylated form of the target
T. This is where the notion of pathway or story comes into play. An event,
which is the application of a rule, is said to precede a posterior event, if those
events don’t commute, which can be 1) either because the latter cannot possibly
happen before the former, ie has to be after, or 2) because the former can no
longer happen after the latter, ie has to be before. Eg an event of type Tu@x has
to be after an event of type PT@x, and before an event of type PT@x_op. This
notion of logical precedence or causation defines a partial order on any sequence
of events along a trajectory. The fact that two events may succeed one another
in a particular trajectory does not imply that they are in such a relationship.
An example is provided by two successive events of type KT@x and KT@y. Events
that are not related by precedence are said to be concurrent.

The idea behind a story is to retain only those events in the causal lineage
that contributed a net progression towards an event of interest, or in other words
a story summarises how a given event type can be obtained. This means in
particular that circular histories which generate a situation that is subsequently
undone without leaving a side effect that impacts the causal lineage later on
should be eliminated. We therefore define a story as a sequence of events that:

- begins with the initial condition and ends with an event of a given type called
the observable,
- consists only of events that are in the causal lineage to the observable (which
eliminates events that are concurrent to the observable)
- contains no event subsequence with the same properties (which in particular
eliminates circles).

Taking as an initial condition one instance of each agent, and as an observable
the doubly phosphorylated form of the target, one obtains two stories depending
on whether K hits x or y first (Fig. 3 shows the former). If the initial condition
were to contain more than one K, there would be a third story in which both
sites are phosphorylated by different K-agents.
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(a) Association and modification rates are set to 1, and
dissociation rates are set to 10 (per time units).

(b) Same model perturbed by a tenfold increase in the
association and modification rate of P at site x.

Fig. 2. Goldbeter-Koshland loop simulation: the initial state has a hundred copies of
each agent, each disconnected and unphosphorylated; the level of doubly phosphory-
lated T is lower in the perturbed case (right)

2.5 Inhibition and Activation

Say a rule inhibits another one if the former can destroy an instance of the latter.
Note that this may not be a symmetric relationship. An example is given by the
application of the rules KT@x and PT@x (symmetric), or the rules PT@x_op and
Tu@x (dissymmetric). Similarly, say a rule activates another one if the former
can create a new instance of the latter. An example is PT@x which may create a
new instance of Tu@x.

Superimposing such inhibitions on a story, as in Fig. 3 above, suggest ways in
which one can prevent or delay a story’s ending. Indeed, numerically, a tenfold
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[T(y~u,x~u)]_0 [K(a)]_1

[KT@x]_11

[Tp@x]_17

[KT@x_op]_23

[KT@y]_24

[Tp@y]_25

[obs]_26

PT@x

PT@y

Tu@x,y

Fig. 3. A story: the story observable is at the bottom, causal depth is represented
by shades of grey. Event numbers represent the actual step in the simulation where
these events occurred (missing events are either concurrent, or compressible). Various
inhibitions attached to the story are shown on the left (explained below).

increase in the rate constants of PT@x and Tu@x yields a much lower value for
the observable (see Fig. 2(b)).

We now proceed to apply these ideas to the more complex example of an
EGF receptor model coupled to a MAP kinase cascade. In its full form, as
presented in Ref. [35], EGFR signaling is a complex suite of pathways whose
boundaries to other signaling systems appear increasingly blurred. While the
present model falls far short of representing this complexity, it goes some way
towards demonstrating how to eventually represent and face it.

3 The EGFR Model

3.1 EGFR Model Elements

The EGFR signalling network plays an important, yet only partially understood,
role in regulating major events in mammalian cells, such as growth, proliferation,
survival, and differentiation. In outline, a signal arrives at the cell membrane in
the form of a ligand, EGF, which binds to the extra-cellular portion of a special
receptor protein, EGFR, that straddles the membrane. With the arrival of EGF,
an EGFR becomes capable of binding to a neighbouring EGFR also bound to a
ligand. Such receptor pairs can cross-activate one another, meaning that certain
of their intra-cellular residues become phosphorylated. These phosphorylated
residues now serve as binding sites for a variety of proteins in the cytoplasm.
This in turn leads to the activation of a small protein, Ras, that serves as a kind
of relay for triggering a cascade of phosphorylations comprising three stacked GK
loops in which the fully phosphorylated form of one loop acts as the kinase of
the next, causing the overall cascade to behave like an amplifier and culminating
in the activation of ERK.

The pathway to the activation of ERK has been the target of an intense
modelling effort over the past decade. The ubiquity and importance of the
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pathway for biomedical applications [36, Chap. 5] have spurred extensive studies
at the mechanistic level of protein-protein interactions and localizations. At the
same time, the subtleties uncovered by these investigations (see, for example,
the receptor network combinatorics of the pathway [37]) have made it clear that
intuition alone, however sharp, cannot confront its complexity and only risks
flushing enormous amounts of drug development money down the drain. To cal-
ibrate the reader on the magnitudes involved, the particular model presented
below contains 70 rules and generates over 1023 distinct molecular species (see
appendix for the complete and commented rule set). An exhaustive approach
with differential equations would, in principle, require that many equations—
and that is by no means a large example.

Fig. 4 depicts the model’s contact map. The associated rule-based model over-
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Fig. 4. The contact map of the EGFR/ERK model

lays a causal structure on the contact map by specifying, for example, that Ras
can only bind Raf if it has been phosphorylated beforehand at site S1S2. The
rule set itself was mainly obtained from refactoring two existing ordinary dif-
ferential equations (ODE) models [11,12] treating two different aspects of EGF-
EGFR signalling: down-regulation of Erk activity through a negative feedback
and down-regulation of the signal through internalization.

In its present form, our EGFR model comprises three modules. Firstly, a re-
ceptor module, which for illustration purposes retains only the EGFR (or ErbB1)
receptor, but includes internalization dynamics using fictitious sites whose state
flags localization. This module can be refined to include a receptor heterodimer-
ization network comprising all four receptors of the ErbB family. Secondly, adap-
tors and relays, such as Sos, Grb2, and Ras. These too can be extended as the
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complexity of the model is built up in a stepwise fashion. Finally, we have the
module containing the target MAPK cascade.

3.2 Ras Activation

An examination of the contact map immediately reveals a potentially critical role
for Ras in the behaviour of the model: Ras has only one site but can bind to three
distinct agents (SoS, RasGAP and Raf) and so probably forms a bottleneck.
Inspection of the rules governing these four agents allows us to refine the contact
map: Ras’s site has an internal state (representing active or inactive), only SoS
can bind to an inactive Ras, whereas RasGAP and Raf must compete for active
Ras.

In terms of signal propagation, SoS activates Ras so that Ras can in turn acti-
vate Raf. RasGAP plays an inhibitory role by deactivating Ras. We can observe
this chain of causality by looking at the two stories leading to Ras’s activation
(Fig. 5 and 6, events are labeled by rule names as given in the appendix). Each of
the two stories contains a rule that inhibits the other one, respectively Shc_Grb2
and EGFR_Grb2, a clue that these stories are competing ways to obtain the ob-
servable. In the former, Grb2 binds to the receptor directly, in the latter it binds
to Shc. Only the former would resist a Shc knock-out.

[Grb2(SH3,SH2)]_2 [SoS(b,a,SS~u)]_3

[Ras(S1S2~gdp)]_5

[EGF(r~ext)]_7

[EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_8

[EGF(r~ext)]_9

[EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_10

[EGF_EGFR]_12 [EGF_EGFR]_13

[Grb2_SoS]_50

[EGFR_EGFR]_14

[EGFR@1068]_22

[EGFR_Grb2]_26

[short arm SoS_Ras]_52

[Ras GTP]_54

SoS@SS

Shc_Grb2

Fig. 5. Short arm activation of Ras (without Shc); inhibitions by SoS@SS and Shc Grb2
shown on the left; the observable is the activation rule Ras GTP (oval shape)

RasGAP does not appear in either of the above stories, confirming that it plays
no role in the logical propagation of the signal. RasGAP, however, does play a role
in shaping the kinetics of signal propagation. Indeed, most sequences of events
leading to Raf’s recruitment do exhibit RasGAP intervention (and are therefore
not stories). This slightly paradoxical effect of the EGF signal is neatly captured
by the negative feed-forward loop in Fig. 7 (negative because it has a negative effect
on the story, via the rule directRasGAP_Ras, forwardbecause that effect proceeds
from a prior event to the story end). In order to propagate the signal, SoS is in-
duced to activate Ras (and hence the downstream cascade to ERK) but, at the
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[Shc(Y318~u,PTB)]_0

[Grb2(SH3,SH2)]_1 [SoS(b,a,SS~u)]_3

[Ras(S1S2~gdp)]_5

[EGF(r~ext)]_7 [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_8 [EGF(r~ext)]_9[EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_10

[EGF_EGFR]_11[EGF_EGFR]_12

[Grb2_SoS]_47

[EGFR_EGFR]_13

[EGFR@1148]_15

[EGFR_Shc]_16

[Shc@318]_18

[Shc_Grb2]_19

[long arm SoS_Ras]_48

[Ras GTP]_49

SoS@SS

EGFR_Grb2

Fig. 6. Long arm activation of Ras (with Shc); inhibitions by SoS@SS and EGFR Grb2
shown on the left

same time, the signal also induces RasGAP to frustrate SoS’s work. Of course, a
signal needs to be controlled and eventually down-regulated, so the existence of
a RasGAP-like agent should be expected. Both the positive (SoS) and the nega-
tive (RasGAP) influences on Ras depend on the same signal which suggests that
Ras’s activation dynamics only depend on the relative concentrations of SoS and
RasGAP: if RasGAP dominates, Ras activation will be weak and short-lived; if
SoS dominates, it will be stronger and last longer.

[Grb2(SH3,SH2)]_2[SoS(b,a,SS~u)]_3

[Ras(S1S2~gdp)]_5

[EGF(r~ext)]_7 [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_8 [EGF(r~ext)]_9 [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_10

[EGF_EGFR]_12 [EGF_EGFR]_13

[Grb2_SoS]_24

[EGFR_EGFR]_16

[EGFR@1068]_19

[EGFR_Grb2]_22

[short arm SoS_Ras]_26

[Ras GTP]_60

EGFR@992

EGFR_RasGAP

direct RasGAP_Ras

EGFR@992

EGFR_RasGAP

direct RasGAP_Ras

Fig. 7. Battle between SoS and RasGAP; negative feed-forward loop from EGFR
dimerisation to Ras activation shown on the right (dotted arrows are activations, the
blunted arrow is an inhibition)

3.3 SoS Deactivation

As can be seen in Fig. 5, SoS has a second enemy in the form of activated ERK
which by rule SoS@SS may inhibit the formation of the complex between Grb2
and SoS by phosphorylating SoS. Fig. 8 shows one of the two stories leading
to activated ERK (the other uses the long arm), and there appears a negative
feedback loop, where the end inhibits an event internal to its own story.
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Fig. 8. Short arm story to ERK activation; negative feedback look from active ERK
to SoS shown on the left; MKP3 inhibitions shown on the right

For the duration of the SoS’s phosphorylation, this substantially weakens the
signal from SoS to Ras, essentially shifting the balance in favour of RasGAP.
As a result, the level of active Ras decreases which, with a small delay, causes
a significant reduction in active ERK at the bottom of the cascade. At that
moment, SoS is no longer being strongly targeted by ERK and can, once more,
signal to Ras. We thus expect a cyclic process of activation and then inhibition
of Ras, leading to an oscillating activation pattern for ERK, typical of a cascade
embedded in a negative feedback loop [16].

A crucial parameter determining the shape of these oscillations is the “recovery
rate” of SoS from its phosphorylation by ERK. A slow recovery rate leads to a clear
oscillation of the cascade. As the rate of recovery increases, the cascade oscillates
more quickly, albeit with the same amplitude. With a sufficiently rapid recovery
rate, the cascades achieves a transient activation, again with the same amplitude,
with a little oscillation as the signal dies (Fig. 9). Thus the qualitative observation
embodied in Fig. 8 is rather well echoed at the quantitative level.
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Fig. 9. Oscillations and rates of SoS recovery

Another factor regulating the effect of the negative feedback to SoS comes
from MKP3, the phosphatase targeting ERK, as suggested by the two inhibi-
tions shown on the right of the activated ERK story (Fig. 8). A higher concen-
tration of MKP3 will tend to hamper activation of ERK and this impacts the
rate of oscillation at the cascade: increasing the concentration of MKP3 over suc-
cessive simulations, one observes (without surprise) that the amplitude of ERK
activation decreases. However, one also observes that ERK remains active for
less time, leading to a gradual increase in the frequency of oscillation (Fig. 10).
In addition, the signal attenuates faster: with more phosphatase in the system,
ERK requires a higher “threshold” concentration of its kinase (MEK) in order
to achieve significant activation. While this obviously goes against ERK activa-
tion, it also protects SoS from being in turn inhibited by ERK. However, this
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Fig. 10. Impact of MKP3 concentration on pathway oscillations

secondary effect turns out to be fairly minor, since a typical system contains
more ERK than SoS molecules. Therefore, even a reduced level of ERK activa-
tion suffices to mount a powerful inhibition of SoS.

One final parameter substantially influences ERK’s level of activation: the
speed of SoS phosphorylation by ERK (ie the strength of the SoS@SS inhibition
shown Fig. 5 and 6). A slow rate limits the effect of the negative feedback,
leading to a longer and steadier period of Ras and ERK activation and little to
no oscillation. A fast rate accentuates the negative feedback effect, considerably
shortening the time during which Ras signals and, in tandem with a slow recovery
rate, leads to a pronounced, low-frequency oscillation (Fig. 10).

4 Conclusions

We have illustrated how rule-based modeling transcends the bottleneck of the
traditional ODE-based framework. It does so in many important ways, both
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practical and conceptual, which we summarize here. First, and this is the start-
ing point, rule-based modeling tames combinatorial explosion by decontextual-
izing reactions between molecular species into rules defined on patterns. As an
immediate corollary, modifications and extensions become fairly straightforward.

Rules represent nuggets of mechanistic knowledge that current experimen-
tal practice is rapidly accumulating. Rather than expressing such knowledge
in terms of human language or non-executable graphical information, it seems
vastly more useful to represent it in a context-free grammar ready for com-
putational consumption. Much like chemical reactions, rules can be viewed as
operational “instructions” that can be let loose on a set of molecular agents,
driving the unfolding of pathways and their kinetics. In this sense, κ-rules make
knowledge executable. The granularity of such rules is, in principle, adaptable
to the needs of lab scientists. We believe that the current level of granularity
offered by κ or the variant language BNG [18] meets the most urgent practical
needs.

Sets of rules are not just inputs to simulators, like systems of differential
equations are not just inputs to numerical integrators. Rather, rule sets replace
systems of differential equations as formal entities that can be subject to rig-
orous analysis from which to extract predictive and explanatory information
about the behavior of systems. In contrast to the synchronicity of differential
equations, rules operate in a concurrent execution model, which is a far more
appropriate representation of what is actually going on in cells. This constitutes
rather unfamiliar terrain for many biologists, yet this is a turf that has been suc-
cessfully plowed for over thirty years in computer science. We have shown how
notions of conflict and causation can be used to build maps that relate rules
to one another. We have defined a concept of story which we believe formalizes
the intuitive notion of “pathway” that biologists entertain. Stories are partial
orders representing causal lineages that explain how a given observable arises
in logical time. Stories change over time, since they depend on available molec-
ular resources. The superposition of stories with rule inhibition maps identifies
potential “story spoilers”, junctures at which logical structure meets kinetics.
We have made extensive use of this trick to explain several dynamical and logi-
cal features of a simplified EGFR signalling system. Our experience is that this
mode of reasoning matches quite naturally the way biologists intuitively go about
telling their “stories”. The only difference is that our framework formalizes this
process and therefore enables computational procedures to tackle much more
complicated systems in rigorous ways when the story-telling of biologists risks
degenerating into just that.

It is worth emphasizing that the main dynamic characteristics of our modest
EGFR case were obtained with uniform rate constants for all rules. The impact
of certain rules on these characteristics was then explored by varying certain
rate constants. This is not to say that rate constants don’t matter, but it does
hint at the importance of the causal architecture of a system in shaping dy-
namics. Disentangling the contribution of causal structure and rates to overall
systems dynamics is hardly possible in large systems of differential equations.
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By forgoing this separation, modelers who fit rate constants to ODE systems
risk engaging in an idle encoding exercise rather than a modeling process, since
many behaviors can be inscribed into any sufficiently large system of ODEs by
appropriate choice of rate parameters. We believe that rule-based modeling af-
fords a strategy whereby one first tries to get the logical structure to generate
key dynamical characteristics and then tunes the rate constants to obtain the
fine structure. If the logical structure is insufficient, the odds are that our knowl-
edge is insufficient and that more experiments would be better than more rate
tuning.

It is useful to think of rule-based modeling as a task in concurrent program-
ming, where rules are computational instructions that contribute to system be-
havior, as in the bigraphical reactive systems [38]. It is difficult to grasp how
concurrent systems – in particular natural ones like cells, tissues, and organisms
– function and why they function the way they do. Modeling in a rule-based
format yields a better appreciation of the role played by individual mechanisms
in generating collective behavior. Linking architecture to behavior will produce
more informed strategies for intervention in the case of disease and will help us
distill the principles that enabled cells to evolve such versatile information pro-
cessing systems in the first place. As in programming, however, there is ample
opportunity for mistakes. In fact, a model might be wrong not because it isn’t a
correct description of the world, but because it may not express what the modeler
intended (think typo). To catch such mistakes is crucial and will eventually ne-
cessitate a veritable “modeling environment” with sophisticated debugging and
verification tools. The complete absence of such tools in the traditional ODE
framework, makes classic models beyond a certain size highly prone to error
and exceedingly difficult to maintain. As in programming, rule-based models are
“grown” by merging smaller models to build larger models that are easily refined
by incorporating new empirical knowledge. Rule-based modeling is as much a
scientific instrument as it is effective knowledge management.
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5 Appendix

5.1 κ, Briefly

In section 2.1 we introduced κ by means of an example. Here we provide some
formal definitions to fix concepts more precisely and convey a sense of what we
have implemented.

Agents. Let A be a countable set of names, S a countable set of sites, and V a
finite set of values. An agent is a tuple consisting of an agent name λ(a) ∈ A, a
finite set of sites σ(a) ⊆ S, and a partial valuation µ(a) in Vσ(a) assigning values
to some of the agent’s sites, and called the agent’s internal state. In the context
of signalling, agents are typically proteins (but they need not be).
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Solution of agents. By a solution we usually have container of molecules in
mind. In the case of chemistry proper, agents would be atoms and molecules are
atoms connected in particular ways. Likewise, in biological signalling, agents are
usually proteins and connected proteins (proteins that are noncovalently bound
to one another) are complexes. More precisely, a solution S is a set of agents,
together with a partial matching on the set

∑
a∈S σ(a) of all agent sites. The

matching specifies how agents are connected through their sites, but no site can
be connected twice. One writes (a, i), (b, j) ∈ S to express the fact that sites i, j
in agents a, b are connected in S.

A solution is essentially a graph whose nodes are agents and whose edges are
bonds between agents. Consequently, graph-theoretic notions such as subgraph,
connected component, path, etc. apply. We can think of a connected component
as a complex of proteins – the nodes of the component – bound to one another
as specified by the edges of the component.

A signature map Σ : A → ℘(S) is an assignment of a finite set of sites to each
agent name. We assume such a signature map to be fixed once and for all, and
consider only solutions S such that for all a ∈ S, σ(a) ⊆ Σ(λ(a)). An agent a
is said to be complete if σ(a) = Σ(λ(a)), and likewise a solution S is said to be
complete if all its agents are.

Rules. The examples of Subsection 2.1 introduced a rule as a transformation
of the graph of agents specified on the left-hand-side (lhs) of the rule into the
graph specified on its right-hand-side (rhs). Since the graph on the lhs can occur
in many ways within a solution, we refer to it as a “pattern”. A solution is a
graph, and so the lhs of a rule can be viewed as a solution as well (usually a
small one compared to the solution that represents the whole system). A rule
then is as a solution together with an action transforming it. The application
of a rule to a system means first identifying an embedding of the rule’s solution
(the lhs pattern) in the solution representing the system and then applying the
action to that location. This is made precise in the following by first defining
the notion of embedding.

A map φ between solutions S and T is an embedding if it is an injection on
agents, that preserves names, sites, internal states, and preserves and reflects
edges; that is to say for all a, b ∈ S, i, j ∈ S:

φ(a) = φ(b) ⇒ a = b
λS(a) = λT (φ(a))
σS(a) ⊆ σT (φ(a))
µS(a)(i) = v ⇒ µT (φ(a))(i) = v
(a, i), (b, j) ∈ S ⇔ (φ(a), i), (φ(b), j) ∈ T

Hereafter, whenever we write φ : S → T we mean to say that φ is an embedding,
we also write cod(φ) for the set of sites in T which are in the image of φ, and
J (S, T ) for the set of all embeddings of S into T .

A rule is a pair (S, α), where S is a solution (the left-hand-side in the nota-
tion of Subsection 2.1) and an action α over S (the rule action). An atomic action
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changes the value of some site, or creates/deletes an edge between two sites,
or creates/deletes an agent. An action on S is a sequence of atomic actions.
A rule (S, α) is said to be atomic, if α is atomic. It is said to have arity
n, if S has n connected components, in which case any φ : S → T decom-
poses into n embeddings, one per connected component of S, which we call φ’s
components.

The number of all embeddings of the rule’s S into the system T , |J (S, T )|,
plays an important role in the probabilistic simulation of a system specified by
a concrete set of agents and complexes (the solution T ) and a set of rules, as
sketched in Subsection 2.3.

Causation (activation) and conflict (inhibition) between events (rules). Given
an embedding φ : S → T , we write φ(α) · T for the result of α on T via φ.
We say that a site in T is modified by φ(α) if its internal state, or its con-
nections are. A rule set R defines a labelled transition relation over complete
solutions:

T −→r
φ φ(α(r)) · T

with r = (S(r), α(r)) ∈ R, and φ an embedding from S(r) into T . An event (r, φ)
consists in identifying an embedding φ of the rule pattern S(r) into a complete
solution T , and applying the rule action α(r) along φ.

Let E(T ) denote the set of events in T . We can define the notions of conflict
and causation between events by comparing T with φ(α(r)) · T . Given an event
(r, φ) ∈ E(T ), we say that (r, φ) conflicts with (s, ψ), if (s, ψ) ∈ E(T )\E(φ(α(r))·
T ). We say that (r, φ) causes (s, ψ), if (s, ψ) ∈ E(φ(α(r)) · T ) \ E(T ).

Unlike in the classical notion of event structure [39], conflict here is not sym-
metric. It is quite possible that ψ does not conflict with φ, while φ conflicts with
ψ.

The following definition is useful in projecting the definitions of conflict and
causation at the level of events to the level of rules, where we refer to them as
inhibition and activation, respectively. Given an event e = (r, φ) in E(T ), the
negative support of e, written ⌊e⌋−, is the set of sites in T which φ(α(r)) erases
or modifies. Similarly, the positive support of e, written ⌊e⌋+, is the set of sites
in φ(α(r)) · T which φ(α(r)) creates or modifies.

Using the notion of support, we can formulate necessary conditions for conflict
and causation between events. Consider an event e = (r, φ) in E(T ). If e conflicts
with (s, ψ) ∈ E(T ), then cod(ψ) ∩ ⌊e⌋− ̸= ∅. If e causes (s, ψ) ∈ E(φ(α(r)) · T ),
then cod(ψ) ∩ ⌊e⌋+ ̸= ∅. At the level of rules, we say that r inhibits s if for
some T , φ, ψ, cod(ψ) ∩ ⌊e⌋− ̸= ∅, and one says r activates s if for some T , φ, ψ,
cod(ψ) ∩ ⌊e⌋+ ̸= ∅.

The notions of inhibition and activation between rules should not be con-
fused with the notions of conflict and causation between events from which
they are derived. The relations of inhibition and activation are static relation-
ships between rules and can be computed once and for all for a given set of
rules.
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5.2 The Rule Set of the EGFR Model

This appendix contains the κ-representation of the Schoeberl et al. (2002) EGF
receptor model [12], which introduced receptor internalisation, and combines it
with the negative feedback mechanism described in the earlier Brightman & Fell
(2000) model [11]. A useful review of these and many other models is provided
in Ref. [13]. Refactoring those models in κ involved mining the literature and
various databases to obtain the missing domain related information.

Rule names used in the main text and the figures of the paper are defined
below. Certain rules use a shorthand ‘!_’ notation, to mean that a site is ‘bound
to something’ but the rule does not test anything further than that. This is a
convenient way to shorten rules.

Rate constants of rules were set to 1 by default, except for internalisation rules.
The numerical experiments summarized in Fig.9 and Fig.10 varied pertinent
rate constants as explained above. The rules are presented roughly in the order
implied by the ERK activation story shown in Fig. 8. The initial state used in
our EGFR simulations is also shown below.

Activating receptor dimers

# external dimers:
’EGF_EGFR’ EGF(r~ext), EGFR(L~ext,CR) <-> EGF(r~ext!1), EGFR(L~ext!1,CR)
’EGFR_EGFR’ EGFR(L~ext!_,CR), EGFR(L~ext!_,CR) <->

EGFR(L~ext!_,CR!1), EGFR(L~ext!_,CR!1)
# simplified phosphorylation (internal or external)
’EGFR@992’ EGFR(CR!_,Y992~u) -> EGFR(CR!_,Y992~p)
’EGFR@1068’ EGFR(CR!_,Y1068~u) -> EGFR(CR!_,Y1068~p)
’EGFR@1148’ EGFR(CR!_,Y1148~u) -> EGFR(CR!_,Y1148~p)
# simplified dephosphorylation (internal or external)
’992_op’ EGFR(Y992~p) -> EGFR(Y992~u)
’1068_op’ EGFR(Y1068~p) -> EGFR(Y1068~u)
’1148_op’ EGFR(Y1148~p) -> EGFR(Y1148~u)

Internalization, degradation and recycling

# internalization:
’int_monomer’ EGF(r~ext!1), EGFR(L~ext!1,CR) ->

EGF(r~int!1), EGFR(L~int!1,CR) @ 0.02
’int_dimer’ EGF(r~ext!1), EGFR(L~ext!1,CR!2),

EGF(r~ext!3), EGFR(L~ext!3,CR!2) ->
EGF(r~int!1), EGFR(L~int!1,CR!2),
EGF(r~int!3), EGFR(L~int!3,CR!2) @ 0.02

# dissociation:
’EGFR_EGFR_op’ EGFR(L~int!_,CR!1), EGFR(L~int!_,CR!1) ->

EGFR(L~int!_,CR), EGFR(L~int!_,CR)
’EGF_EGFR_op’ EGF(r~int!1), EGFR(L~int!1,CR) ->

EGF(r~int), EGFR(L~int,CR)
# degradation:
’deg_EGF’ EGF(r~int) ->
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’deg_EGFR’ EGFR(L~int,CR) ->
# recycling:
’rec_EGFR’ EGFR(L~int,Y992~u,Y1068~u,Y1148~u) ->

EGFR(L~ext,Y992~u,Y1068~u,Y1148~u)

SoS and RasGAP recruitment

’EGFR_RasGAP’ EGFR(Y992~p), RasGAP(SH2) <-> EGFR(Y992~p!1), RasGAP(SH2!1)
’EGFR_Grb2’ EGFR(Y1068~p), Grb2(SH2) <-> EGFR(Y1068~p!1), Grb2(SH2!1)
’Grb2_SoS’ Grb2(SH3), SoS(a,SS~u) ->

Grb2(SH3!1), SoS(a!1,SS~u)
’Grb2_SoS_op’ Grb2(SH3!1), SoS(a!1) -> Grb2(SH3), SoS(a)
’EGFR_Shc’ EGFR(Y1148~p), Shc(PTB) <-> EGFR(Y1148~p!1), Shc(PTB!1)
’Shc_Grb2’ Shc(Y318~p), Grb2(SH2) <-> Shc(Y318~p!1), Grb2(SH2!1)
’Shc@318’ EGFR(CR!_,Y1148~p!1), Shc(PTB!1,Y318~u) ->

EGFR(CR!_,Y1148~p!1), Shc(PTB!1,Y318~p)
’Shc@318_op’ Shc(Y318~p) -> Shc(Y318~u)

Activating Ras

# activate:
’long arm SoS_Ras’ EGFR(Y1148~p!1), Shc(PTB!1,Y318~p!2),

Grb2(SH2!2,SH3!3), SoS(a!3,b), Ras(S1S2~gdp) ->
EGFR(Y1148~p!1), Shc(PTB!1,Y318~p!2),
Grb2(SH2!2,SH3!3), SoS(a!3,b!4), Ras(S1S2~gdp!4)

’short arm SoS_Ras’ EGFR(Y1068~p!1), Grb2(SH2!1,SH3!2),
SoS(a!2,b), Ras(S1S2~gdp) ->
EGFR(Y1068~p!1), Grb2(SH2!1,SH3!2),
SoS(a!2,b!3), Ras(S1S2~gdp!3)

’Ras GTP’ SoS(b!1), Ras(S1S2~gdp!1) -> SoS(b!1), Ras(S1S2~gtp!1)
’SoS_Ras_op’ SoS(b!1), Ras(S1S2!1) -> SoS(b), Ras(S1S2)

# deactivate:
’direct RasGAP_Ras’ EGFR(Y992~p!1), RasGAP(SH2!1,s), Ras(S1S2~gtp) ->

EGFR(Y992~p!1), RasGAP(SH2!1,s!2), Ras(S1S2~gtp!2)
’Ras GDP’ RasGAP(s!1), Ras(S1S2~gtp!1) ->

RasGAP(s!1), Ras(S1S2~gdp!1)
’RasGAP_Ras_op’ RasGAP(s!1), Ras(S1S2!1) -> RasGAP(s), Ras(S1S2)
’intrinsic Ras GDP’ Ras(S1S2~gtp) -> Ras(S1S2~gdp)

Activating Raf

# activation:
’Ras_Raf’ Ras(S1S2~gtp), Raf(x~u) -> Ras(S1S2~gtp!1), Raf(x~u!1)
’Raf’ Ras(S1S2~gtp!1), Raf(x~u!1) -> Ras(S1S2~gtp!1), Raf(x~p!1)
’Ras_Raf_op’ Ras(S1S2~gtp!1), Raf(x!1) -> Ras(S1S2~gtp), Raf(x)
# deactivation:
’PP2A1_Raf’ PP2A1(s), Raf(x~p) -> PP2A1(s!1), Raf(x~p!1)
’Raf_op’ PP2A1(s!1), Raf(x~p!1) -> PP2A1(s!1), Raf(x~u!1)
’PP2A1_Raf_op’ PP2A1(s!1), Raf(x!1) -> PP2A1(s), Raf(x)
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Activating MEK

# activation:
’Raf_MEK@222’ Raf(x~p), MEK(S222~u) -> Raf(x~p!1), MEK(S222~u!1)
’MEK@222’ Raf(x~p!1), MEK(S222~u!1) -> Raf(x~p!1), MEK(S222~p!1)
’Raf_MEK@222_op’ Raf(x~p!1), MEK(S222!1) -> Raf(x~p), MEK(S222)
’Raf_MEK@218’ Raf(x~p), MEK(S218~u) -> Raf(x~p!1), MEK(S218~u!1)
’MEK@218’ Raf(x~p!1), MEK(S218~u!1) -> Raf(x~p!1), MEK(S218~p!1)
’Raf_MEK@218_op’ Raf(x~p!1), MEK(S218!1) -> Raf(x~p), MEK(S218)
# deactivation:
’PP2A2_MEK@222’ PP2A2(s), MEK(S222~p) -> PP2A2(s!1), MEK(S222~p!1)
’MEK@222_op’ PP2A2(s!1), MEK(S222~p!1) -> PP2A2(s!1), MEK(S222~u!1)
’PP2A2_MEK@222_op’ PP2A2(s!1), MEK(S222!1) -> PP2A2(s), MEK(S222)
’PP2A2_MEK@218’ PP2A2(s), MEK(S218~p) -> PP2A2(s!1), MEK(S218~p!1)
’MEK@218_op’ PP2A2(s!1), MEK(S218~p!1) -> PP2A2(s!1), MEK(S218~u!1)
’PP2A2_MEK@218_op’ PP2A2(s!1), MEK(S218!1) -> PP2A2(s), MEK(S218)

Activating ERK

# activation:
’MEK_ERK@185’ MEK(s,S218~p,S222~p), ERK(T185~u) ->

MEK(s!1,S218~p,S222~p), ERK(T185~u!1)
’ERK@185’ MEK(s!1,S218~p,S222~p), ERK(T185~u!1) ->

MEK(s!1,S218~p,S222~p), ERK(T185~p!1)
’MEK_ERK@185_op’ MEK(s!1), ERK(T185!1) -> MEK(s), ERK(T185)
’MEK_ERK@187’ MEK(s,S218~p,S222~p), ERK(Y187~u) ->

MEK(s!1,S218~p,S222~p), ERK(Y187~u!1)
’ERK@187’ MEK(s!1,S218~p,S222~p), ERK(Y187~u!1) ->

MEK(s!1,S218~p,S222~p), ERK(Y187~p!1)
’MEK_ERK@187_op’ MEK(s!1), ERK(Y187!1) -> MEK(s), ERK(Y187)
# deactivation:
’MKP_ERK@185’ MKP3(s), ERK(T185~p) -> MKP3(s!1), ERK(T185~p!1)
’ERK@185_op’ MKP3(s!1), ERK(T185~p!1) -> MKP3(s!1), ERK(T185~u!1)
’MKP_ERK@185_op’ MKP3(s!1), ERK(T185!1) -> MKP3(s), ERK(T185)
’MKP_ERK@187’ MKP3(s), ERK(Y187~p) -> MKP3(s!1), ERK(Y187~p!1)
’ERK@187_op’ MKP3(s!1), ERK(Y187~p!1) -> MKP3(s!1), ERK(Y187~u!1)
’MKP_ERK@187_op’ MKP3(s!1), ERK(Y187!1) -> MKP3(s), ERK(Y187)

Deactivating SoS

’SoS_ERK’ SoS(SS~u), ERK(s,T185~p,Y187~p) ->
SoS(SS~u!1), ERK(s!1,T185~p,Y187~p)

’SoS_ERK_op’ SoS(SS!1), ERK(s!1) -> SoS(SS), ERK(s)
# feedback creation
’SoS@SS’ SoS(SS~u!1), ERK(s!1,T185~p,Y187~p) ->

SoS(SS~p!1), ERK(s!1,T185~p,Y187~p)
# feedback recovery
’SoS@SS_op’ SoS(SS~p) -> SoS(SS~u)

%init: 10*(EGF(r~ext))
+ 100*(EGFR(L~ext,CR,Y992~u,Y1068~u,Y1148~u))
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+ 100*(Shc(PTB,Y318~u))
+ 100*(Grb2(SH2,SH3!1),SoS(a!1,b,SS~u))
+ 200*(RasGAP(SH2,s))
+ 100*(Ras(S1S2~gdp))
+ 100*(Raf(x~u))
+ 25*(PP2A1(s))
+ 50*(PP2A2(s))
+ 200*(MEK(s,S222~u,S218~u))
+ 200*(ERK(s,T185~u,Y187~u))
+ 50*(MKP3(s))


	Rule-Based Modelling of Cellular Signalling
	Background
	A Futile Cycle
	Agents and Rules
	The Contact Map
	Stochastic Simulation
	Precedence and Stories
	Inhibition and Activation

	The EGFR Model
	EGFR Model Elements
	Ras Activation
	SoS Deactivation

	Conclusions
	Appendix
	$k$, Briefly
	The Rule Set of the EGFR Model



