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Abstract. Given the combinatorial nature of cellular signalling path-
ways, where biological agents can bind and modify each other in a large
number of ways, concurrent or agent-based languages seem particularly
suitable for their representation and simulation [1,2,3,4]. Graphical mod-
elling languages such as κ [5, 6, 7, 8], or the closely related BNG lan-
guage [9,10,11,12,13,14], seem to afford particular ease of expression. It
is unclear however how such models can be implemented.1 Even a simple
model of the EGF receptor signalling network can generate more than
1023 non-isomorphic species [5], and therefore no approach to simulation
based on enumerating species (beforehand, or even on-the-fly) can handle
such models without sampling down the number of potential generated
species.

We present in this paper a radically different method which does not
attempt to count species. The proposed algorothm uses a representation
of the system together with a super-approximation of its ‘event horizon’
(all events that may happen next), and a specific correction scheme to
obtain exact timings. Being completely local and not based on any kind
of enumeration, this algorithm has a per event time cost which is inde-
pendent of (i) the size of the set of generable species (which can even be
infinite), and (ii) independent of the size of the system (ie, the number of
agent instances). We show how to refine this algorithm, using concepts
derived from the classical notion of causality, so that in addition to the
above one also has that the even cost is depending (iii) only logarithmi-
cally on the size of the model (ie, the number of rules). Such complexity
properties reflect in our implementation which, on a current computer,
generates about 106 events per minute in the case of the simple EGF
receptor model mentioned above, using a system with 105 agents.

⋆ This research was partly supported by the NIH/NIGMS grant R43GM81319-01.
1 Eg, from Ref. [15, p. 4]: “programs implementing these methods include StochSim,

BioNetGen, and Moleculizer. However, at the present time only a part of the entire
EGFR network can be analyzed using these programs”.
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1 Introduction

An important thread of work in systems biology concerns the modelling of
the intra-cellular signalling networks triggered by extra-cellular stimuli (such as
hormones and growth factors). Such networks determine growth, differentiation,
and other cell responses. Many pathological states and diseases are now traced
down to subtle dysfunctions of components in those noteworks. Accordingly there
is a increasing need for fine-grained, executable, and quantitative descriptions of
those pathways [16].

Early on, Regev et al. [1, 2, 3] have proposed to describe those complex net-
works using π-calculus [17], a minimal language for concurrent systems. Vari-
ants emphasizing different types of biological processes have been put forward
since [18,19,20,4,21,22]. While the syntactic choices differ, they share a same con-
cern, namely to rescue the structure-less language of chemical reactions, and to
convey the combinatorics of real biological networks in a natural and executable
notation. We shall use here an agent-based language called κ [8,7,6,5]. The agents
we consider have internal states, accommodating protein post-translational mod-
ifications. They can also bind each other at certain specific sites called ‘domains’,
allowing for a direct representation of protein assembly into so-called ‘complexes’.
This simple graph-rewriting framework naturally captures the domain level de-
scription of protein-protein interactions [23].

An example of a signalling model written in κ is that of the EGF receptor
signalling network presented in Ref. [5]. This simple model generates more than
1023 distinct species, and that places specific demands on a simulation algorithm.
Any simulation method based on enumerating species beforehand, or on-the-fly,
has to sample down the combinatorics of such models to make them amenable to
species counting. This is the approach followed by the current implementations of
the BNG language which attempts to generate species beforehand, as well as by
the recent SPIM (an implementation of stochastic π-calculus) and beta-binders
(another process language for representing biological systems) implementations
which register species on-the-fly [24,25]. It is also the route taken by differential
models which ignore altogether the structure of agents and so don’t have the
advantage of a rule-based or contextual semantics in the first place.

We propose here a radically different method which does not attempt to count
species, and works even if there is an infinite number of them. The obtained algo-
rithm has a per event cost which does not depend on the number of distinct species,
nor does it depend on the number of agent instances in the system. The next sec-
tion gives a preliminary description of the algorithm. (Some of the relevant notions
only find a complete definition later in the text.) We must hasten to say that our
method is not unconditionally faster, and enumeration-based techniques, includ-
ing differential equations, when they apply, that is to say when the combinatorial
complexity is limited, will in general be more efficient. However for the particular
application to signalling systems where the combinatorial complexity makes enu-
meration unfeasible, only such an approach can take the complexity upfront. The
simulation algorithm was implemented and tested on the EGFR example model.
Using 105 initial agent instances of various types, it takes 30’ to run that model
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for a total of 107 events on an ordinary computer. Thus this methodological route,
which can non doubt still be perfected, seems to make hitherto unfeasibly complex
cellular signalling models amenable to simulation.

2 Preliminaries

We recall first the generic derivation of a continuous time Markov chain from
a labelled transition system. In the particular case of flat chemical reactions
(aka multiset rewriting, or equivalently Petri nets) this derivation has come to
be known as Gillespie’s algorithm [26, 27, 28]. This method is widely used to
simulate the kinetics of coupled elementary chemical reactions. The idea is to
assign to a reaction a probability which is proportional to the number of its
instances (or matches), while the frequency at which events are produced is
obtained from the total number of rule instances.

2.1 Exponential Distributions

We start with a few definitions relevant to exponential distributions, which we
will need when considering the temporal aspects of the simulation algorithm.

For a > 0, n ∈ N, t ∈ R+ define:

expa,n(t) = ae−at(at)n/n! (1)

Lemma 1. For all n ∈ N, expa,n is a probability density on R+ with comple-
mentary cumulative distribution function Ha,n(t) := (

∑n
0 (at)i/i!)e−at.

Proof. Ha,n is clearly decreasing and continuous in t; Ha,n(0) = 1, Ha,n(∞) = 0;
so Ha,n is a complementary distribution function, and since expa,n =−d

dtHa,n(t),
expa,n is the density associated to Ha,n.

Since Ha,n is increasing with n, the associated probability shifts to the right
when n increases (see Fig. 1).

Lemma 2. Define inductively on f in NR (equipped with the product ordering):

Ha,f (t) =
∑

r∈R

f(r)
F

Ha,f−1r(t) + e−at (at)F

F !
with a > 0, 1r ∈ NR the indicator function of {r}, and F :=

∑
r∈R f(r). (By

convention all terms including an f(r) < 0 are supposed to be zero.)
One has Ha,f = Ha,F .

Proof. The definition above is a well-formed inductive definition on the product
ordering on NR and therefore uniquely defines Ha,f . Now, defining Ga,f (t) :=
Ha,f (t) −(

∑F
0 (at)i/i!)e−at, it is easy to see that

Ga,f (t) =
∑

r∈R

f(r)
F

Ga,f−1r(t)

and since Ga,f (t) ≡0 is a (unique) solution the conclusion follows. !
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Fig. 1. Shifted exponential distributions: H1,0, H1,1, and H1,2. The base curve H1,0 is
the usual exponential distribution with density expa(t) = ae−at = expa,0(t).

So Ha,f is just a complicated way to write Ha,F ; this will be used later where f
will map a reaction s to f(s) the number of clashes on an s selection attempt as
defined below (F is then the total number of clashes).

2.2 The Basic CTMC Construction

Usually one sees a labelled transition system (LTS) as an R-indexed family of
binary relations →r on the state space X . But in a quantitative setting it is
important to know in how many distinct ways one can go from a state x to
another one x′, since the more, the likelier.2 We will therefore start with a slight
variant of LTSs that represent events explicitly and allows for counting them.

Suppose given a state space X , a finite set of labels R, a rate map τ from
R to R+, and for each r ∈ R, and x ∈ X , a finite set of r-events E(x, r), and
an action map · x from E(x, r) to X . The action map specifies the effect of an
event on the state x. We write E(x) for the (finite) disjoint sum

∑
r∈R E(x, r)

which we will call the event horizon.
One can think of r as a reaction or a rewrite rule, of τ(r) as a relative measure

of the rule rate, and of an event e ∈ E(x, r) as a particular application of r.
Define the activity of r at x as the quantity a(x, r) := τ(r)|E(x, r)|, and the

global activity at x as a(x) :=
∑

r∈R a(x, r) ≥0.
Supposing a(x) > 0, the probability at x that the next event is e ∈ E(x, r),

and the subsequent time advance are given by:

p(x, e) := τ(r)/a(x) (2)
2 An example is r1 = A →, r2 = A, B → A, then A,nB →r1 nB and A, nB →r2

A, (n −1)B, but the latter can happen in n different ways, whereas the former can
happen in only one way. As a consequence A is protected from erasure by r1 as long
as there is a significant number of Bs.
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p(δt(x) > t) := e−a(x)t (3)

The probability that the next event will be an r-event is a(x, r)/a(x), which
justifies calling a(x, r) the activity of r. The time advance δt(x) is an exponential
random variable with parameter a(x), ie has density expa(x). Note that the time
advance is independent from the actual event e that took place and only depends
on x. Therefore, the lower the activity, the slower the system, and in the limit
where the activity is zero, ie a(x) = 0, the time advance is infinite, which means
that the system is deadlocked. This implies among other things that the right
unit of measure for performance of a simulation algorithm is the cost of an event,
not the cost of a unit of simulation time. Indeed how many events are needed
for a time unit to pass depends on the activity.

The above data (X, R, E , τ, ·) defines a continuous time Markov chain (CTMC)
with values in X , where the time advance is as in (3) above and:

p(x → x′) =
∑

r∈R

∑
{e∈E(x,r)|e·x=x′} p(x, e)

2.3 Implementation by Conditioning

Let us write rand(A, f) for the random variable which returns an element of
the set A according to the unique probability on A which has density f wrt to
the uniform one. That definition will only be used for sets A with a canonical
structure of measurable space that evidently carries a uniform distribution.

One gets a straightforward implementation P (x) of the CTMC above as a
random function that takes as an input x the current state, and returns a selected
event e and a time advance δt:

r := rand(R, λr.a(x, r)/a(x));
e := rand(E(x, r), 1);
δt := rand(R+, expa(x))

The question one wishes to address is how to implement this Markov chain
efficiently when the underlying labelled transition system is generated by a κ
model. In that case x stands for the current system of agents, including their
bindings and internal states, and an event x →r x′ corresponds to the application
of a graph-rewriting rule r to x (which kind of graph rewriting we are using is not
important at this stage of the discussion). That brings additional structure to the
transition system. Specifically each rule r has a left hand side that decomposes
as a multiset of connected components C(r), and the set E(x, r), ie the set of the
instances of r in x, can be naturally seen as a subset of the Cartesian product
×c∈C(r)[c, x], where [c, x] is the set of matches for c in x. Depending on how
a match is defined, E(x, r) may be a proper subset of the above product and
therefore contain pseudo-events that do not correspond to the application of a
rule.3 Using this approximate decomposition of the event horizon E(x) makes it
3 In our specific case one requires that two distinct connected components in C(r) be

matched to disjoint set of agents in x. For instance a rule A,A → B will mean that
one must pick in x two distinct As in x. In categorical terms the ‘disjoint sum’ is only
a weak sum in the category of graphs and graph embeddings we are considering.
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possible to handle states and events locally, and at the same time preserves the
CTMC semantics above as we will show now.

Suppose given for each x, and r a finite E ′(x, r) ⊇ E(x, r) (and therefore
a′(x, r) ≥a(x, r)). We can define an alternative implementation Q(x):

[0] f := 0;
[1] r := rand(R, λr.a′(x, r)/a′(x));
[2] e := rand(E ′(x, r), 1);
[3] if(e ̸∈ E(x, r))(f := f + 1; goto [1]);
[4] δt := rand(R+, expa(x),f)

Just as P (x), Q(x) defines a distribution on E(x, r) since pseudo-events are
rejected at step [3]. We call such a rejection a clash. This new procedure also
defines a time distribution at step [4], the choice of which depends on f the
number of successive clashes.

The probability to fail at step [3] given that r was chosen at step [1] is given
by ϵr(x) = |E ′(x, r)!E(x, r)|/|E ′(x, r)|. Define ϵ(x) := maxs∈R ϵs(x). If ϵ(x) = 0
then no clash can happen, and P (x) and Q(x) are clearly equivalent. In fact this
is always true:

Proposition 1. For all x ∈ X, P (x) and Q(x) generate the same probability
distribution on E(x) (next event), and R+ (time advance). The expected number
of clashes for Q(x) is bounded by ϵ(x)/(1 −ϵ(x))2.

Proof. The probability to draw a rule s at step [4] and then fail at step [3] is
(a′(x, s)/a′(x))ϵs(x). Therefore the probability to eventually obtain an event in
E(x, r) is:4

(1 −ϵr(x))
a′(x, r)
a′(x)

· 1
(1 −

∑
s∈R(a′(x, s)/a′(x))ϵs(x))

=
(1 −ϵr(x))a′(x, r)

a′(x) −
∑

s∈R a′(x, s)ϵs(x)
=

(1 −ϵr(x))a′(x, r)∑
s∈R a′(x, s)(1 −ϵs(x))

and since a′(x, s)(1−ϵs(x)) = a(x, s), the above probability is a(x, r)/a(x) which
is the same as the one defined by P (x).5

Hence the Q(x) selection scheme is equivalent to that of P (x) for the next event,
whatever the values of ϵr are. Of course its expected time of convergence will de-
pend on those values. The probability of converging after exactly n clashes is:
4 the left term represent the successful drawing of r at step 1, and of an e in E(x, r)

at step 2, and the right one includes all possible sequences of failures according to
the usual formula 1/(1 −x) = xn.

5 A limit case being when for all s, ϵs(x) = 1, or equivalently a′(x) = a′(x, r)ϵr(x)
(which prevents the above computation to work, see second line above), or yet equiv-
alently when the real activity a(x) is zero. In this case the protocol will loop forever
never finding a legitimate event, since there is none. Concretely, one stops the simu-
lation after a certain number of successive clashes, and it works well. Such precisions
are necessary since this case will happen in practice.
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(
∑

s ϵs(x)a′(x, s)/a′(x))n(
∑

s(1 −ϵs(x))a′(x, s)/a′(x)) ≤
ϵ(x)n(

∑
s(1 −ϵs(x))a′(x, s)/a′(x)) ≤ ϵ(x)n

So the expected number of clashes is bounded by
∑

n nϵ(x)n = ϵ(x)/(1−ϵ(x))2.
To see that Q(x) has also the time advance right, let us start with the case of

a single reaction with clash probability ϵ in a given state. In this case the real
activity at x is a′(x)(1 −ϵ), so what we need to prove is:

∑
n ϵn(1 −ϵ)Ha′(x),n(t) = e−a′(x)t(1−ϵ)

or equivalently:

ea′(x)t ∑
n ϵnHa′(x),n(t) = e−a′(x)tϵ/(1 −ϵ)∑

n ϵn
∑

0≤ i≤ n(a′(x)t)i/i! = e−a′(x)tϵ/(1 −ϵ)

Developing the right hand side as a power series of ϵ gives:

e−a′(x)tϵ/(1 −ϵ) = (
∑

i

(a′(x)t)i

i!
ϵi)(

∑
j ϵj) =

∑
n(

∑
0≤ i≤ n

(a′(x)t)i

i!
)ϵn

So the time advance is correct. The case of many reactions follows easily from
the same computation and Lemma 2. !

We have obtained a flexible scheme that we will use to ‘pad’ the event horizon
and make random selections and updates of events feasible. We now turn to
a definition of κ including a description of its LTS semantics (from which the
CTMC semantics follows as in the general case above); we will then proceed to
the detailed definition of the simulation algorithm; and finish with a discussion
of the complexity aspects of the algorithm.

3 κ

We have made a certain number of simplifications to the actual language to keep
the notations and definitions simple.

3.1 Agents and Interfaces

Atomic elements of the calculus are called agents (a, a′, . . . ) and represent basic
Lego pieces of the system. The grammar describing an agent is given Fig. ??.
Each agent has a name and an interface, that is to say a set of interaction sites
(x, y, z, . . .) where each site is equipped with an internal state ι, and a link state
λ. The former is used to denote post-translational modifications and sometimes
cellular locations.

A site may have an unknown link state (λ = ?), or be connected to an unde-
termined site (λ = ), or be connected via a particular edge (λ = α ∈ L), or be
free (λ = ϵ). The associated ordering is given Fig. ??.

Let Site(a) denote the sites of the agent a, Intf (a) its interface, and Name(a)
its name. We suppose given a signature function Σ which maps an agent’s name
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a ::= N(σ) (Agent)
N ::= A, B, · · · ∈ N (Name)
σ ::= ∅ | xι,λ, σ (Interface)
ι ::= ϵ (Any state)

| m ∈ I (Internal state)
λ ::= ϵ (Free site)

| ? (Bound or free site)
| (Semi link)
| α, β, · · · ∈ L (link)

Fig. 2. Syntax of agents, assuming 3 disjoint sets of agent names N , link names L, and
internal states I

m ∈ I

ϵ

!!
ϵ α ∈ L!!

?

""!!!!!!!!!
##""""""

Information

!!

Fig. 3. Ordering internal and link state values

to the set of sites its interface may contain and we assume that Site(a) ⊆
Σ(Name(a)).

An agent a is said partial if its interface is partial, ie:
- there exists xι,λ ∈ Intf (a) such that ι = ϵ or λ ∈ {?, }.
- or Site(a) ⊂ Σ(Name(a)).

Note that the form A(xϵ,?, σ) is equivalent (in terms of potential interactions)
to the simpler form A(σ) since no information is required concerning the states
of site x. We shall thus consider agents up to the following equivalence:

A(xι,λ, yι′,λ′
, σ) ≡A(yι′,λ′

, xι,λ, σ)
A(xϵ,?, σ) ≡A(σ)

for x, y in Σ(A).

3.2 Solutions and Embeddings

We use the chemical term solution to denote a syntactical term of the form:

S ::= ∅ | a, S (Solution)

Solutions are considered as multisets of agents and are thus taken up to congru-
ence a, S ≡S, a. In the following we will consider them as sets of occurrences of
agents and by convention we use a, b, · · · ∈ S to denote occurrences of agents in
a solution S. In particular a ̸= a′ indicates different occurrences of agents even
though a may be syntactically equal to a′. We will write (a, x) ∈ S to mean
a ∈ S with x ∈ Intf (a).
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Say a solution S is well formed if eack link name in S occurs exactly twice.
Say a well formed solution is partial if it contains partial agents, and complete
otherwise.

Link names α, β, . . . are implicitly bound in all solutions, and we extend the
equivalence on agents, and consider two solutions differing only in the names of
their edges and in the position of their agents to be equivalent. As a result solu-
tions may be seen as (site) graphs, and we shall use graph-theoretic terminology
freely. We give Fig. 4 an example of the graphical notation we commonly use.

A B
y

phos

t

z

x

y

S

Fig. 4. Graphical representation of the solution S = A(xα, yphos,?, z , t), B(yα). The
dotted semi edge indicates that the link state of site y is unknown, while the solid
semi edge shows that site z is bound in the context. Internal state phos denotes a
phosphorylated site.

A map φ between solutions S and T is an embedding if for all a, b ∈ S:

φ(a) = φ(b) ⇒ a = b
Name(a) = Name(φ(a))
Site(a) ⊆ Site(φ(a))
xι,λ ∈ Intf (a) ⇒ xι′,λ′ ∈ Intf (φ(a)) with ι ≤ ι′, λ ≤ λ′

where ≤ denotes the partial order induced by the semi lattices given Fig. ??.
Given a possibly partial map between solutions S and T , we write cod(φ) for

the sets of occurrences of sites in the image or codomain of φ in T , and dom(φ)
for those in its domain.

We say an embedding φ is an iso if it is bijective on nodes, and φ−1 is also an
embedding. Two embeddings φ1, φ2 between S and T are said to be equivalent
if there is an iso ψ from S to S such that φ1 = ψφ2, and one writes [φ] for φ’s
equivalence class. Finally we write [S, T ] for all embedding of S in T .

We give an example of an embedding Fig. 5. Contrary to the usual notion of
graph morphism, one asks embeddings to ‘reflect’ edges, ie a free site can only
be mapped to a free one. Another unusual fact is the following simple rigidity
lemma which is key for the control of the simulation complexity:

Lemma 3 (rigidity). If S is connected, a non-empty partial map φ : S → T
extends to at most one embedding of S into T .

So if S is connected, the number of embeddings of S in T is linear in |T |, and so
is the cost of verifying the existence of an embedding, given a particular ‘anchor’
agent or site in T .
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A B
y

phos

t

z

x

y

S

A
y

phos

x

y

C

z

B
x

t
ubi

T

x

y

Fig. 5. Solution S embeds into T : note that site t on A has to stay free in the codomain
of the embedding

3.3 Rules and Transitions

In contrast with process algebras where rules are simple and behaviours are
mostly encoded in the processes, the dynamics of solutions in κ is expressed in
rewriting rules. Rules can test the immediate environment of an agent, whereas
in a process approach one would have to encode that exploration in the partici-
pating processes, (although a translation from κ to π-calculus is possible [7,6]).

One could use double push-out methods to describe our rewrite rules, but
we have found more convenient to define a rule as a pair ⟨S, act⟩ where S is a
solution, and act is a map from agents in S to sets of actions subject to certain
conditions explained below.

The actions one may perform on agents are:6
- set(x, m) to set the internal state of site x to m ∈ I,
- bnd(x, α) to set the link state of site x to α,
- and brk(x, α) to set the link state of site x to ϵ.

Given a rule r = ⟨S, act⟩, one says:
- (a, x) ∈ S is ι-modified by r if set(x, m) ∈ act(a) for some m;
- (a, x) ∈ S is λ-modified by r if bnd(x, α) or brk(x, α) ∈ act(a) for some α.
One says (a, x) ∈ S is modified by r if it is either ι-modified, or λ-modified.

An action map act on S is said to be valid if:
- every (a, x) ∈ S is ι-modified at most once and

set(x, m) ∈ act(a) ⇒ xι,λ ∈ Intf (a), ι ̸= ϵ

- every (a, x) ∈ S is λ-modified at most once and

bnd(x, α) ∈ act(a) ⇒ xι,ϵ ∈ Intf (a) , ∃!(b, y) ∈ S : bnd(y, α) ∈ act(b) , α ̸∈ S,
a ̸= b
brk(x, α) ∈ act(a) ⇒ xι,α ∈ Intf (a) , ∃!(b, y) ∈ S : brk(y, α) ∈ act(b), a ̸= b

Well formedness of solutions is evidently preserved by valid actions.
6 The full language also allows the deletion and creation of agents, but that complicates

the presentation of the operational semantics. Eg if one erases an agent then one has
to erase all the links it shares with its neighbours. We have refrained from presenting
the full set of actions since the simulation strategy can be discussed just as well in
this simpler ‘mass-preserving’ fragment.
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Whenever act is an action map over S, we write act ·S for the solution obtained
by applying act to agents of S, with the obvious definition. Given an embedding
φ : S′ → S, one writes φ(act) · S for the result of act on S along φ, again with
the obvious definition.

Definition 1 (Transition system). Let R be a set of rules, S a complete
solution, r = ⟨Sr, actr⟩ a rule in R, and φ : Sr → S an embedding. One defines
the transition relation over complete solutions associated to R as:

S →r
φ φ(act r) · S

That definition of the LTS of a rule set fits in the in the framework of the
preceding section:
- the state space X is the set of all complete solutions,
- the set R is the set of rules of interest,
- the r-event horizon E(x, r) is {[φ] | φ ∈ [Sr, x]} (instances of r),
- and [φ] · x = φ(actr) · x.

Thus one obtains from any κ rule set a CTMC as in Subsection 2.2.

3.4 Rule Activation and Inhibition

We need one last preparatory step pertaining to a well studied notion in concur-
rency theory namely causality [29,30,31]. In the particular framework of process
algebra numerous notions of causality have been studied [32,33,34,35] and some
were used to study dependencies among events in biological systems [36, 37].
Causality is a relation among computation events, and we wish to define here
an analog notion between rules.

Consider for instance a solution composed of a thousand As and a thousand
Bs together with two rules r1 = A → B, and r2 = B → C. Then it is always the
case that the application of r1 increases the probability to trigger r2. Thus, we
may say that r1 activates r2 although it is not always the case that an instance
of r2 will use a B created by an instance of r1 (B could be created in another
way). In Section 4, activation and inhibition will allow us to bound the cost
of updating various data structures after the application of a given rule in the
stochastic simulation, and obtain a neat statement of its complexity properties.

A rule r1 = ⟨S1, act1⟩ activates a rule r2 = ⟨S2, act2⟩, written r1 ≺ r2 if there
exists S, φ : act1 · S1 → S, and ψ : S2 → S such that cod(φ) ∩ cod(ψ) contains
at least one site modified by r1.

Similarly, r1 inhibits r2, written r1#r2, if there exists S, φ : S1 → S, and
ψ : S2 → S such that cod(φ) ∩ cod(ψ) contains at least one site modified by r1.

Note that neither inhibition nor activation is a priori a symmetric relation.
Fig. 6 shows an example of an activation.

4 The Simulation Algorithm

There are three ingredients to the algorithm. The first is to introduce in the
state of the simulation an explicit representation of the event horizon E(x).
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Fig. 6. Activation relation: the image by the upper embedding φ of B’s modified site
x is also in the image of the lower embedding ψ in S; therefore the upper reaction
activates the lower one

The second is to use a product approximation of E(x), and maintain separately
a representation of the embeddings of each component of a given rule. The
last ingredient is to correct for that approximation by using the time advance
corrections introduced in Section 2.

4.1 The State

Given a fixed set of rules R, the simulation state consists in:
- a complete solution S
- a matching map which associates a connected component c of a rule r to the
set of its possible embeddings in S:

Φ(r, c) := [c, S]

- an (overestimated) activity map, with aut(Sr) is the set of automorphisms of
the left hand side of rule r:7

a′(r) = τ(r)/|aut(Sr)| · ×c∈C(r)|Φ(r, c)|

- a lift map which maps (a, x) ∈ S to the set of embeddings in Φ(r, c) that have
(a, x) in their codomain, for some r, and c ∈ C(r):

ℓ(a, x) := {⟨r, c, φc⟩ | φc ∈ Φ(r, c), (a, x) ∈ cod(φc)}

The maps Φ and a′ track all rule applications and their activities. Both are
computed once during an initialization phase and then updated with local cost at
7 Recall from the preceding section that an event is isomorphism class of embeddings;

the term aut(Sr) makes sure that one is counting events and not embeddings.
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each simulation step. The associated data structure has a size which is controlled
as follows:

Proposition 2. The size of the matching map is linear in the size of S and
bounded by amax(R) · |R| · |S| where amax(R) is the maximum arity in R.

Proof. By Lemma 3, each component in Φ(r, c) is uniquely defined by the image
of any agent of c in S. Therefore, |Φ(r, c)| ≤ |S|, and the size of the injection
map is bounded by amax(R) · |R| · |S| !

4.2 The Event Loop

The event generating loop naturally decomposes into a drawing phase and an
update phase described below (See Fig 7).

draw rule R for the 

next event and 

advance time

apply rule R 

and update

R-related counts

negative update 

via RIM or via 

matching maps

positive update 

via RAM

precompute RIM, 

RAM, and 

matching maps

Fig. 7. The event generating loop; the RIM is the rule inhibition map, the RAM is the
rule activation map

The drawing phase:

1. set clash := 0
2. draw some r with probability a′(r)/a′(R)
3. for c ∈ C(r) draw uniformly φc ∈ Φ(r, c)
4. if

∑
C(r) φc is not injective increment clash and go to 2

5. draw time advance δt with Ha′(S),clash and increase global time
6. do S →r

φ S′ with φ := ⟨φc; c ∈ C(r)⟩



152 V. Danos et al.

The drawing phase is a straightforward specialisation of the protocol Q(x) of
Section 2 and is therefore correct. Note that the criterion for a clash is the lack
of joint injectivity of the component embeddings φc. It remains now to see how
to perform the updates to the event horizon that the application of the selected
event made necessary.

The negative update phase:
for all pairs (a, x) ∈ S modified by r, φ and ⟨r′, c, φc⟩ ∈ ℓ(a, x) do:

1. remove φc from Φ(r′, c) and decrease a′(r′) accordingly
2. for all pairs (b, y) ∈ cod(φc) remove ⟨r′, c, φc⟩ from ℓ(b, y)
3. set ℓ(a, x) := ∅

The positive update phase:
for all pairs (a, x) ∈ S modified by r, φ and r′ such that r ≺ r′ do:

1. for every c ∈ C(r′) try to find a (unique) embedding extension φc ∈ [c, S′]
of the injection c 3→ {a}

2. for all obtained φcs add φc to Φ(r′, c), increase a′(r′) accordingly, and add
⟨r′, c, φc⟩ to ℓ(b, y) for all pairs (b, y) ∈ cod(φc).

The negative update consists in deleting all embeddings using sites which
were modified by the application of r (and deleting associations in the lift map
accordingly). It results in a decrease of the (strictly positive) activities of all
the rules which were using those embeddings. In particular the activity of r
decreases at this step. During the positive update one first proceed by “waking-
up” all the rules which are activated by r in the sense defined in Subsection 3.4.
(This is essential to control the dependency in |R|, but otherwise not related to
the other complexity properties). Then one tries to apply those rules using the
modified agent as an anchor to build new embeddings. For each of the obtained
new embeddings, one updates the matching map (and the lift map accordingly)
which results in a potential increase of the activities of the rules which in turn
may use those embeddings.

4.3 Complexity

We bound the cost of an event loop in terms of the following parameters of the
rule set:
- smax(R) the maximal number of sites modified by a rule,
- cmax(R) the maximal size of a rule connected component, and
- amax(R) for the maximal rule arity (usually 2).
- δ≺ (R) (resp. δ#(R)) the maximum out-degree of the activation (resp. inhibi-
tion) map (see Subsection 3.4).

We neglect the cost induced by clashes as they only have an impact on small
solutions which are not the target of our algorithm. Indeed the simulation of the
EGFR example [5] for 106 events, with a total of 3000 agents produced only 4
clashes. The algorithm uses extensible arrays whose size is bound according to
Prop. 2, so that the deletion (negative update) and insertion (positive update)
or uniform selection of a component in the matching map takes a constant time.
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Proposition 3. For any rule set R, there exists constants C1 and C2 such that
the event loop cost is bounded above by:

C1 · log(|R|) + C2 · amax(R) · cmax(R) · smax(R) · (δ#(R) + δ≺ (R))

Proof. The dominant cost in the drawing phase is step 2 which can be done
in C1 · log(|R|) for some constant C1 using an appropriate tree representa-
tion.8 Applying r at step 6 is linear in smax(R) since rules perform at most
one modification per site. The complexity of the negative update is the follow-
ing: the number of pairs (a, x) in S modified by r is bounded by smax(R) and
for any such pair (a, x), the number of triple ⟨r′, c, φc⟩ in ℓ(a, x) is bounded by
amax(R)·δ#(R). Indeed suppose (a, x) is modified by r, φ. Then if there is ψ ̸= φ
such that ⟨r′, c, ψ⟩ ∈ ℓ(a, x), by definition r#r′. And for any rule r′ there are
at most amax(R) embeddings having (a, x) in their codomain. Steps 1 and 3
are performed in negligible time and step 2 takes a time at most proportional
to cmax(R). Hence the overall cost of the negative update is proportional to
amax(R) · cmax(R) · smax(R) · δ#(R).

The cost of the positive update is straightforward. The number of pairs (a, x)
modified by r is bounded by smax(R) and the number of rules to wake up is
bounded by δ≺ (R). For each of these rules one has to look for amax(R) new
injections each of them being constructed in a time proportional to cmax(R). So
the overall positive update phase takes a time proportional to amax(R)·cmax(R)·
smax(R) · δ≺ (R), and the overall time of the update phase is proportional to
amax(R) · cmax(R) · smax(R) · (δ#(R) + δ≺ (R)). !

Note that the rule inhibition map is not used in the algorithm above, but is used
in giving an upper bound on the per event cost.

5 Conclusion

We have presented a low event cost stochastic simulation algorithm for κ. This
algorithm generalises the Gillespie algorithm. The key insight is to keep a repre-
sentation of the next events which is linear in the size of the state, and does not
present unfeasible space requirements, while being locally updatable. Although
this representation introduces event clashes, it can be made to coincide with the
intended stochastic semantics, by skewing the next reaction and time advance
distributions in a suitable way.

In practice, as one would expect from the complexity analysis, the algorithm
indeed scales well. We were able to run simulations involving a million agents,
8 The rule set can be represented as a tree of size |R| whose nodes are triples

⟨ri,a′(ri),a′(subi)⟩ where a′(subi) is the sum of the activities of the rules contained
in the left and right subtrees. Drawing a random rule according to its activity con-
sists in generating a random number 0 < n ≤ a′(R) and, at node i, either returning
ri if n < a′(ri) or doing one of the following alternatives: either going to the left sub-
tree j whenever n < subj or to the right subtree k and it that case set n := n−subj .
This drawing scheme is in logarithmic time.
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with about 50 rules, and about 10000 non-isomorphic reachable configurations,
resulting in a simulation time of about 15 minutes for a million events. So even in
conditions where agents far exceed in number the possible combinations, which
are a priori not the best for our dimension-insensitive method, the algorithm still
works. It also scales well with respect to the number of rules, because it is using
a static approximate causality structure to determine whether a rule should be
activated, and we ran simulations on (machine-generated) systems comprising
thousands of rules, with no detectable impact on event costs.

Previous simulation methods include the traditional species-sensitive
procedures, working on a ground rewriting system where every configuration is
identified beforehand. This is the way the current BNG implementation works,
although it is rule-based (hence the name biological network generator). The sim-
ulation then boils down to the simulation of stochastic Petri nets, and a natural
implementation is to partition events into the ground reactions they correspond
to, and count each class, which is an efficient thing to do for small dimensions.
The fact is that all such methods have to sample the dimensionality of the rule
set (since the generated network could be infinite), either explicitly, as in the
current BNG implementation, or implicitly as in traditional ODE modelling,
whereas as said above, the method we present here does not.

An intermediate approach one might think is worth pursuing, as in the recent
betaWB implementation [25] of an extension of the beta-binders language to
enable the description of complexes [38], or the latest SPIM implementation [24],
is that of computing the species produced during a single trajectory on-the-fly.
This will certainly fare better than a prior enumeration as in the current BNG
implementation, however it is still showing a dependency in the size of that
increasing set of species, because one has to scan it at each step to identify
(up to isomorphism) the species just produced. In signalling systems where the
set of on-the-fly species becomes large, this dependency could slow down the
simulation.

The StochSim [39] simulation is based on a different agent-centric scheme,
whereby one picks two agents A, B (supposing all rule are binary to simplify),
and apply a reaction if any does. It shares an interesting feature with ours,
namely that it behaves well with respect to the number of reactions |R|, an
effect obtained in our case by resorting to the activation relation. However,
it generates as many unproductive steps on average as there are non-reacting
pairs of agents, and that number is typically O(N2) where N is the number of
distinct species. This can be efficient only if the number of reactions |R| ≫ N ,
ie if the reaction network is dense, which is not the expected case for signalling.
Specifically, the probability of success, meaning of picking two reacting agents, is
about dm/N where dm is the mean number of co-reactants; so the mean time for
success will be N/dm, which is increasingly bad if dm is constant or logarithmic
in N (a reasonable assumption for signalling). So the Stochsim method cost may
be independent of |R|, but it is getting slower linearly in N (supposing dm to be
constant in N) the dimension of the system, so is highly species sensitive.
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There are various attempts at general simulation engines for grammars of
various sorts. An interesting one is in Ref. [40], where the authors develop a
formal semantics in terms of operator algebras; another is MGS [41]. Those
generic engines address a much more general situation than we have done in this
paper. It should be instructive however to see to which extent the event horizon
methods we have developed here apply.
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