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Abstract

Motivation: We present an overview of the Kappa platform, an integrated suite of analysis and
visualization techniques for building and interactively exploring rule-based models. The main compo-
nents of the platform are the Kappa Simulator, the Kappa Static Analyzer and the Kappa Story
Extractor. In addition to these components, we describe the Kappa User Interface, which includes a
range of interactive visualization tools for rule-based models needed to make sense of the complexity
of biological systems. We argue that, in this approach, modeling is akin to programming and can like-
wise benefit from an integrated development environment. Our platform is a step in this direction.
Results: We discuss details about the computation and rendering of static, dynamic, and causal
views of a model, which include the contact map (CM), snaphots at different resolutions, the
dynamic influence network (DIN) and causal compression. We provide use cases illustrating how
these concepts generate insight. Specifically, we show how the CM and snapshots provide infor-
mation about systems capable of polymerization, such as Wnt signaling. A well-understood model
of the KaiABC oscillator, translated into Kappa from the literature, is deployed to demonstrate the
DIN and its use in understanding systems dynamics. Finally, we discuss how pathways might be
discovered or recovered from a rule-based model by means of causal compression, as exemplified
for early events in EGF signaling.
Availability and implementation: The Kappa platform is available via the project website at kappa-
language.org. All components of the platform are open source and freely available through the
authors’ code repositories.
Contact: pierre.boutillier@ens-lyon.org or angus@ucsc.edu or walter_fontana@hms.harvard.edu

1 Introduction

Statistical analysis and visualization efforts have become indispens-

able for interpreting and navigating the swell of data produced by

rapid advances in high-throughput methods at the single-cell level.

The abundance of mRNA transcripts, the localization of proteins

and their post-translational modifications are data taken to reflect

the state of a biological system. The overwhelming effort at analysis

and visualization to date has been directed at data originating from

such sweeping surveys of system state.

Meanwhile, detailed mechanistic studies are elucidating the

structural and post-translational requirements on protein regions,

domains and residues that enable specific interactions. These data

do not directly pertain to system state, but to the processes that gen-

erate system state. The many interactions inferred from biochemical,

biophysical and structural deep drills have been combined into static

networks. Surveying the properties of such networks, while useful,

offers limited insight, since the significance of any one interaction is

determined by the dynamic behavior of all interactions that co-

occur in a given situation. Likewise, static depictions of pathways

are narratives that might serve to organize data, yet pathways do

not exist as physical circuits like road networks do; rather, at any

moment, pathways emerge from and are maintained by the many

concurrent and changing interactions between the molecular agents

that populate a system.

Mechanistic models are needed for understanding systems

dynamics and making interventions into cellular processes more

deliberate. Yet, such models are often viewed with suspicion, be-

cause much of the mechanistic detail is missing, either for lack of
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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distinguishable with respect to the mechanism expressed in r. The

activity ar is the stochastic rule-based analog of the flux through a

reaction in standard chemical kinetics. If a reaction event occurs at

time t, then the probability that r is applied to one of its embeddings

is given by its relative activity ar=
P

s as.

Even when the set of all reachable molecular species and their

reactions can be deduced from a given collection of rules, the size of

the resulting network is often too large to be handled explicitly.

Importantly, translating rules into kinetic differential equations based

on an explicit reaction network would miss the point of rule-based

approaches entirely. Rules provide compactness, transparency and a

handle on combinatorial complexity; and, perhaps most significantly,

systems of rules constitute a more appropriate level for causal analysis

than reaction networks, because reasoning at the level of rules avoids

contamination with context that defines a reaction but is irrelevant to

the application of the underlying rule (Figs 1b and 2).

2.2 Syntax
From here on our discussion refers specifically to the Kappa frame-

work (https://kappalanguage.org). Graphs are the proper formal

objects in this framework, but we need a textual notation for con-

venience. The binding state of a site s is specified in square brackets:

s[.] indicates that s is free (unbound), whereas s[n] (n a non-

negative integer) is bound to the unique other site in the same ex-

pression whose binding state is also n. Thus, A(x[2]), B(y[2]) asserts

that agent A is bound at x to agent B at y. Given an agent type with

two binding sites, A(x, y), a simple rule might be, bnd: A(x[.]),

A(y[.])! A(x[1]), A(y[1]). This rule yields ‘head-to-tail’ polymeriza-

tion, because it is matched by any two asymmetric ends (sites x and

y). Rule bnd, therefore, generates linear polymers and rings of any

size, limited only by the available pool of agents of type A. A site z

can also have an internal state, expressed as a string between curly

braces. The internal state is typically used to specify a post-

translational modification. Thus, C(z{p}[.]) denotes an agent of type

C whose site z is in state p (phosphorylated, say) and unbound.

When writing patterns, such as observables or rules, states not

mentioned do not constrain their matchings into the mixture (‘don’t

care, don’t write’). For example, C(z{p}) is matched by any instance

of C phosphorylated at z regardless of its binding state. An extensive

manual (Boutillier et al., 2017b) provides many details beyond the

present scope.

3 Materials and methods

3.1 Kappa software agents
The main Kappa ecology consists of several software agents that com-

municate through an ad hoc JSON-based protocol and expose high-

level functionalities through both a Python API and an HTTP REST

service. At present these are: The Kappa Simulator (KaSim), the Kappa

Static Analyzer (KaSA) and the Kappa Story Extractor (KaSTOR). A

Python client enables scripting to tailor work flows and is available as

the kappy package in pip. Modeling in a rule-based language is much

like writing large and complex programs, which necessitates an inte-

grated development environment. To integrate the new Kappa web

services, we developed a browser-based User Interface (UI), which also

comes packaged as a self-contained application for the Windows OS,

Mac OS and Ubuntu. This effort raised several challenges pertaining to

visualization and analysis that we address below.

The KaSim is an implementation of CTMC designed for rule-

based models with particular emphasis on scalability in typical usage

regimes (Danos et al., 2007b). A recent optimization targets a costly

step in the CTMC core loop (Boutillier et al., 2017a). After a rule

has been applied to the mixture, rule activities (Section 2.1) must be

updated by identifying all embeddings that were gained or lost

(Fig. 2) and likewise for updating counts of user-defined observ-

ables. The optimization consists in the initial construction of a

model-dependent data structure by virtue of which no pattern—

whether the left side of a rule, a user-defined observable, or any sub-

pattern of these—is ever scanned twice for the same embedding into

the mixture. For example, if two left sides Lr and Ls have a common

sub-pattern, any match to that sub-pattern is shared during the at-

tempt at extending the match to Lr and Ls.

KaSim is interactive, allowing a simulation to be paused and

resumed at any time. A versatile intervention language can be used

for defining perturbations, such as altering rate constants and add-

ing/removing agents interactively or at time points set in the input

file. The intervention language supports queries about the state of

the system and requests for data dumps, such as snapshots of the

mixture and rule influence matrices (Section 3.3).

Simulation is the main tool for studying the dynamical behavior

of a rule-based model. However, some properties of a model can be

determined by direct inspection and manipulation of the rules with-

out execution. Such properties are static in the sense of being time-

independent, yet they relate to behavior because they demarcate its

envelope. For example, a static property is the reachability of a spe-

cific molecular species, i.e. an answer to the question whether a

given species (or pattern) can in principle be produced by the joint

operation of the rules. Another static property is the impossibility of

a rule to ever fire because its L-pattern can never be matched

(Section 3.2). Further properties are the existence of invariants, such

as between states at two sites of the same agent (i.e. assertions of the

kind ‘whenever site s is phosphorylated, site p is bound to agent D’).

The firing of a rule r could create a configuration that partially satis-

fies the Ls of another rule s, thus potentially contributing to an in-

crease in the activity of s. Similarly, r might compete with s for

instances, thus potentially decreasing the activity of s. Such potential

influence (positive, negative, or none) is also a static property.

Fig. 2. Rule application. Rule r asserts a simple mechanism in which the dis-

sociation of agents of type A from those of B at their respective sites s (the

name of a site has no formal meaning and is local to an agent) is independent

of the state at all other sites. The bottom left depicts a simple mixture M of

two molecular species, i and ii, each present in a single instance. Agents of

type A and B have more sites than are mentioned in the rule; black and red

dots indicate a post-translational modification (phosphorylation status, say).

L has three possible embeddings in M. An embedding is a sub-graph iso-

morphism respecting the type of agents and the state (including connectivity)

of sites mentioned. The propensity of r to fire in M is therefore 3cr , as each

embedding is equally likely to be chosen. Species ii allows for two possible

embeddings and will react twice as fast than species i. After application of r,

the mixture has changed and a new molecular species iii has appeared
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In Section 3.3, we look at the actual influence that rules have on

each other, which is a dynamic property. Static properties are espe-

cially helpful in debugging a model, as they can quickly pinpoint

discrepancies between expected and actual behavior. The KaSA

supports all these analyses. It relies heavily on a technique called

‘abstract interpretation’, described in Section 3.2.

A third tool is the KaSTOR which aims at providing insights into

how an event of interest (EOI) occurred in a particular event trace

obtained by simulation of a model. The underlying concepts offer a

distinctive perspective on (mechanistic) causality in molecular sys-

tems. We outline their implementation in Section 3.4.

3.2 Static analysis and abstract interpretation
The formal analysis of graph-rewrite systems relies heavily on eluci-

dating the relationships between graph-morphisms, for which cat-

egory theory provides a powerful framework. Yet, in practice,

computing an exact answer to problems like enumerating the set of

reachable species is not feasible, because of numbers beyond imagin-

ation. Static analysis algorithms written for Kappa achieve practical

utility by deploying an approach known as abstract interpretation

(Cousot and Cousot, 1977), wherein the given rules are made more

abstract in the sense of systematically discarding specific informa-

tion. The reachability problem is then approached within the set of

abstract rules, where it can be handled faster at the price of an over-

approximated rather than exact solution.

Central to the abstract interpretation technique in Kappa is the

concept of a local view. The local view of an agent A that occurs in

a site graph G consists of A itself, its sites and their state as men-

tioned in G, alongside information about which sites of A are bound

to which site of which agent type, i.e. without including the bound

agent and any additional information about it. For example, in

Figure 3, the local view of the first agent (labelled ‘1’) of type A is

given by ii, which consists of A, site d bound to site d of another

agent of type A (but without including that agent, hence the dotted

outline) and site s bound to site s of an agent of type B. We can think

of such linkage information as a bond ‘stub’, expressed syntactically

as A(s[s.B], d[d.A]). The local view of the other A-agent (labelled

‘2’) is the same. Thus, the complex i yield a set of three distinct local

views {ii, iii, iv}. This step is called abstraction, denoted by k $ð Þ.
Continuing the example, we can stitch the local views back together

using the information in the bond ‘stubs’. Doing this in all possible

ways yields the set of four complexes shown in Figure 3. This step is

called concretization. Clearly, the abstraction step for agent A loses

information about the phosphorylation state of the B bound to it.

The concretization step reconstructs the original complex, but also

others—an overapproximation. We apply this idea to the left sides

Lr and right sides Rr of each rule r in a model. In this way, Lr !Rr

is replaced by an abstract version k Lrð Þ! k Rrð Þ cast entirely in

terms of local views. It turns out that the fixed point obtained from

the forward closure of abstract rules always exists and is finite (even

for systems capable of generating infinitely many species). It can be

further shown that stitching together these local views in all admis-

sible ways yields a superset of the true reachable molecular species

(Danos et al., 2008). Because of overapproximation, a species Q in

the superset obtained from abstraction may not be reachable with

the original rules. However, if Q is not in the superset, it cannot be

reached by the original rules either: A no is a no, and a yes is a

maybe. The most recent version of KaSA generalizes local views to

more flexibly compromise between accuracy, efficiency and expres-

sivity (Feret and L!y, 2018).

This technique makes reachability analysis fast enough to permit

computing, thus visualizing, contact maps (CMs; Section 4.1) and

rule influence maps in real-time as a user updates a model. This in

turn makes abstract reachability useful in debugging a model, which

is a process that furthers understanding.

As a simple example of KaSA’s operation consider the following

minimal model snippet. (Rate constants are ignored by static analysis;

they only serve the purpose of getting the model past the parser).

%init: 1 E ()

%init: 1R ()

’r1’ E(x[.]), R(x[.]) -> E(x[1]), R(x[1]) @0

’r2’ E(x[1]), R(x[1], c[.]) ->

E(x[.]), R(x[.], c[.]) @0

’r3’ R(x[_], c[.]), R(x[_], c[.]) ->

R(x[_], c[1]), R(x[_], c[1]) @0

’r4’ R(c[1], cr[.], n[.]), R(c[1], cr[.], n[.]) ->

R(c[.], cr[.], n[.]), R(c[.], cr[.], n[.]) @0

’r5’ R(c[1], cr[.], n[.]), R(c[1], cr[.], n[.]) ->

R(c[1], cr[2], n[.]), R(c[1], cr[.], n[2]) @0

’r6’ R(cr[1]), R(n[1]) -> R(cr[.]), R(n[.]) @0

’q1’ R(x[.], c[.], cr[_], n[_]) ->

R(x[.], c[.], cr[_], n[_]) @0

’q2’ R(c[1], cr[2]), R(c[1]), R(n[2]) ->

R(c[1], cr[2]), R(c[1]), R(n[2]) @0

This snippet is a simplified version of reversible receptor/ligand

binding (‘r1’,‘r2’), receptor dimerization (‘r3’,‘r4’) and internal

crosslinking (‘r5’,‘r6’). (The underscore denotes a bound state with-

out caring about the type of binding partner.) To query the static

analyzer about the reachability of patterns of interest, we defined

two identity rules, ‘q1’ and ‘q2’ (in which Lqf1;2g ¼ Rqf1;2g), to ex-

ploit KaSA’s detection of dead rules. Dead rules are rules that can-

not fire because their left side pattern is unreachable. As soon as ‘q1’

and (or) ‘q2’ are added to ‘r1’–‘r6’ in the UI editor, KaSA flags them

as unreachable. For ‘q1’ this means that a receptor cannot be cross-

linked unless it is bound to ligand (but no single rule explicitly states

that); for ‘q2’ this means that the bonds at sites c and cr of a receptor

must both engage the same second receptor, i.e. no receptor triples.

KaSA came to this conclusion by automatic abstract interpretation.

The analysis made use of the initialization statements (‘init’) for lig-

and E and receptor R. (Static analysis only cares whether the initial

copy number is non-zero.) If we remove the first statement, KaSA

responds in real-time by flagging all rules as unreachable—because

of the absence of ligand. This can be useful to ensure that the initial

condition of complex models covers the intended agent types. The

command line version of KaSA provides many additional analyses

that are not yet exposed in the software agent.

3.3 The dynamic influence network
The dynamic influence network (DIN) is a construct for tracking the

way rules influence each other over time. Its visualization is dis-

cussed in Section 4.3.

Fig. 3. Abstract interpretation. Complex (i) is ‘exploded’ into its local views

(ii), (iii) and (iv) by an abstraction process k described in the main text. The

concretization process c stitches the local views back into complexes, repro-

ducing the original, but also others, reflecting the fact that information was

abstracted away. Reachability via local views is a fast overapproximation,

enabling useful real-time analysis that would otherwise be prohibitive
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A rule r fires with a probability proportional to its activity ar

(Section 2.1). When r fires, it alters the state of the mixture M,

which can affect the activity of rule s by generating or destroying

matchings to Ls inM. Fix a time interval t; t þ s½ " and let i index the

events that occur in that interval. The ith event causes a transition

from stateMi (before the event) toMiþ1 (after the event). If the ith

event is due to the firing of r, its contribution to the relative change

in the activity of s, denoted by DIr;s ið Þ, is given by

DIr;s ið Þ ¼
as iþ 1ð Þ ( as ið Þ

as ið Þ if i is due to r and as ið Þ 6¼ 0

0 otherwise

8
><

>:
(1)

We aggregate these contributions during the interval t; t þ s½ " and

divide by the number nr of r-events to obtain the average influence

of r on s during that interval:

DIr;s t; sð Þ ¼ 1

nr

X

i in
t;tþs½ "

DIr;s ið Þ; (2)

with the events i occurring in t; t þ s½ ". We refer to the matrix

Equation (2) as the DIN. The nodes of the DIN are rules and an

edge between r and s has weight DIr;s t; sð Þ.

3.4 Causal lineages and compression
KaSim can output the whole sequence of events generated by a simu-

lation. This is called a trace. The traces of models we work with

comprise routinely many millions of events. A persistent challenge is

to extract an explanation of how an EOI specified by the user actu-

ally occurred in a particular run.

Given a trace s, i.e. a sequence of events s ¼ e1e2 $ $ $ en to an EOI

(EOI ) en), we first identify which events were on the path to the EOI

and in which causal order, as the temporal sequence of events may not

always be relevant in stochastic systems with concurrency. Two tem-

porally adjacent events e1e2 are concurrent if they can occur in any

order—e1e2 or e2e1—while having the same effect, otherwise there is a

relation of precedence between them. For e1 to precede e2 means that

the rule underlying e1 contributes to satisfying a condition required by

the left-hand side of the rule underlying e2. The naive approach we take

here is to view causality as the opposite of concurrency, i.e. a relation

of precedence. Not all precedence is causal, however. Suppose a kinase

can phosphorylate a substrate and, independently, the substrate can be

degraded. Whenever phosphorylation is observed, it must precede deg-

radation, but, given our assumption, we cannot say that phosphoryl-

ation caused degradation.

We now wish to identify the events in s that were involved in

bringing about the EOI while revealing their precedence relations.

Figure 4 illustrates the method by means of a simple example.

Assume the EOI is the production of a free phosphorylated substrate

in the following Michaelis–Menten type of model:

’b’ K(z[.]), S(x[.], y{u}) ->

K(z[1]), S(x[1], y{u})

’u’ K(z[1]), S(x[1]) -> K(z[.]), S(x[.])

’p’ K(z[1]), S(x[1], y{u}) ->

K(z[1]), S(x[1], y{p})

’*’ S(x[.], y{p}) -> S(x[.], y{p})

Since causality is a relation between events, the identity rule ‘*’

serves to transform our query into an event. Suppose a particular

mixture contains three substrate agents S and two kinase agents

K and that a simulation happened to produce the trace

s ¼ bbubpuppu*, where each event is labeled by the rule that

produced it and contains information about which agent identifiers

matched the rule. KaSTOR, the causal analysis software agent,

attaches to every site of every agent instance in the mixture a thread

and records whether an event only tested the state of a site or

whether it also modified it. In typical Kappa rules, a modification

also implies a test. This results in the representation depicted in

Figure 4a, where threads run vertically and events horizontally with

markings—black filled circles if the thread was modified, white if it

was only tested. To reconstruct the causal past of ’*’, we slide its

tests backward in time following the instructions shown in

Figure 4b. Consider an event e followed by event e0 and ask for every

site involved in e0 whether the test or modification of that site could

have occurred before e. If this is the case, slide that test or modifica-

tion backwards in time past e and repeat that question against the

event that occurred prior to e, etc. A test of the state at a particular

site in event e0 can always slide past a test (or absence thereof) for

the same site in event e, as it will not invalidate the occurrence of e.

A test associated with event e0 cannot slide past a modification asso-

ciated with event e, or e0 could not have occurred. This generates a

causal arrow from e to e0. A modification cannot slide past a modifi-

cation for the same reason. Lastly, a modification can slide past a

test, but this is a case of non-causal precedence discussed above and

is annotated by adding a ‘prevention arrow’ from e0 to e.

This procedure, applied to our trace, will discard any events that

had no bearing on the EOI (Fig. 4d), while producing a directed

acyclic graph representing the precedence structure of its causal past

(Fig. 4c). Figure 4c reads: S2 binds K1, then they dissociate, then K1

binds S1, then they dissociate; then K1 rebinds S2, then K1 phosphor-

ylates S2 and precedes (non-causally) the dissociation of K1 from S2,

thus causing the EOI. The problem is that events in the causal past

of an EOI often violate necessity. In our example, the detour

(a)

(b) (d)

(c) (e)

Fig. 4. Causal analysis of event traces. Panel (a): The representation of a trace

in terms of ‘worldlines’ that record the modifications and tests at each site for

each event in the trace. Panel (b): Schematic of allowed moves and annota-

tions emitted when swapping the order of adjacent events for a particular

wordline (i.e. site in the model). See text for details. Panel (c): The causal past

of the EOI reconstructed from the trace representation in panel (a) following

the instructions in panel (b). Panel (d): The events that had no bearing on the

EOI. Panel (e): Minimization of the causal past shown in panel (c) by eliminat-

ing cycles that return to an equivalent system state from the point of view of

the EOI
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through S1, although it occurred, was not necessary, since event e7

could have happened instead of e1 yielding the same result. One way

to isolate necessity is to search, within the causal past reconstructed

by the previous procedure, for a minimal sub-set of events that can

produce the EOI (Danos et al., 2012). We call this minimization

causal compression. KaSTOR automatically translates a causal past

into a propositional formula in which each event is associated with

a Boolean variable whose value determines whether the event is kept

or discarded. Each scenario has implications for which other events

must be retained or discarded to ensure that the EOI obtains.

KaSTOR then seeks the smallest number of propositional variables

that, when set to true (keep), satisfy the formula. This is done with

KaSTOR’s own SAT solver tailored to the structure of this problem.

The result is the compressed causal past of Figure 4e, which we call

a story. A more realistic case of causal compression is touched upon

in Section 4.4 and Figure 8.

4 Results

The Kappa UI is a suite of interactive visualization tools, integrating

various services in the Kappa ecology. Here, we provide details

about the Kappa CM, the snapshots tool, the DIN visualization

(DIN-Viz) and our initial efforts in visualizing stories created with

KaSTOR.

A range of projects introduce techniques for visualizing protein–

protein interaction networks in support of analysis (Murray et al.,

2017). Kohn et al. (2006) introduce a technique that visualizes regu-

latory networks, but is not rule-based in the sense defined here.

Chylek et al. (2011) provide guidelines for visualizing and annotat-

ing rule-based models extending the notion of CM (Danos et al.,

2007a). Smith et al. (2012) develop the RuleBender framework for

editing and exploring rule-based systems. This is taken further by

Sekar et al. (2017), in particular by grouping and merging rules into

a more compact diagrammatic representation. Dang et al. (2015)

present a visualization technique that uses animation to highlight

causal relationships within pathways, and Paduano and Forbes

(2015) explore interactive methods to visualize common patterns in

biological networks.

4.1 Visualization: the CM
The CM of a model is a generalized site graph in which every agent

type occurs exactly once and every site exhibits all bonds and states

that are possible according to the rules. The CM is generated auto-

matically. For smaller to moderately sized models, its construction

and visualization are updated in real-time while a user is writing

rules in the UI text editor. The CM allows a user to quickly check

visually whether a molecular species is admissible in principle. The

static analyzer KaSA can constrain the CM based on abstract reach-

ability, as outlined in Section 3.2. The most immediate utility of

such visualization is in debugging. For example, a missing arc,

where a modeler expected to see one, might indicate an omitted,

mistyped, or unreachable rule.

Figure 5a depicts the CM of a large model as rendered in the UI.

By inspection of the CM one can deduce the existence of proper

cycles. A cycle is a path in the CM that starts at an agent type, visits

other agent types by following bonds and returns to the original type.

A proper cycle is a cycle in which the departure site at any agent dif-

fers from the landing site. A proper cycle indicates the potential for

polymerization, which is a significant property as it implies an infinite

set of possible molecular species. The enumeration of proper cycles in

larger CMs, such as in Figure 5, requires computational assistance

provided by KaSA.

Scalable visualization is a challenge. In this instance, we partially

address scalability through interactivity by providing a zooming fea-

ture and the automatic toggling of detail (information resolution)

along with selective emphasis as the user hovers with the mouse

over elements of the CM. In Figure 5b, for example, the mouse hov-

ers over Axin, highlighting its binding partners in the model.

4.2 Visualization: snapshots
Simulations are often discussed in terms of time series tracking the

abundance of molecular species. On their own, such time series are

less useful when dealing with combinatorial models, because it is im-

practical to track all possible molecular species and it is often un-

clear which of them are salient. This is where visualizing snapshots

of the system state at different levels of resolution is useful. A snap-

shot is a view of the mixture, i.e. the state of the system, at a given

time. Presently, snapshots have three levels of resolution, two of

which are currently available through the UI. The first level is a

‘patchwork’ (treemap) rendering of the mixture and comes in three

views (Fig. 6a–c): count, size and mass. In all views, the term patch

refers to a rectangle separated from others by white space. A patch

represents a molecular species, but visualizes it only in terms of

agent composition, akin to a sum formula in chemistry. The relative

abundance of an agent type within a species is shown as a mono-

chromatic rectangle within the patch. Two monochromatic patches

of the same color show up separately if the underlying species differ

in size (e.g. monomer versus n-mer) or are equal in size but differ in

the state of at least one agent. These distinctions are made explicit

by clicking on the patch, which opens the next higher level of reso-

lution—connectivity—for that species (Fig. 6d). All three views at

the first level contain the same number of patches, but the area of a

patch depends on the view. In the count view, the area reflects the

relative abundance of the molecular species represented by the

patch; in the size view it reflects the size of the species, i.e. the num-

ber of connected agents and in the mass view the area is determined

by count times size. The differences between these views are particu-

larly notable in systems with polymerization, such as a model of ca-

nonical Wnt signaling whose CM is shown in Figure 5. In this

(a) (b)

Fig. 5. The CM. Agent types are shown as arcs of a circle; a site is depicted as

a dotted line at a right angle to its agent arc with binding interactions on the

inside and a listing of possible state values on the outside. Panel (a): The CM

of a prototype Wnt signaling model with 1440 rules and 19 agent types. It

took KaSA about 18 s to generate this CM based on abstract reachability.

Panel (b): The same CM as in (a) but with states toggled off and the mouse

over Axin (red), highlighting its interconnections with other agent types of the

model
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system, several scaffold proteins can form a polymeric structure, ei-

ther alone or in interaction with each other (Fiedler et al., 2011).

We illustrate the patchwork view by comparing the state of the

system before (–) to that after (þ) Wnt addition. In both cases the

most frequent components in the count view are homogenous, main-

ly protomers or dimers of scaffolds like Dvl, APC and LRP6. The

size view, however, is dominated by a large composite polymer—so

large that it also dominates the mass view. Prior to Wnt addition,

the polymer has the composition of a so-called ‘destruction com-

plex’, which targets b-catenin (CTNNB1) for degradation. The be-

fore/after comparison in the size view yields the following

observations. (i) The largest complex has increased in size. (ii) The

largest complex has changed composition, gaining a large mass of

Dvl (dark brown), previously spread across a variety of separate

entities. (iii) The rest of the mixture has become far more frag-

mented by a greater diversity of smaller species. (iv) The diversity of

LRP6 (dark pink) states has increased—prior to Wnt we recognize a

few patches in the lower right corner of the size view, while there

are many more monochromatic LRP6 patches after Wnt addition.

This is more conspicuous in the count view. (v) Proteins that were

associated with Dvl prior to Wnt addition (especially Fzd) have now

been pulled into the giant component, representing the migration of

the destruction complex machinery to the membrane where it inter-

acts with trans-membrane proteins, such as Fzd and CK1d. (vi) The

giant component from the pre-Wnt state has lost a large amount of

APC, which is now found in isolated association with b-catenin.

(vii) Complexes with a composition of more than four agent types

are more frequent. Prior to Wnt addition, the only complex with

more than four agent types was the destruction aggregate, whereas

afterwards the giant component increased in compositional diversity

and so did species not connected to it.

Such observations are drawn more readily from patchwork dia-

grams than time series, especially if it is unclear what to look for at

the outset. Patchwork diagrams lay out an overall view of a suitably

coarse-grained system state and seem especially conducive for quali-

tative comparisons. The observations made here, regardless of their

biological significance, also illustrate the complexity of phenomena

that can arise with a mere dozen agent types—a complexity that

would be difficult to capture without a rule-based platform with an

integrated visualization environment.

A higher level of informational resolution is accessed when click-

ing on patches to reveal the connectivity structure of the underlying

molecular species, as shown for the pre-Wnt case in Figure 6d. The

polymeric cross-linked structure dominating the pre-Wnt regime is

shown on the left of that panel, alongside with the second largest

structure, revealing a completely segregated aggregate of Dvl. At

this resolution, the structures do not exhibit (internal) state and site

information, which would not be cognitively scalable. The next level

of resolution consists in revealing detailed (local) state information

in a split view for any agent that the user hovers over in the connect-

ivity view. An interactively accessible resolution hierarchy increases

the effectiveness of the patchwork view.

4.3 Visualization: the DIN
KaSim can be directed to compute influence matrices DIr;s t; sð Þ,
Equation (2), aggregated over user-specified time intervals t; t þ s½ ".
Typically, s and increments in t are chosen so as to create overlap-

ping intervals for smoothness. A time series of such matrices can be

uploaded to the DIN visualization server (DIN-Viz) (https://github.

com/CreativeCodingLab/DynamicInfluenceNetworks), where the

DIN is presented as a node-link diagram, leveraging a force-directed

layout to position related nodes and clusters near to each other. The

nodes represent the rules and the links convey the influence of rules

on each other, color-coded with red (green) signifying a negative

(positive) influence. This visualization enables the topological ana-

lysis of rule-fluxes in a KaSim simulation at the chosen time step

scale. By mapping the magnitude of influence to the link strength,

highly mutually influential rules are closely grouped together visual-

ly. This provides insight as to which rules might (temporarily) con-

spire in producing a pathway.

In order to further facilitate the analysis of these highly related

rules, we perform a clustering operation on the network based on

the influence between rules to generate groups with a high inner in-

fluence, based on a user-selected threshold. The absolute value of in-

fluence between rules, determines the attractive link forces in the

network. DIN-Viz maps the number of firings of a rule (during

(a) (b)

(c) (d)

Fig. 6. Snapshots. Panels (a), (b), (c): The patchwork diagrams depict three views of the system state at the resolution of agent composition. See text for details.

The diagrams refer to the Wnt model with CM shown in Figure 5. For each view the snapshot was taken at steady state prior and after Wnt addition. Panel (d):

The next higher level of snapshot resolution exhibits agent connectivity for a patch clicked by the user. The connectivities shown pertain to the two complexes

indicated in the size view
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t; t þ s½ ") to the node size, and the influence of one rule on another

to the link width. We indicate the directionality of a link and the

sign of the influence by using directional color gradients. Figure 7

uses yellow-to-red for negative and yellow-to-green for positive;

colorblind-safe colormaps are also available.

Details-on-demand are available for each link, showing the

source and target, as well as the exact influence value; similarly,

hovering over a rule (node) shows the rule name, the amount of self-

influence and the rule’s top incoming and outgoing influences. The

user may also choose to make visible the names of the rules as labels,

either for all rules, or for interactively selected rules.

To represent the dynamism of the system, animation is used to

update the influence between the rules, which in turn updates the

edge weights, node sizes and cluster definitions. A time slider con-

trols the current time step, enabling the user to move through time

or jump to a particular time step. Standard playback controls ani-

mate the simulation so that the user can observe changes in the DIN

over time.

Although force-directed layouts mitigate visual clutter in node-

link diagrams, dense networks can still be difficult to make sense

of—an issue that is exacerbated when representing large datasets.

DIN-Viz enables the user to manually create a layout of nodes or en-

tire clusters through relocating and ‘pinning’ them to specified loca-

tions. This reorganization reduces clutter, but also helps users to

distribute rules and clusters in a way that is cohesive with their

thought process during exploratory analysis. When pinned, the spa-

tial positioning and grouping of selected rules and clusters is pre-

served over the course of the entire animation, over-riding the

normal layout behavior.

While the mathematically defined clusters capture groups of

rules that influence one another, there may be rules which are

related through their behavior but lack a strong influence with one

another. To solve this problem, we implement a ‘painting’ inter-

action. The user can provide a color marking to nodes to indicate

that they are grouped together, and then insert them into an existing

or newly created cluster. These categorical groupings, similar to the

spatial groupings achieved through pinning, aid in the logical organ-

ization of rules during analysis by the user.

As a use case we analyze a rule-based model of the autonomous

KaiABC circadian oscillator in the cyanobacterium Synechococcus

elongatus. We forgo a detailed description of the molecular biology

and of the Kappa model, which closely follows the literature

(van Zon et al., 2007), in favor of a broader outline illustrating the

reasoning enabled by the DIN and its visualization.

The KaiABC system consists of three proteins, A, B and C. C can

be phosphorylated and dephosphorylated at multiple sites, thereby

assuming distinct phosphorylation levels (p-levels for brevity). It

also can switch between two conformational states, A and I. At low

p-levels C prefers the A-state. The probability of a flip from A to I

increases with increasing p-level. When C is in the A-state, it binds A

with an affinity that decreases rapidly with increasing p-level. Upon

binding A, C gets locked into the A-state, which promotes phos-

phorylation. As the p-level increases, A dissociates from C, allowing

it to flip into the I-state, which favors dephosphorylation. This pro-

cess results in a p-level oscillation of individual C molecules. Since

these oscillations are not coordinated, no p-level oscillations will

occur at the macroscopic level of the C-population. Co-ordination

between C proteins is achieved by B, which binds C in the I-form.

Once bound, B locks C into the I-form, facilitating dephosphoryla-

tion. Crucially, once bound to C, B also binds A with an affinity

that is maximal at intermediate p-levels of C. By sequestering A in a

mechanism that depends on C molecules that are late in the cycle, B

holds back the phosphorylation of C molecules that are ahead in the

cycle, statistically synchronizing the individual cycles and resulting
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Fig. 7. DIN and DIN-Viz. Panel (a): System level activity of the KaiABC oscillator. The ordinate is the overall fractional phosphorylation in the system, defined as
Pn

i¼1 i ½CðiÞ"=ðn
Pn

i¼1½CðiÞ"Þ, where ½CðiÞ" is the abundance of KaiC proteins whose p-level is i; here n¼ 6. Panels (b) and (c): DIN snapshots at the cycle phases indi-

cated by the dots in panel (a). Panel (d): An interactive feature of the DIN-Viz highlights the targets of the influences originating from a rule when the user selects it

Fig. 8. Causal compression in early EGF signaling. The concepts of Figure 4

are illustrated in the case of Sos recruitment
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in oscillations at the macroscopic population level (van Zon et al.,

2007), as seen in Figure 7a.

Panels 7b and 7c summarize the insights from the animated DIN

by focusing on two snapshots taken at the midpoints of the down-

ward and upward leg of the macroscopic phosphorylation cycle

(Fig. 7a). A detailed account of the animation and its interpretation

is provided elsewhere (Forbes et al., 2018). The point to note here is

the drastic difference in the influence structure of the system be-

tween the two time points. This difference characterizes the syn-

chronization mechanism described above. The structure in the upper

part of the influence network consists of three groups of activity.

Group (i) is a single rule responsible for dissociating A from B;

group (ii), also a single rule, is responsible for the binding of A to C

in the A-state and group (iii) is a family of rules that control the

binding of A to B at various p-levels of the C agent to which B is

bound. At t¼58, the structure (i, ii, iii) is disconnected from the

lower part of the DIN, which consists of several rule families that

control state flipping of C (group iv), binding of B to C (v) and back-

ground phosphorylation and dephosphorylation (vi). The structure

(i, ii, iii) shows that A agents, once liberated from B, tend to be reab-

sorbed by available B-C complexes, rather than binding to C-agents

in the A-state. This situation puts the breaks on those C-agents that

are ready to initiate the upward leg in their cycle. Once the lagging

C-cohort has caught up, A becomes again available to bind C and

facilitate its phosphorylation. This in turn raises the activity of rule

families (vii) and (viii), which control various mechanisms of the dis-

sociation of A from C. Families (vii) and (viii) were absent from the

DIN at t¼58. In the thick of this new phase, t¼67, most A agents

that dissociate from C can rebind other C agents in the A-state,

resulting in the feeder stream from groups (vii) and (viii) toward (ii).

In other words, group (iii), no longer captures free A agents. The

structure (i, ii, iii) is effectively a systemic break pedal. It is pressed

in the downward phase and released in the upward phase. This or-

ganizational switch is clearly recognizable and interpretable in the

DIN-viz animation.

4.4 Causal analysis
As a proof-of-concept for causal compression of traces (Section 3.4),

we consider a small rule-based model capturing early events in EGF

signaling. The model consists of agents representing ligand EGF, re-

ceptor EGFR, Shc, Grb2, Sos and rules that capture well-known

mechanisms of interaction between these proteins. The EOI is the re-

cruitment of Sos. A typical run involves about 30 000 agents and

generates traces of 0.5 M events with many occurrences of the EOI.

The causal past of the first EOI in one of these traces is shown in

Figure 8 and was obtained with the procedure described in Section

3.4. The subsequent causal compression with KaSA’s SAT solver

succeeds in removing the many cyclical event sequences that return

the system to equivalent states with respect to the EOI. The outcome

is a compact interpretable and formal pathway fragment. In this

case, the compressed story describes EGF binding, subsequent recep-

tor dimerization and autophosphorylation, which is a pre-condition

for the recruitment of Shc and its phosphorylation. Independent of

the EGF-induced lineage, Sos binds Grb, which, again independent-

ly, binds the Shc that was phosphorylated along the EGF lineage.

The two binding events, which can happen in any order, come to-

gether in completing the recruitment of Sos.

This story pertains only to one particular EOI in one particular

trace. Other EOI instances and traces might compress to other sto-

ries. One challenge, therefore, is the aggregation of story statistics

over long traces or large samples of short traces to determine the

most salient pathways to the EOI. Rule-based modeling gathers

mechanistic information about local interactions without precon-

ceptions as to what constitutes a pathway; rather, pathways emerge

dynamically from these interactions and our automated approach

detects them.

5 Conclusion

In situations not vitiated by complexity, an assumed understanding

of some key aspect of a system typically precedes modeling. In the

case of complex interaction networks, however, an initial under-

standing at the systems level may not be readily available even with

reasonable knowledge of local interactions. This leads to an inver-

sion—from understanding precedes modeling to modeling precedes

understanding—that significantly alters the character of models and

the practice of modeling. The traditional criteria that establish a

good model—insight, elegance, conciseness, conceptual fertility—

are no longer available right away. Rather, a good model should be

a data structure that constitutes a transparent, editable, formal and

executable representation of the facts it rests upon. This is a pre-

scription for replacing a world we don’t understand with a model

we don’t understand but that is easier to analyze and experiment

with. The challenge is to develop mathematical techniques and a

sound software infrastructure for analyzing, visualizing, manipulat-

ing, simplifying—in short, reasoning with—models that are like em-

pirical objects.

We see two major challenges that rule-based approaches need to

address. The first consists in developing formal and computational

techniques for constructing explanations. The glimpse on causality

in Sections 3.4 and 4.4 is just a beginning. Second, languages like

Kappa and BioNetGen are not knowledge representations. Tying

modeling to knowledge representation requires a structured staging

area designed to formally organize the abstraction process leading

from biochemically rich and grounded descriptions to logical, un-

grounded, but executable expressions (Basso-Blandin et al., 2016;

Harmer et al., 2017). Modeling occurs, to a large extent, at that

intermediate staging level. In addressing challenges like these, there

will be ample need for innovative visualization.
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