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Evolution of a Metabolism

N

We demonstrate that when stochastic effects are taken into account, over
long periods of time autocatalytic metabolisms evolve through a series of
punctuated equilibria. We outline a rigorous theoretical treatment of the
dynamics of autocatalytic metabolisms, and present some heuristic numer-
ical simulations. We develop the analogy between the evolution of autocat-
alytic metabolisms and that of contemporary organisms, and argue that
while the essential properties of variation and selection are satisfied, there
. are nonetheless some intriguing differences that merit further study.

1. INTRODUCTION

The word “evolution” is often narrowly construed to apply only to the process of
variation and selection in biology. However, there is an older and broader usage
of this word, originating with Spencer,!® that views evolution as driving long-term
organizational change in nature, with biological evolution as a special case. Spencer
defines evolution as “a change from an incoherent homogeneity to a coherent het-
erogeneity.” Analogies between evolutionary behavior in many areas, such as as-
tronomy, geology, economics, and sociology ,have been developed at a qualitative
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level 11116 However, as yet no one has been able to formulate this analogy quan-
titatively, or to demonstrate that it has predictive value. The failure to articulate
the broader notion of evolution as a quantitative scientific principle justifies the
prevalence of the narrower view that evolution in biology is fundamentally different
from evolution in other natural phenomena.

One form of evolution that probably played a dominant role prior to biologi-
cal evolution is what Calvin has termed “chemical evolution.”®* In this paper we
study chemical evolution in the context of an artificial yet in many respects realistic
model for catalytic reactions in polymer chemistry.l” These results build on those
of a companion paper,! in which it was demonstrated that under appropriate con-
ditions metabolisms spontaneously emerge from a chemical soup. This emergence
takes place on short time scales, over which the behavior is well approximated by
deterministic equations. This paper studies the time evolution of these metabolisms
over longer time scales, where stochastic effects play a critical role. We show that the
metabolisms make transitions through a series of different fixed points, exhibiting
what appears to be an open-ended succession of “punctuated equilibria.”

The form of chemical evolution that we study here should be contrasted with
that based on self-replication through templating, studied extensively by Eigen and
others.%® Templating reactions form the basis for the reproduction of contemporary
organisms; the replication dynamics of chemical systems is so closely analogous to
that of biological populations that it is essentially biological evolution on a molec-
ular scale. Self-replication pertains to the possible evolution of early life forms,
rather than to alternative evolutionary processes that may have preceded contem-
porary life. The form of chemical evolution that we study here is much closer to
that envisioned by Rossler.!31418 : : ‘

Autocatalytic metabolisms reproduce themselves autonomously, without tem-
plating reactions. The analogy to biological evolution is not as direct as it is for
templating systems. However, we argue that it nonetheless involves a process of
variation and selection and deserves the name “evolution,” at least in the broad
sense articulated by Spencer. Although there are differences between the evolution
of autocatalytic metabolisms and the evolution of biological organisms, they are at
the level that one would naturally expect for proto-life forms based on alternative
principles from those of contemporary organisms. The evolution of autocatalytic
metabolisms is similar enough to that of biological organisms that many aspects
are immediately recognizable, yet at the same time that there are provocative differ-
ences. The chemistry in which they evolve is simple enough for quantitative study
and simulation. By presenting an example of an alternative form of evolution, we
hope to support the idea that evolution can indeed be regarded as a broader physical
principle driving organizational change, and to illustrate some.of its more general
properties.

This paper describes work in progress. Our goals are to outline the scenario
under which autocatalytic metabolisms evolve, to discuss the issues involved in
simulating their behavior, to present some preliminary numerical results, and to
make some remarks comparing their evolution to that of contemporary biological
organisms. ’ -




Evolution of a Metabolism ' 143

This paper will draw heavily on the companion paper, “Spontaneous Emergence
of a Metabolism,” in this volume,! where we study the chemistry of catalyzed poly-
merization reactions. The catalysis of these reactions is assumed to be specific, i.e.,
a typical polymer catalyzes the formation of only a small subset of all possible
reactions. Under appropriate circumstances, the system may contain an autocat-
alytic set, i.e., a set of polymers such that each polymer is produced by at least
one catalytic reaction involving only other members of the autocatalytic set. The
system is driven away from equilibrium by an influx of a few special polymers,
called the food set. When parameters are in the appropriate regime, the autocat-
alytic set may boost its own concentrations many orders of magnitude above the
background of spontaneous reactions. When this occurs, we call the result an au-
tocatalytic metabolism. ‘ ‘

Although we will attempt to summarize important aspects of the companion
paper as we go along, we will assume that the reader can refer to it as necessary.

2. POSSIBLE METHODS OF SIMULATION

Since there are an infinite number of possible polymer species, and an 1afinite num-
ber of possible reactions, properly simulating the behavior of a polymer network is a
formidable problem. This problem is particularly severe for catalytic reactions, over
long time scales. We compare three approaches: continuous differential equations,
stochastic molecular collisions, and deterministic metadynamics.

Continuous differeniial equations. As long as the concentration of each species
is sufficiently large, the dynamics can be described by a system of deterministic
differential equations with continuous concentration variables z; > 0, where i labels
the possible species. However, because there are an infinite number of possible
equations, from a practical point of view such a simulation is obviously impossible.
Furthermore, even if it were possible, this approach provides a poor approximation
of reality, particularly over long time scales. This is because real reaction vessels are
always finite, which induces a minimum concentration 6 corresponding to a single
molecule. Until at least one molecule of a given chemical species is present, it cannot
cause any reactions. As a result reactions are initiated sequentially, as the system
creates the necessary constituents. In contrast, for continuous differential equations,
for any time t > 0 all reactions are switched on, and all species typically have
nonzero concentrations. For autocatalytic reactions this is not merely an esoteric
problem: It results in a qualitatively incorrect prediction of the true dynamics.

Stochastic molecular collisions assumes integer populations of each species and
simulates reactions as discrete collisions by sampling at random. This method is
faithful to reality (at least for the level of description we are interested in here).
However, as discussed in the companion paper, if the difference between the largest
and smallest concentrations is large, it can be time consuming in comparison with
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differential equations. This problem taxes the resources of even the largest parallel
computers. It is difficult to simulate a system of any size over long time scales.

Deterministic metadynamics uses a sequence of deterministic equations that
change as the behavior of the system changes. This alternative attempts to make
the best of both worlds.2"8 The topological structure of the kinetics is represented
by a graph, reflecting the dominant chemical species and chemical reactions. at any
given time. The graph changes to reflect either the creation of new species or the
elimination of old species. This takes place relative to a concentration threshold 6,
corresponding to the concentration when one molecule is present. The threshold
thus specifies the size of the reaction vessel.

We wish to emphasize that while this procedure involves a sequence of chang-
ing graphs, it is purely deterministic.ll Because of the finite threshold ¢, the results
are different from those that would be obtained with a fixed continuous system of
equations. However, because the simulation is deterministic, over long time scales
the results diverge from those that would be obtained with a stochastic simula-
tor. In the companion paper we were interested in the problem of the emergence
of autocatalytic metabolisms. This takes places on short time scales, over which
the deterministic metadynamics procedure described above is reasonably accurate.
One of our main purposes in this paper is to introduce a modification of the meta-
dynamics procedure, called stochastic metadynamacs, which combines the physical
accuracy. of a full stochastic molecular collision simulation with the speed of a
metadynamics simuiation, and allows us to follow the evolution of autocatalytic
metabolisms for long periods of time.

For the equations studied here, for any fixed graph our simulations indicate
that the dynamical equations always have a unique stable fixed point. We call this
a dynamical fized point. As described in detail in the companion paper, the existence
of a unique fixed point makes it possible to speed up the metadynamics algorithm
considerably by using an algebraic fixed point solver. For a given graph we find the
corresponding dynamical fixed point; if there are new species over the threshold, we
update the graph, and then find a new fixed point. We repeat this until there are no
species that cross the threshold. Since no new species are created or destroyed, the
graph remains fixed. We call the corresponding final state a metadynamical fized
point. Dynamical fixed points have no physical meaning, and are just computational
conveniences. In contrast, metadynamical fixed points are physically meaningful.
This is clarified in the next two sections. -

(1] The kinetic equations should not be confused with the rules for the assignment of kinetic
parameters. Though we may use a random assignment rule, once the assignment is completed the
kinetic parameters are fixed and, for the simulations of the companion paper, the kinetic equations
are completely deterministic.
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3. AUTOCATALYTIC NETWORKS AS FLUCTUATION
AMPLIFIERS

To understand why thresholds and spontaneous fluctuations have a large effect
on autocatalysis, it is important to distinguish between internally and externally
catalyzed reactions. An internally calalyzed reaction pathway is catalyzed by a
species within the current autocatalytic metabolism. Let o be a species that initially
has a population of zero, and so is external to the metabolism. If o is produced by
a catalyzed reaction whose catalyst is already abundant, the concentration of o will
increase rapidly. In contrast, an ezternally catalyzed reaction pathway is catalyzed
by a species outside the current autocatalytic metabolism. In order to be catalyzed,
such reactions must wait for a spontaneous reaction to produce the catalyst. Since
the spontaneous reactions are slow, when compared to the catalyzed reactions they
can be regarded as discrete fluctuations. As pointed out by Rossler,!4 this introduces
a delay in the activation of externally catalyzed reactions.

The simplest example is given in Figure 1(a). Let A and B be two polymers in
the autocatalytic metabolism, and let o be a third polymer that catalyzes its own

formation.
A+ B0, (1)

Assume that ¢ is not produced by any other reactions involving only members of the
autocatalytic metabolism, i.e., that it is an element of the background of polymers
formed by spontaneous reactions. Assume that in the initial meta-dynamical fixed
point its population is zero.!? If a fluctuation produces o, then, since it catalyzes
its own formation, its concentration may increase by orders of magnitude.

Note that the boost in the concentration of & may have other side effects; for ex-
ample, ¢ may catalyze other reactions. This may cause the production of new poly-
mer species, which in turn catalyze other reactions, etc. Since these events involve
only internally catalyzed pathways, they take place on a rapid time scale, without
delays. When ¢ is pumped up to high concentrations, the change in the dynamic
equilibrium may also alter the concentrations of other species in the metabolism.
The resulting competition might cause other polymer species to disappear from the
metabolism. New species can be created, and old species can become extinct.

Purely deterministic metadynamics, as used in the companion paper, explores
only the internally catalyzed pathways. Since the system cannot produce any of the
external catalysts, it gets stuck at a metadynamical fixed point. For convenience,
we will often call this a pinned staie. Once in a pinned state, until a spontaneous
fluctuation produces one of the external catalysts, the system cannot change. When
a fluctuation occurs it may trigger another period of rapid change as the system

[2)When the simulation of the concentration of the background as an aggregate is included, assume
that its concentration is less than the threshold, so that with the deterministic metadynamxc rule
of the companion paper,! it is not allowed to catalyze new reactions.
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FIGURE 1 Ezamples of autocatalytic mutations. (a) A and B are members of an
autocatalytic metabolism. o = A + B catalyzes its own formation. If the concentration
of ¢ is initially zero, then except for the spontaneous reaction it will remain zero. If

by chance the spontaneous reaction produces a molecule of 7, then the autocatalytic
reaction may increase the concentration of o by many orders of magnitude, creating a
new pinned state which includes . (b) depicts a somewhat more complicated instance
of the same phenomenon: A, B, and C are in the autocatalytic metabolism. Through
spontaneous reactions A and B produce a, and C produces [ and . Suppose o
catalyzes the cleavage of C, and # catalyzes the condensation of A and B. If either
o or f are produced by a spontaneous reaction, they may pump each other up and
join the metabetism. '

explores the newly activated internally catalyzed pathways, until the system settles
into a new metadynamic fixed point. The end result is a change in the composition
of the autocatalytic metabolism, and a transition to a new pinned state. We call
a transition from one pinned state to another an evolutionary modification of the
autocatalytic metabolism.

We will call an autocatalytic reaction such as the one shown in Figure 1(a), in
which a species catalyzes its own formation, a first-order autocatalylic loop. There
are autocatalytic loops of all orders. For example, Figure 1(b) depicts a second-order
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autocatalytic loop, in which « catalyzes the formation of # and 3 catalyzes the for-
mation of a. The number of possible graphical combinations grows exponentially
with the order of the loop. There are thus an enormous number of possible auto-
catalytic loops, and an enormous number of possible evolutionary modifications of
autocatalytic metabolisms.

If an evolutionary modification is robust, i.e., if the steady state concentrations
of the new elements at the new pinned state are orders of magnitude above the
threshold, then the modification is unlikely to reverse itself spontaneously, since
the probability of a series of fluctuations that decrease the population by several
orders of magnitude is virtually nil. Thus, even though all the reactions involved
are reversible, from a stochastic point of view robust evolutionary modifications are
effectively irreversible. Once an evolutionary modification is triggered, the system
is unlikely to return to its previous pinned state.P!

The evolution of the system through time is highly path dependent. At any
given time there are many possible spontaneous fluctuations. Each fluctuation that
actually occurs generates a series of irreversible changes, effecting both the prob-

“ability that a given fluctuation will occur, and the probability it might initiate a

modification. Externally catalyzed reactions are activated sequentially, in random
order; the probability that a given reaction will be activated at a given time is
altered by each preceding fluctuation. This is quite different from what one would
observe with a purely deterministic model.

Thus we see how the long time dynamics of a chemical network involves a series
of transitions between pinned states, which are similar to punctuated equilibria in
evolutionary biology. For a network of any reasonable size, the number of possible
pinned states is so large that the system may evolve for a very long time without
ever repeating itself.

4. STOCHASTIC METADYNAMICS

In this section we present a stochastic extension of the metadynamical method
that allows us to simulate the evolution of autocatalytic metabolisms reasonably
quickly. The basic idea is to perturb the catalytic reaction graph by randomly
adding new species that may cause evolutionary modifications. Doing this in a
physically realistic manner, so that the perturbations occur with the proper relative
probabilities and time scales, involves several complex issues. In this section we
outline our approach to the problem, and describe the heuristic treatment that
forms the basis for the simulations of the next section.

(3] Of course, if a fluctuation of species o triggers an evolutionary modification, it is always possible
that some later evolutionary modification might introduce competition and eliminate 0. However,
when this occurs it is unlikely to cause a return to the original pinned state.
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4.1 THE SPECIAL ROLE OF THE SHADOW

The shadow is the subset of species in the background that are produced by re-
actions involving only themselves and members of the catalyzed reaction network.
(See Figure 4 of the companion paper.) The shadow plays a dominant role in initi-
ating evolutionary modifications, for two reasons: First, because the autocatalytic
metabolism is at high concentration, the shadow is typically maintained at higher
concentrations than other parts of the background. Thus fluctuations creating ele-
ments of the shadow are more likely than others. Second, for a fluctuation of 2 single
species to trigger an evolutionary modification, that species must be in the shadow.
This is true almost by definition: if a background element is not in the shadow,
then its production requires at least one other background element. Triggering cat-
alytic production therefore requires at least two simultaneous fluctuations, which is
unlikely. For both of these reasons, the majority of evolutionary modifications are
initiated in the shadow.

4.2 ENUMERATION OF AUTOCATALYTIC SUBGRAPHS

Figure 1 shows two possible autocatalytic subgraphs that might trigger an evo-
lutionary modification of an autocatalytic metabolism. There are an enormous
number of other possible subgraphs. We will restrict attention to autocatalytic
subgraphs that can be triggered by a single fluctuation in the shadow.

We begin by introducing a simplified graph description that describes the feed-
back structure of the subgraph. This simplified description ignores the identity of
the “parents” in the autocatalytic metabolism, focusing attention on the catalytic
relationships in the shadow. A situation in which o catalyzes its own formation, as
shown in Figure 1(a), is represented by a simple graph with a single vertex o, and
a single directed edge from o to itself, as shown in Figure 2(a).

This reduced graph also lumps together any other simple autocatalytic reac-
tions that produce ¢. For example, there might be another set of polymers A’ and
B’ in the autocatalytic set whose condensation is catalyzed by o, or a polymer c'
whose cleavage is catalyzed by o. The reduced graph describes all of these reactions
taken together. '

Figure 2 enumerates the combinatorial possibilities for reduced graphs with up
to three vertices. In addition to simple loops, there are many other possibilities.
In many of these the autocatalytic feedback is maintained exclusively by a subset
of the possible vertices; in this case we call the remaining vertices parasites. For
example, Figure 2(c) has two vertices. The first vertex provides the autocatalytic
feedback through a first-order loop. It also catalyzes the formation of the parasitic
second vertex, which does nothing to support the first loop.

In principle it is possible to enumerate the autocatalytic modifications of ar-
bitrary order. However, for simplicity in this paper we will restrict attention to
modifications of order three or less, as shown in Figure 2.
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FIGURE 2 Possible autocatalytic subgraphs in the shadow with three vertices or
less. These reduced graphs ignore the identity of the “parents” in the autocatalytic set.
The vertices correspond to chemical species in the shadow, and the edges indicate
their catalytic relationship to each other. (a) corresponds to a species that catalyzes
its own formation, and is equivalent to the full graph of Figure 1(a); it also lumps
together any other graphs of the same form with different parents but the same o (b)
corresponds to a two-cycle, such as that of Figure 1(b). (c) also involves two vertices;
however, it can be regarded as a one cycle with a “parasite.” The remainder of the
graphs enumerate the possibilities with three vertices. The counts with each graph give
the number of realizations that contain the shown skeleton, and in which some of the
vertices are additionally autocatalytic on their own.
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4.3 ASSIGNING PROBABILITIES TO AUTOCATALYTIC MODIFICATIONS

All of the autocatalytic subgraphs listed in the previous section describe additions
to the metabolism that can be triggered by a single spontaneous fluctuation. Once
the fluctuation occurs it may activate the other elements of the subgraph. For
example, in Figure 2(b), suppose a fluctuation produces a; unless o decays first,
it produces B, which in turn may produce another a, etc. Whether or not these
fluctuations grow so that they pump up the concentrations to a robust level, well
above the threshold, is a complicated birth and death process with an uncertain
outcome. After a long time there are two likely possibilities:

1. Creation events overcome decay events, and the concentrations of the subgraph
are roughly at the level predicted by deterministic kinetics.
2. Decay events overcome creation events, and the concentrations are zero.

This neglects unlikely events, such as additional spontaneous fluctuations, and
assumes that the kinetic parameters are such that the initial production rate exceeds
the decay rate (otherwise the concentrations almost certainly go to zero).

The relative probability of these two outcomes can be approximated using a
master equation. For example, consider the case of a simple first-order autocatalytic
loop, as described in Figure 1(b). Neglecting saturation, the deterministic kinetics
can be approximated by

6=(1+vo)(ksfAB — k-Ho)— Ko, (2)

where v is the catalytic efficiency, k; is the forward rate constant, k. is the reverse
rate constant, H is the concentration of water, and K is the global dissipation
parameter, corresponding to the rate at which material diffuses out of the system.
When o is sufficiently small, we can neglect the quadratic term. If 6 > 1 we can
also neglect the spontaneous reaction, and this becomes

& = vk;ABo — (K + k. H)o. ®)

When the concentrations are small the problem is more properly treated in terms
of a master equation. Letting P(n,t) be the probability that o has population n at
time ¢, the master equation corresponding to Eq. (3) is

% —c(n=1)P(n—1,8)+d (n+1)P(n+1,1) = (c+d)nP(n,2), (4)

where ¢ = vky AB is the “creation” rate, and d = K + k. H is the “death” rate.

Assume that at ¢ = 0 the spontaneous reaction creates a single molecule. For the
master equation this corresponds to the initial condition P(1,0) = 1. By solving
the master equation (see e.g., Karlin'®) and taking the limit as ¢ — oo, we can
compute the survival probability, P, = 1 — P(0,00). It is '

if e > d;
P, = c+ ! ' N 5
’ {0 otherwise. )
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P, is the probability a mutation will grow once it is triggered.

The asymptotic survival probability for an mth-order subgraph can also be
derived using an m-dimensional master equation. The equations are linear, but they
are complicated and we have not yet solved them. As an approximation, however, we
first study the corresponding deterministic equations. In particular, it is clear that
the survival probabilities will depend on the deterministic creation and death rates.
If there is not a growing mode in the deterministic limit, the survival probability
in the stochastic case will be zero. :

Making the same approximation used above, for a simple mth-order cycle the
linearized kinetic equations are

0:1 = CiOm —dd'l

0:2 = C901 — d0'2
(6)

Om = CmOm-1 — Q0m,

where ¢; = vk; A; B; are the catalyzed production ratesl! of the m species external
to the metabolism whose concentrations are given by ;. The kinetics is described
by the eigenvalues (and eigenvectors) of the matrix

—d 0 0 e
co —d 0 coe 0
: R : : (7)
0 0 - em —d
The m eigenvalues turn out to be
m 1/m
/\k::(ch) exp(2wi-k/m)—d, k=0,1,..., m— 1L (8)
j=1

Fluctuations will grow as long as the largest eigenvalue Ag = (]}, e )™ —dis
positive. This suggests that the probability for a fluctuation that generates a grow-
ing mth-order graph depends on the geometric mean of the catalytic production
rates ¢;. This has some interesting possible consequences: Since the mass of the
system is constant, in order to increase the number of species, it must typically
decrease the population of each species inside the autocatalytic metabolism. The
growth rates ¢; depend on the concentrations in the metabolisms; if these decrease,
the analysis above indicates that the probability of survival also decreases. The
system should thus evolve to a critical state in which the linear growth rate for a
typical mutation is on average near zero.

(4] This form assumes that all the reactions are condensation reactions; for a cleavage reaction it
is ¢; = vkHC,.
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5. NUMERICAL EXPERIMENTS

In this section we present a few preliminary numerical experiments on the evolu-
tion of autocatalytic metabolisms. The purpose of the simulations presented at this
stage is simply to demonstrate the basic principle behind the chemical evolution of
autocatalytic mutations. The approach at this stage is strictly ad hoc: We ignore
the important issue of the time between transitions from one pinned state to an-
other, and make an arbitrary choice concerning the relative survival probabilities
of autocatalytic subgraphs.!®l A simulation proceeds as follows:

1. Explore the internally catalyzed pathways by running the deterministic meta-
dynamics algorithm until the system reaches a metadynamical fixed point.
Construct the allowed autocatalytic subgraphs of the shadow.

Assign a weight to each of the subgraphs.

Select a subgraph with probability given by its normalized weight.

Try to install the selected subgraph and check if its members acquire concen-
trations above threshold within the autocatalytic network.

. If no, return to step 4.

. If yes, install it in the network and return to step 1.

o o

-~

We call this procedure stochastic metadynamaics.

_ A typical simulation is shown in Figure 3(a). We arbitrarily measure the time
in “meta-steps,” which correspond to the number of times the metadynamics algo-
rithm finds new dynamical fixed points. Figure 3(a), for example, plots the number
of polymer species above threshold, beginning with an initial state in which the only
species with nonzero concentrations are those of the food set. The graph changes
12 times, corresponding to 12 different dynamical fixed points, before the system
settles on a metadynamical fixed point with roughly 20 species. At this point we
introduce a mutation, which triggers a series of new internally catalyzed pathways,
until the system settles onto another metadynamical fixed point, roughly ten steps
later. This process repeats itself until the number of species reaches 50 and the
simulation terminates. During this time new species are created, and old species
become extinct, as shown in Figure 3(b).

The “meta-step” time scale used in these simulations masks the physical cor-

respondence to punctuated equilibria. In reality, after each mutation the system

quickly reaches a new steady state, and then remains relatively unchanged for a
much longer period of time, until the next mutation. To make a correspondence
between the simulation and reality, at each time marked by a triangle in Figure 3,
one should imagine an interval of indefinite duration during which the properties
of the system remain almost constant.

51T assign relative survival probabilities, for the simulations shown here we weighted graphs
according to the product of the production rates of their vertex elenents. As we now know, this
overemphasizes the importance of short graphs. We intend to repeat these simulations with the
proper weighting function as described in section 4.3 in the future.
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FIGURE 3 The evolution of an autocatalytic metabolism. (a) plots the number

of polymer species as a function of time, measured in “meta-steps” (see text).

The triangles on the horizontal axis indicate mutations that generate evolutionary
modifications. (b) shows the number of new species created (dotted) and the number
of old species that become extinct. (c) plots the difference in the angle of the
concentration vector (see text) between the present step and the previous step (solid)
or the initial condition (dashed). (d) The slope A is one indication of the deviation from
equilibrium properties. The forward rate constant k;, the reverse rate constant k., and
the catalytic efficiency v are randomly varied in the range k; € [10%,10%], k. € [1,10],
v € [103107). The unbinding constant k, = 105 the driving § = 10% the mass
concentration my = 10~1, the concentration threshold = 10~% and the probability of
catalysis p = 4.5 x 103 An upper limit on the number of polymers was set at 50;
autocatalytic subgraphs were chosen from those with one or two nodes.

In order to measure the change of the state of the network in quantitative terms,
in Figure 3(c) we use the angle ©(C;, C;) between the concentration vectors C; and
C;. The concentration vector C; is defined as the infinite-dimensional vector whose
coordinates are the concentrations of each possible species. C; uniquely specifies
the state of the system at meta-step 7. Figure 3(c) demonstrates that the angle be-
tween concentration vectors changes more rapidly at the beginning, indicating that
evolutionary modifications at later stages have a smaller effect on the autocatalytic
metabolism. "
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In the companion paper we introduced A, the slope of the concentration profile,
as a measure of the deviation of the properties of the system from those at equilib-
rium. Larger (less negative) values of A indicate a larger deviation from equilibrium.
A decreases during the initial deterministic evolution; an evolutionary modification
triggered by the first mutation increases A significantly for a while, but subsequent
mutations cause it to decrease again. The values of A in this simulation indicate
that none of these metabolisms are very robust; however, it is interesting to see
that an evolutionary modification can make a significant change in A.

Figure 4 shows another sequence of evolutionary modifications. In this case we
admit mutations involving subgraphs with up to three (rather than two) vertices,
and use slightly different kinetic parameters, as well as a higher ceiling for the
number of possible species.
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FIGURE 4 A second simulation of an autocatalytic metabolism. Figures (a) and

(c) are similar to those of from those of Figure 3. (b) plots the mean catalytic efficiency
efficiency (v) of the autocatalytic metabolism (solid) and the mean catalytic strength
(ve;), where e; is the concentration of catalyst e. (d) plots the mass ratio, i.e., the
ratio of the mass of the autocatalytic metabolism (without the food set) to that of the
sum of the food set and the background. The parameters are the same as those of
Figure 3, except that k, = 105 the limit on the number of polymers was set at 75, and
autocatalytic subgraphs were chosen from those with three vertices or less.
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Figure 4(a) shows the number of species as a function of time; interestingly,
some mutations cause the number of species (and hence the diversity) to decrease.
Early mutations typically have a large effect, in that they require several steps of
the metadynamics algorithm to reach a metadynamical fixed point and therefore
must have generated several new internally catalyzed pathways and several new
chemical species. Later mutations, however, only trigger a single metadynamical
step. (They may generate multiple species and internal pathways, but the number
is probably fewer). Somewhat surprisingly, in spite of this Figure 4(c} shows that
the later mutations cause a larger change in the angle of the concentration vector.
At this point we do not know how to interpret this.¢]

Figure 4(d) plots another measure of the deviation from equilibrium, the mass
ratio of the autocatalytic metabolism relative to the sum of the food set and the
background. Although there are several periods where the mass ratio decreases,
there is an overall tendency for it to increase with time. Figure 4(b) shows the
mean catalytic efficiency as a function of time. It rises to a maximum and then
tends to decrease slightly; we do not understand why.

These numerical experiments are admittedly very preliminary. The parame-
ters used were somewhat arbitrary, and did not generate very robust autocat-
alytic metabolisms. Nonetheless, they do demonstrate the basic principle that a
metabolism can evolve well past its initial pinned state, and that the resulting set
of evolutionary modifications can generate new molecular species, and cause old
species to become extinct.

6. DISCUSSION

We have illustrated a process of “chemical evolution” that bears many similarities
to biological evolution, at the same time that it is distinctly different. In this section
we discuss this analogy in more detail.

There is a clear notion of variation and selection within autocatalytic metabol-
isms, and we feel that the term “evolution” is well deserved. Random variations,
which play the role of mutations, are generated by spontaneous reactions. Some of
these variations have no effect, and simply die out. Others have large effects, gener-
ating several new chemical species and perhaps causing others to die out, substan-
tially altering the composition of the autocatalytic metabolism. As in evolutionary
biology, “favorable” variations are by definition those that propagate themselves.
Spontaneous fluctuations provide random variation, and chemical kinetics provide
selection. :

(8] Similar behavior has been observed by Rasmussen et al.}2
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We now develop the analogy with the evolution of biological organisms in more
detail. A possible point of confusion concerns the level at which to make the identi-
fication. In the self-reproducing reactions studied by Eigen, the notion of “chemical
species” can be roughly identified with “biological species.” This is literally the case
in the experiments with the Qf virus. For autocatalytic metabolisms, however, the
individual chemical species are only elementary building blocks; they are not in any
sense alive on their own. The “organism” is the entire metabolism. The “pheno-
type” of the organism is the concentration vector Cj, i.e., the set of species and
concentrations that comprise the autocatalytic metabolism.

We have demonstrated that the time history of an autocatalytic metabolisms
contains periods where the system is pinned and change is very slow, and other
periods where a fluctuation triggers the exploration of new internally catalyzed
pathways and change is quite rapid. We propose that the chemical kinetics of in-
ternally catalyzed pathways can be regarded as a “developmental algorithm.” The
“genotype” is any list of chemical species that produce a given pinned state through
purely internally catalyzed pathways. Note that there are many possible concentra-
tion levels and lists of chemical species that are connected by internally catalyzed
pathways leading to the same pinned state. A subset of the metabolism can thus
regenerate the entire metabolism. Such a subset has been called a seedmmg sel by
Fontana.® We regard the genotype of a given pinned state as the equivalence class
of its seeding sets. Since the seeding sets will all regenerate the metabolism regard-
less of the concentrations of their elements, the genotype is given by a simple list,
stating which species are present. It thus encodes information about the phenotype
in symbolic form, in a manner analogous to the sequence of base pairs in a contem-
porary organism. The chemical kinetics produces the phenotype from the genotype,
in a highly simplified but analogous manner to that of a contemporary organism.

As we have demonstrated here, autocatalytic metabolisms go through a pro-
gression of events, involving the alteration of the genotype and the generation of new
phenotypes. Since the expression of the directly catalyzed pathways is rapid, while
the time intervals between evolutionary modifications may be large, when viewed
over an expanse of time, these have the appearance of “punctuated equilibria.” This
illustrates a difference between the evolution of autocatalytic metabolisms and that
of biological organisms: the evolutionary process and the developmental process are
one and the same. In this context a single organism can evolve—the selection comes
from the laws of chemistry, without any obvious need for competition with other
organisms.

This brings up the important issue of “identity.” If an autocatalytic metabolism
is clearly confined to a given container, then the genotype and phenotype of the
autocatalytic metabolism make it possible to distinguish it from other metabolisms
in other containers. The number of possible metabolisms is quite high, and the
probability that two metabolisms in different containers will be in different pinned
states is extremely high. Each metabolism might evolve on its own, without any
need for competition with others.

However, one can also imagine that the vessels containing the metabolisms
occasionally come into physical contact, so that some material diffuses from one
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to the other. In this case we can imagine a population of evolving metabolisms,
each occasionally infecting the others with pieces of its own genotype. An infection
may trigger new catalyzed pathways, and substantially change the evolution of the
infected host.

One can also imagine a situation in which autocatalytic metabolisms are more
continuously distributed through space, with ongoing diffusive coupling. In this case
it becomes difficult to assign a notion of “identity.” Nonetheless, there might be
some interesting spatial inhomogeneity that fosters evolutionary behavior that is
qualitatively different from that within a spatially isolated well-stirred reactor.

We have tried to suggest that autocatalytic metabolisms can be viewed as proto-
organisms with a crude “genetic code,” consisting of a list of polymers. The code is
“interpreted” by chemical kinetics. We also suggest that autocatalytic metabolisms
“evolve”; they certainly meet the basic requirements of information storage of a
genotype and of a selection mechanism to amplify random variations. Nonetheless
their evolution is distinctly “chemical” rather than biological. There are substantial
differences, most of which stem from the fact that the identity of an individual
autocatalytic metabolism is not as well defined as that of a biological organism or-
that of a templating RNA string; there is not necessarily a clear distinction between
an organism and a population of organisms. However, we feel that these differences
make this system more rather than less interesting. Many of the same questions
that have eternally plagued evolutionary biology also surface here. In particular,
how does the evolution of autocatalytic metabolisms differ from a random walk? Is
there any sense in which they “make progress” as they evolve? We hope that future
studies of autocatalytic metabolisms may shed some light on these questions, and
help clarify how evolution applies in a broader sense.
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